Holonomy of braids and its 2-category extension

Toshitake Kohno

The University of Tokyo

July 13, 2015
Monte Verità
Braid groups were introduced by E. Artin in the 1920’s.

The isotopy classes of geometric braids as above form a group by composition. This is the braid group with n strands denoted by B_n.
Braid relations

B_n is generated by σ_i, $1 \leq i \leq n - 1$ with relations

$$
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\
\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| > 1
$$
Braid cobordisms

branched covering with simple branched points

![Diagram of a braid cobordism]

surface braid (Kamda, Carter and Saito)

braid cobordism category \mathcal{BC}_n:
- objects: geometric braids with n strands
- morphisms: relative isotopy classes of cobordisms between braids
Plan

- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and hypergeometric integrals
- 2-categories
- Higher holonomy
- Representations of braid cobordism category
$\mathcal{F}_n(X)$: configuration space of ordered distinct n points in X.

$$\mathcal{F}_n(X) = \{(x_1, \cdots, x_n) \in X^n; x_i \neq x_j \text{ if } i \neq j\},$$

$$\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n$$
\(\mathcal{F}_n(X) \): configuration space of ordered distinct \(n \) points in \(X \).

\[
\mathcal{F}_n(X) = \{(x_1, \cdots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j \},
\]

\[
\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n
\]

Suppose \(X = \mathbb{C} \).

\[
\pi_1(\mathcal{F}_n(\mathbb{C})) = P_n, \quad \pi_1(\mathcal{C}_n(\mathbb{C})) = B_n
\]

We set \(X_n = \mathcal{F}_n(\mathbb{C}) \)
We set
\[\omega_{ij} = d \log(z_i - z_j), \quad 1 \leq i \neq j \leq n. \]

Consider a total differential equation of the form \[d\phi = \omega \phi \] for a logarithmic form
\[\omega = \sum_{i<j} A_{ij} \omega_{ij} \]

with \(A_{ij} \in M_m(\mathbb{C}) \).
As the flatness condition we infinitesimal pure braid relations

\[[A_{ik}, A_{ij} + A_{jk}] = 0, \quad (i, j, k \text{ distinct}),\]
\[[A_{ij}, A_{k\ell}] = 0, \quad (i, j, k, \ell \text{ distinct})\]

Algebra of horizontal chord diagrams:

\[
\begin{align*}
X_{ik}X_{ij} & \quad X_{ij}X_{ik} & \quad X_{ik}X_{jk} & \quad X_{jk}X_{ik}
\end{align*}
\]
$\omega_1, \cdots, \omega_k$: differential forms on M

ΩM: loop space M

$$\Delta_k = \{(t_1, \cdots, t_k) \in \mathbb{R}^k; 0 \leq t_1 \leq \cdots \leq t_k \leq 1\}$$

$$\varphi: \Delta_k \times \Omega M \rightarrow \overbrace{M \times \cdots \times M}^{k}$$

defined by $\varphi(t_1, \cdots, t_k; \gamma) = (\gamma(t_1), \cdots, \gamma(t_k))$
K. T. Chen’s iterated integrals of differential forms

\(\omega_1, \cdots, \omega_k : \) differential forms on \(M \)

\(\Omega M : \) loop space \(M \)

\[\Delta_k = \{(t_1, \cdots, t_k) \in \mathbb{R}^k ; 0 \leq t_1 \leq \cdots \leq t_k \leq 1 \} \]

\[\varphi : \Delta_k \times \Omega M \rightarrow \underbrace{M \times \cdots \times M}_{k} \]

defined by \(\varphi(t_1, \cdots, t_k; \gamma) = (\gamma(t_1), \cdots, \gamma(t_k)) \)

The \textit{iterated integral} of \(\omega_1, \cdots, \omega_k \) is defined as

\[\int \omega_1 \cdots \omega_k = \int_{\Delta_k} \varphi^* (\omega_1 \times \cdots \times \omega_k) \]
The expression
\[\int_{\Delta_k} \varphi^*(\omega_1 \times \cdots \times \omega_k) \]
is the integration along fiber with respect to the projection
\[p : \Delta_k \times \Omega M \to \Omega M. \]
differential form on the loop space \(\Omega M \)
with degree \(p_1 + \cdots + p_k - k \), where \(p_j = \deg \omega_j \).
As a differential form on the loop space $d \int \omega_1 \cdots \omega_k$ is

$$\sum_{j=1}^{k} (-1)^{\nu_{j-1}+1} \int \omega_1 \cdots \omega_{j-1} d\omega_j \omega_{j+1} \cdots \omega_k$$

$$+ \sum_{j=1}^{k-1} (-1)^{\nu_j+1} \int \omega_1 \cdots \omega_{j-1}(\omega_j \wedge \omega_{j+1}) \omega_{j+2} \cdots \omega_k$$

where $\nu_j = \text{deg} \omega_1 + \cdots + \text{deg} \omega_j - j$.
Universal finite type invariants for braids

