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A lot of singular solutions to the

famous KdV equation are known.

Problem: Can one extend the

idea of Isospectral Deformation

to the Singular Solutions of KdV?

ut = 6uux − uxxx

Is it possible to construct Spec-

tral Theory on the real line for

the corresponding 1D Schrodinger

Operators L = −∂2
x+u(x, t) such



that time dependence of oper-

ator is an isospectral deforma-

tion?

Some people investigated ”weakly

singular” solutions to KdV. For

example, Tao proved about 10

years ago that KdV dynamics is

well-posed in the Sobolev spaces

H−s for s ≤ 3/10 at the real x-

line (circle). No ideas of Inverse

Scattering (Spectral) Transform



were used, no claims about isospec-

tral properties has been made.

Later Kappeler and Topalov us-

ing finite-gap approximation proved

this for s ≤ 1 including isospec-

tral property. This is probably

the final limit for the ordinary

spectral theory.

However, the well-known funda-

mental class of exact solutions

contains ”singular multisolitons”



and ”singular finite-gap KdV so-

lutions” (algebro-geometric so-

lutions). We cannot find them

in the Sobolev spaces above. They

have stronger singularities. What

can one say about corresponding

Schrodinger Operators?

Our basic observation is follow-

ing: All solutions (for all λ) Lψ =

λψ are x-meromorphic on the real

line for all t. This property we

take as a definition of s-meromorphic

operators.



Our construction: Consider space

of functions f(x) ∈ F, x ∈ R, which

are C∞ plus isolated poles xj of

finite order. We assume that

negative parts belong to some

fixed finite-dimensional spaces Qj

of polynomials from the variables

y−1 = (x − xj)
−1. We assume

also that positive parts are such

that all products fg for f, g ∈ F

don’t have terms of the order



y−1 in all singular points xj ∈ R.

Define indefinite inner product

< f, g >=
∫

R
f(x)ḡ(x̄)dx

integrating along R outside sin-

gularities and avoiding singular

point by any small contours.This

definition is correct but inner prod-

uct is indefinite.

Space F defined by all solutions

Lf = λf to the algebrogeomet-

ric (AG) or ”singular finite-gap”



operators belong to this class.

The singularities of potentials are

following

u =
nj(nj+1)
(x−xj)2

+
∑

k bjk(x− xj)
2k +

o((x− xj)
2nj) for k ≥ 0

We consider general real poten-

tials with discrete set of such sin-

gularities xj, finite at every pe-

riod for periodic case or finite at

the whole line for the rapidly de-

creasing case.



The spectral theory should be

developed in the space f ∈ F

generated by functions which are

C∞ plus isolated singularities at

the real line. Assume for simplic-

ity that every function is mero-

morphic in some small domain

near singularity

f(x) =
∑

k≤nj
qk(x − xj)

−nj+2k +

o((x−xj)
nj) for k ≥ 0, nearby of

every real singularity xj of poten-

tial u for given moment t. We



call it F = Fx1,...,xM ;n1,...,nM =

FX;N

The inner product in the space

F = FX;N was defined above

< f, g >=
∫
f(x)ḡ(x̄)dx

It is well-defined here using com-

plex contours avoiding singular-

ities because all residues of the

product are equal to zero.



The operator L is symmetric in

respect to this inner product, which

is indefinite.

We consider either functions rapidly

decreasing at infinity (T = ∞) or

quasiperiodic with Bloch-Floquet

condition f(x + T ) = κf(x), ψ ∈
FX,N(κ) for |κ| = 1. The num-

ber of negative squares of inner

product in the space FX,N(κ) is

equal to

mX;N =
∑

j[(nj +1)/2]; (It is the



Integral of KdV dynamics. Even

more, the time deformation is

isospectral).

Classical Theory: Spectral The-

ory of Rapidly Decreasing and

Periodic Schrodinger Operators

L requires NONSINGULARITY

of Potential u(x) as well as phys-

ical derivation of KdV in the The-

ory of Solitons.



However, a number of other ap-

plications of KdV theory was dis-

covered later which do not re-

quire nonsingularity. In particu-

lar, since late 1970s a number of

works were written studying the

motion of poles for the singular

KdV Solutions. Especially Ra-

tional and Elliptic Solutions were

popular. We consider here only

real solutions.