We put

$$\omega = \sum_{i<j} \omega_{ij} X_{ij}.$$

Then there is a universal holonomy map

$$\Theta_0 : \pi_1(X_n, x_0) \longrightarrow \mathbb{C}\langle\langle X_{ij} \rangle\rangle/\alpha$$

declared by

$$\Theta_0(\gamma) = 1 + \sum_{k=1}^{\infty} \int_\gamma \omega \cdots \omega$$

$$\alpha : \text{ideal generated by infinitesimal pure braid relations}$$

$$\mathbb{C}\langle\langle X_{ij} \rangle\rangle/\alpha : \text{algebra of horizontal chord diagrams}$$
We put
\[\omega = \sum_{i<j} \omega_{ij} X_{ij}. \]

Then there is a universal holonomy map
\[\Theta_0 : \pi_1(X_n, x_0) \longrightarrow \mathbb{C} \langle \langle X_{ij} \rangle \rangle / \alpha \]
defined by
\[\Theta_0(\gamma) = 1 + \sum_{k=1}^{\infty} \int_{\gamma} \omega \cdots \omega \]
\[\alpha : \text{ideal generated by infinitesimal pure braid relations} \]
\[\mathbb{C} \langle \langle X_{ij} \rangle \rangle / \alpha : \text{algebra of horizontal chord diagrams} \]
This induces an isomorphism
\[\mathbb{C} \hat{P}_n \cong \mathbb{C} \langle \langle X_{ij} \rangle \rangle / \alpha \]
\[\mathbb{C} \hat{P}_n : \text{Malcev completion} \]
The space of conformal blocks

Conformal field theory

\((\Sigma, p_1, \ldots, p_n) : \) Riemann surface with marked points

\(\mapsto\)

\(\mathcal{H}_\Sigma : \) complex vector space - the space of conformal blocks

The mapping class group \(\Gamma_{g,n}\) acts on \(\mathcal{H}_\Sigma\):

Quantum representations
\(\mathfrak{g} \) : complex semi-simple Lie algebra
\(\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}(\xi) \oplus \mathbb{C}c \) : affine Lie algebra with commutation relation

\[
[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \text{Res}_{\xi=0} df \ g \langle X, Y \rangle c
\]

\(\hat{\mathfrak{g}} = \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \) (triangular decomposition)

For the Lie algebra \(\mathfrak{g} \) we take
\(\alpha_1, \cdots, \alpha_r \) : simple roots
\(\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha \) : half sum of positive roots
K : a positive integer (level)
θ : the longest root normalized as $\langle \theta, \theta \rangle = 2$
λ : dominant integral weight s. t. $\langle \lambda, \theta \rangle \leq K$ (level K weight)
V_{λ} : irreducible representation of \mathfrak{g} with highest weight λ

Construction of representations of $\hat{\mathfrak{g}}$
$\mathcal{M}_{\lambda} = U(N_-)V_{\lambda}$, $N_+ V_{\lambda} = 0$

- V_{λ} : irreducible \mathfrak{g}-module with highest weight λ
- c acts as $K \cdot \text{id.}$

\mathcal{H}_{λ} : irreducible quotient of \mathcal{M}_{λ} called the integrable highest weight modules.
Suppose $\lambda_1, \cdots, \lambda_n$ are level K weights.
$p_1, \cdots, p_n \in \Sigma$ (Riemann surface of genus g)
Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.
\mathcal{H}_{λ_j} : irreducible representations of \hat{g} with highest weight λ_j at level K.

Suppose $\lambda_1, \cdots, \lambda_n$ are level K weights.
$p_1, \cdots, p_n \in \Sigma$ (Riemann surface of genus g)
Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.
H_{λ_j}: irreducible representations of \widehat{g} with highest weight λ_j at level K.

M_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n.

The space of conformal blocks - definition -
Suppose $\lambda_1, \cdots, \lambda_n$ are level K weights.