Example: For j = 1, ..., n(n+1)
2

there are Real Rational and El-

liptic Solutions (here xj(t) may

be nonreal)

u(x, t) =
∑

j 2/(x− xj(t))
2

u(x, t) =
∑

j 2℘(x− xj(t))

let u(x,0) = n(n+1)/x2 0



and u(x,0) = n(n+1)℘(x); −T T0

(the famous Lame’ Potentials.)

Hermit found Spectrum with Dirich-

let boundary conditions for x =

0, T . Here T is a real period.No

spectral theory on the real line

was discussed in the classical lit-

erature prior to our works. For

n = 1 this solution is a SINGU-

LAR TRAVELING WAVE u =



2℘(x−at) with 2nd order pole in

the point x = at for real a. Don’t

Confuse it with NONSINGULAR

TRAVELING WAVE u = 2℘(x+

iω′ − at) where 2iω′ is an imagi-

nary period. It was a first non-

trivial example of smooth peri-

odic finite-gap potentials as it

was found first time in 1950s. In

the classical theory of Lame po-

tentials since Hermit only cases

with poles at the real axis ap-

peared.



The evolution of Lame’ Poten-

tials

u(x,0) = n(n + 1)℘(x)

or u(x,0) = n(n+1)/x2 leads to

singular solutions

Important Question:

How many real poles these solu-

tions have for t > 0?

A

n=2

x (t)

x (t)

x (t)
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n=3

We have 1,1,2,2,3, ... real poles

for n = 1,2,3,4,5....
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2
n(n+1)

=10n=4

xj ∼ rjt
1/3

The symmetry group Z/3Z acts here

rj → ζrj, ζ
3 = 1

Our Result: The number of real



poles is equal to [(n+1)/2]. For

t > 0 the number of real poles is

obviously equal to the number

of negative squares for the Inner

Product because every ”simple”

singularity of the type 2/x2 gives

exactly one negative square. For

t = 0 this number is also equal

to the number of negative squares

of inner product because the mul-

tiple singularity of the type n(n+

1)/x2 gives exactly [(n + 1)/2]

negative squares as one can see



from the formulas above.We proved

Completeness Theorem for the

spectral decomposition in the space

of functions F = FX;N for the al-

gebrogeometric operators L. So

we conclude that multiple sin-

gularity for t = 0 really splits

into the number of simple ones

equal to the number of nega-

tive squares of inner product. It

is therefore an Integral of Time

Dynamics. Many years ago



Arkad’ev, Polivanov and Pogre-

bkov constructed some sort of

scattering coefficients for the po-

tentials with ”simple” singulari-

ties like 2/(x − xk)
2, but inner

product and spectral theory were

not discussed in this pioneering

work. We found no other works

somehow crossing these ideas. It

looks like many authors who stud-

ied motion of poles avoided ob-

vious question–how many of them



remain in the real axis after bi-

furkation.

Second Part:

Important Examples. Indefinite

Spectral Theory and R-Fourier

Transform.

How Singular Solitons can be used?

We used them to define right

analog of Fourier Transform on

Riemann Surfaces. There are



many orthonormal bases in Math-

ematics and Applications (”Wavelets”,

for example) but Fourier base has

remarkable multiplicative proper-

ties.

They are important for Nonlin-

ear Problems. The notion of Res-

onances is based on multiplica-

tion.

It was critical to have bases with

good MULTIPLICATIVE proper-

ties on Riemann Surfaces for the

operator quantization of strings.



The spectrum of operator (see

below) is equal to the projection

on the complex λ-plane of the

so-called Canonical Contour κ0.

Example 1: Let g = 1 (Γ is
a torus)
and all Ej are real, j = 1,2,3:

E 3E 2E 1

gaps

spectrum

0 ω

2ιω

ιω

2ω

The lattice of periods of
the Weierstrass ℘ -function



in this case is rectangular with

periods 2ω,2iω′.

The spectrum is real , and

spectral gaps are [−∞, E1]

and [E2, E3], τ = id at κ0

E 1 E 2 E 3

singular potential regular potential κ0 is

represented by fine lines.



The contour κ0 has 2 com-

ponents here: infinite and

finite. There is only one pole

γ: For Regular Case it be-

longs to the finite gap, for

the Singular Case it belongs

to the infinite gap

(They both are the shifted

Hermit-Lame Operators but

in regular case the shift is

imaginary, in singular case

the shift is real).



Example 2. Let g = 1, E1 ∈
R, E3 = E2:

0

ω

ω

ω+ω

The lattice of periods is

rombic.

E 1
E 2

E 3

singular potential κ0

given by fine lines.



The spectrum on the whole

line coincides with the pro-

jection of the contour κ0

on the E − plane. It con-

tains complex arc joining E2, Ē2

and τ 6= id at κ0

Define the ”spectral measure”

dµ. Let λj= projection of poles:

dµ = (E−λ1)...(E−λg)dE

2
√
(E−E1)...(E−E2g+1)

For every smooth function on the

contour κ0 with decay fast at in-

finity, we define



Direct and Inverse Spectral
Transform:

φ̃(x) =
1√
2π

∫

κ0
φ(λ)Ψ(σλ, x)dµ(λ(E))

(1)

φ(λ) =
1√
2π

∫

R φ̃(x)Ψ(λ, x)dx

(2)
We call it R-Fourier Trans-
form if all λj = ∞; dµF =

dE/2
√
(E − E1) . . . (E − E2g+1),

Our base has good multi-
plicative properties:



Ψ(x, λ)Ψ(y, λ) = lΨ(x+y, λ)
l = (∂g

z + ζ(z)∂g−1
z + ...)

λ = (E,±), z = x + y

In the Regular Case τ = id

at κ0 and measure is posi-

tive. This Spectral Trans-

form is an Isometry between

the Hilbert spaces with pos-

itive inner products

< ψ1, ψ2 >κ0=
∫

κ0
ψ1(λ)ψ2(τλ)dµ(λ)



< f1, f2 >R=

∫

R f1(x)f2(x)dx

Consider Singular Potentials

1) Formula for the Spectral Trans-

form remains valid; For the In-

verse Transform it remains valid

after a natural regularization.

2) Spectral Transform is an isom-

etry between the spaces with in-

definite metric described above.



All singularities have a form

described above

Example 1. All branching

points are real: τ acts iden-

tically on κ0, the form dµ is

negative somewhere. For

R-Fourier Transform we have:

dµF/dp > 0 exactly in every

second component starting

from the infinite one; So



we have [(g +1)/2] ”nega-

tive” finite components in

κ0.

Example 2. Some pair of branch-

ing points is complex adjoint: τ

is not identity in the nonreal com-

ponents of κ0; So the inner prod-

uct is nonlocal and therefore in-

definite.

We proved Completeness Theo-

rem in the spaces FX,N(κ) which



are similar to the Pontryagin-Sobolev

spaces

E 1 E 2 E 3

µ <0d µ >0dγ
1

E 1
E 2

E 3

singular potential

Every function on the line f(x) ∈
L2(R) can be written as a direct

integral of the Bloch-Floquet spaces

such that f(κ, x+ T ) = κf(κ, x).

The space FX,N also is a direct



integral of Bloch-Floquet spaces

f ∈ FX,N(κ), |κ| = 1: Our inner

product has r negative squares

in the space FX,N(κ), r = [(g +

1)/2] for the R-Fourier case.

Multidimensional Problem:

We already extended our results

to the higher order OD Alge-

brogeometric Operators and to



the case of KP. Is it possible to

extend our construction of In-

ner Product to Singular Algebro-

geometric 2D Schrodinger Op-

erators? No nontrivial smooth

self-adjoint Periodic Algebroge-

ometric Schrodinger Operators

are known. There exist a theo-

rem for 2D case that they do not

exist. However, it is not so for

the singular case. Bloch-Floquet

eigenfunctions are known for the



k+1-particle Moser-Calogero op-

erator with Weierstrass pairwise

potential if coupling constant is

equal to n(n + 1), n ∈ Z. They

form a k-dimensional complex al-

gebraic variety. No one eigen-

function is known for k > 1 serv-

ing the discrete spectrum in the

bounded domain inside of poles.

Our case in this talk corresponds

to k = 1. The Dirichlet Prob-

lem was solved by Hermit but no

extension of his result to higher



dimensions is known until now.

Our Problem is different:We be-

lieve that for all k > 1 this fam-

ily of eigenfunctions also serves

spectral problem in some indefi-

nite inner product in the proper

space of functions defined in the

whole space Rk.