$p_1, \cdots, p_n \in \Sigma$ (Riemann surface of genus g)

Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.

H_{λ_j}: irreducible representations of \hat{g} with highest weight λ_j at level K.

\mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n.

The space of conformal blocks is defined as

$$\mathcal{H}_\Sigma(p, \lambda) = H_{\lambda_1} \otimes \cdots \otimes H_{\lambda_n} / (g \otimes \mathcal{M}_p)$$

where $g \otimes \mathcal{M}_p$ acts diagonally via Laurent expansions at p_1, \cdots, p_n.
The space of conformal blocks determines a vector bundle over the moduli space $\mathcal{M}_{g,n}$ with a projectively flat connection.

We focus on the case of genus 0. We assign level K weights $\lambda_1, \cdots \lambda_n$ and λ_{∞} at infinity. The space of conformal block is a quotient space of

$$V_{\lambda_1} \otimes \cdots \otimes V_{\lambda_n} \otimes V_{\lambda_{n+1}}^* / \mathfrak{g}$$

In this case the above connection is the KZ connection.
\mathfrak{g} : complex semi-simple Lie algebra.
$\{I_\mu\}$: orthonormal basis of \mathfrak{g} w.r.t. Killing form.
$\Omega = \sum_\mu I_\mu \otimes I_\mu$
$r_i : \mathfrak{g} \to \text{End}(V_i), \; 1 \leq i \leq n$ representations.
KZ connections

\(\mathfrak{g} \): complex semi-simple Lie algebra.
\(\{I_\mu\} \): orthonormal basis of \(\mathfrak{g} \) w.r.t. Killing form.
\(\Omega = \sum_\mu I_\mu \otimes I_\mu \)
\(r_i : \mathfrak{g} \to \text{End}(V_i), \ 1 \leq i \leq n \) representations.

\(\Omega_{ij} \): the action of \(\Omega \) on the \(i \)-th and \(j \)-th components of \(V_1 \otimes \cdots \otimes V_n \).

\[
\omega = \frac{1}{\kappa} \sum_{i<j} \Omega_{ij} d \log(z_i - z_j), \quad \kappa \in \mathbb{C} \setminus \{0\}
\]

\(\omega \) defines a flat connection for a trivial vector bundle over the configuration space \(X_n = \mathcal{F}_n(\mathbb{C}) \) with fiber \(V_1 \otimes \cdots \otimes V_n \) since we have

\[
\omega \wedge \omega = 0
\]
As the holonomy we have representations

$$\theta_\kappa : P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_\kappa : B_n \to GL(V \otimes^n).$$
As the holonomy we have representations

$$\theta_\kappa : P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_\kappa : B_n \to GL(V^\otimes n).$$
Local system over the configuration space

We write
\[\sum_{i=1}^{n} \lambda_i - \lambda_\infty = \sum_{j=1}^{r} k_j \alpha_j \]
and put \(m = \sum_{j=1}^{r} k_j \).

\(\pi : X_{n+m} \to X_n \) : projection defined by
\((z_1, \cdots, z_n, t_1, \cdots, t_m) \mapsto (z_1, \cdots, z_n) \).
\(X_{n,m} \) : fiber of \(\pi \).

\[\Phi = \prod_{1 \leq i < j \leq n} (z_i - z_j) \frac{\langle \lambda_i, \lambda_j \rangle}{\kappa} \prod_{1 \leq i \leq m, 1 \leq \ell \leq n} (t_i - z_\ell) \frac{\langle \alpha_i, \lambda_\ell \rangle}{\kappa} \times \prod_{1 \leq i < j \leq m} (t_i - t_j) \frac{\langle \alpha_i, \alpha_j \rangle}{\kappa} \]

Consider the local system \(\mathcal{L} \) associated with \(\Phi \).
Put

\[Y_{n,m} = \frac{X_{n,m}}{(\mathcal{S}_{k_1} \times \cdots \times \mathcal{S}_{k_r})} \]
Put

\[Y_{n,m} = \frac{X_{n,m}}{(\mathfrak{S}_{k_1} \times \cdots \times \mathfrak{S}_{k_r})} \]

According to Schechtman-Varchenko and others, one can construct horizontal sections of the KZ connections by means of hypergeometric integrals of the form

\[\int_{\Delta} \Phi R(z, t) dt_1 \wedge \cdots \wedge dt_m \]

with some rational function \(R(z, t) \).
\(\Delta \) is a cycle in \(H_m(Y_{n,m}, \mathcal{L}^*) \).
We can construct a period map

\[\phi : H_m(Y_{n,m}, \mathcal{L}^*) \to \mathcal{H}^*(p, \lambda) \]
The period map

\[\phi : H_m(Y_{n,m}, \mathcal{L}^*) \to \mathcal{H}^*(p, \lambda) \]

is surjective and is equivariant with respect to the action of the pure braid group \(P_n \). If \(K \) is sufficiently large relative to \(\lambda_1, \ldots, \lambda_n \) the period map \(\phi \) gives an isomorphism. In particular, the linear representation

\[\rho_{n,m} : P_n \to \text{Aut} \ \mathcal{H}^*(p, \lambda) \]

and the monodromy representation of the KZ equation

\[\overline{\vartheta}_{k,m} : P_n \to \text{Aut} \ \mathcal{H}^*(p, \lambda) \]

are equivalent.
2-categories

objects, morphisms, 2-morphisms

```
y \bullet \quad \alpha \quad \bullet x
```

vertical composition

```
y \bullet \quad \alpha \quad \bullet x = y \bullet \quad \alpha' \cdot \alpha \quad \bullet x
```

horizontal composition

```
z \bullet \quad \alpha_1 \quad \bullet y \quad \alpha_2 \quad \bullet x = z \bullet \quad \alpha_1 \circ \alpha_2 \quad \bullet x
```
There is a work in progress to construct 2-holonomy of KZ connection for braid cobordism based on the 2-connection investigated by L. Cirio and J. Martins of the form

\[A = \sum_{i<j} \omega_{ij} \Omega_{ij} \]

\[B = \sum_{i<j<k} (\omega_{ij} \wedge \omega_{ik} P_{jik} + \omega_{ij} \wedge \omega_{jk} P_{ijk}), \]

where \(A \) has values in the algebra of 2-chord diagrams, a categorification of the algebra of horizontal chord diagrams and

\[\delta B = dA + \frac{1}{2} A \wedge A. \]
Consider Chen’s formal homology connection

\[\omega \in \Omega^*(M) \otimes \widetilde{TH_+(M)} \]

with the following properties.

1. \[\omega = \sum x^i \otimes x_i + \cdots \], \(\{x_i\} \): basis of \(TH_+(M) \)
 \[\text{deg } x_i = p_1 - 1 \text{ for } x_i \in H_{p_i}(M) \]
2. \[\delta \omega + \kappa = 0 \]
3. \[\kappa = d\omega + \epsilon(\omega)\omega \wedge \omega, \ \epsilon(\omega) = \pm 1 \]
4. \(\delta \) is a derivation of degree \(-1\)
Theorem

There is a representation of the homotopy 2-groupoid modulo isotopy

\[Hol : \Pi_2(M)/\sim \longrightarrow \hat{TH}_+(M)_{\leq 2}/\mathcal{J} \]

where \(\mathcal{J} \) is the ideal generated by the image of

\[\delta_3 : \hat{TH}_+(M)_3 \longrightarrow \hat{TH}_+(M)_2 \]

The ideal \(\mathcal{J} \) corresponds to the 2-flatness condition.
Representations of braid cobordism category

Consider the case \(M = X_n \).
Universal holonomy map from the homotopy path groupoid

\[
\Theta_0 : \Pi_1(X_n) \longrightarrow C\langle\langle X_{ij}\rangle\rangle
\]
given by iterated integrals.

\[
\widetilde{TH}_+^1(M) \cong C\langle\langle X_{ij}\rangle\rangle
\]

Theorem

The universal holonomy map \(\Theta_0 \) can be lifted to a representation of the braid cobordism category

\[
Hol : BC_n \longrightarrow \widetilde{TH}_+^1(M)_{\leq 2}/J
\]
Categorification and related problems

\[C : \text{cobordism between links } L_1 \text{ and } L_2 \]
\[\text{Kh}(C) : \text{Kh}(L_1) \to \text{Kh}(L_2) \]
invariants of 2-knots (Khovanov, Jacobson)

Braid group action on categories

- Khovanov-Rouquier-Lauda algebra
- Derived categories of coherent sheaves on Calabi-Yau manifolds
- Fukaya-Seidel category

Problem: Extend the above actions to the braid cobordism category \(\mathcal{B}C_n \).