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Abstract

We construct a Darboux transformation for the vector sine-Gordon
(vSG) equation group and derive its Bäcklund transformation. The
construction is purely algebraic and makes use of the reduction
group of the Lax representation of the vSG. Then using the
Darboux transformation we find a related Yang-Baxter map on the
sphere, an integrable discrete vector sine-Gordon equation (dvSG)
and two integrable differential difference equations which are
related to each other by a Miura transformation.
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The vmKdV-vSG hierarchy

Consider the Lax operators

L(λ) = Dx − U(λ), A(λ) = Dt − V(λ)

where U(λ) and V(λ) belong in glN+2(C)[λ, λ−1].

In particular we assume

U(λ) = λJ + U, V(λ) =
m∑

i=−l
λiVi

with l ,m ∈ N.



Consider the glN+2 automorphisms

r : A(λ) 7→ −A(λ)T

h : A(λ) 7→ A(λ)
s : A(λ) 7→ QA(−λ)Q−1

where Q = diag(−1, 1, . . . , 1).

Remark:The automorphisms r , h and s commute and are
r2 = h2 = s2 = id thus they generate the group Z2 × Z2 × Z2.

We assume

r(U(λ)) = U(λ), h(U(λ)) = U(λ), s(U(λ)) = U(λ),
r(V(λ)) = V(λ), h(V(λ)) = V(λ), s(V(λ)) = V(λ).
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The invariance of U(λ) = λJ + U and V(λ) =
∑

i λ
iVi under the

automorphisms r and h implies that

J, U, Vi ∈ soN+2(R).

while their invariance under r implies the Z2−gradation

soN+2(R) = E0 ⊕ E1

where

Ej = {a ∈ soN+2(R);QaQ−1 = (−1)ja}, j ∈ Z2

and [Ei ,Ej ] ⊂ Ei+j , i , j ∈ Z2.

It follows that

J, V2k+1 ∈ E1 and U, V2k ∈ E0.
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Elements of E0 are skew-symmetric matrices of the form
∗ 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


while of E1 have the following form

0 ∗ · · · ∗
∗ 0 · · · 0
...

...
. . .

...
∗ 0 · · · 0





The vmKdV equation

The compatibility condition of the Lax operators L and A with

J =

 0 1 0
−1 0 0
0 0 0

 U =

 0 0 0
0 0 ~γT

0 −~γ 0


reads

Ut − Vx + [U ,V] = 0

and is equivalent to the vmKdV equation

~γt +
3

2
||~γ||2~γx + ~γxxx = 0

where ~γT = (γ1, . . . , γN) and

V = λ3J + λ2U + λ (kJ + [Ux , J]) + (kU + [Ux ,U]− Uxx)

where k = −||~γ||2/2.



The vSG equation
The vSG equation for ~αT = (α1, . . . , αN) and β scalar is given by

Dt(β
−1~αx) = ~α, ||~α||2 + β2 = 1

and it admits the following Lax pair

L = Dx − λJ − U, A = Dt − λ−1V ,

where

J =

 0 1 0
−1 0 0
0 0 0

 , U =

 0 0 0

0 0 − ~αT
x
β

0 ~αx
β 0


and

V =

 0 −β −~αT

β 0 0
~α 0 0

 .

When N = 1 in polar coordinates (α, β) = (sinφ, cosφ) we obtain
the classical SG equation.
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Darboux transformations

A Darboux transformation for the linear system

L(~α, β, λ)Ψ = 0, A(~α, β, λ)Ψ = 0

is a linear transformation acting on the fundamental solution of the
linear problem

Ψ 7→ Ψ1 = MΨ, det(M) 6= 0

such that Ψ1 satisfies

L(~α1, β1, λ)Ψ1 = 0, A(~α1, β1, λ)Ψ1 = 0.

It follows that the Darboux matrix M satisfies

Mx = U1M −MU , Mt = V1M −MV

where U1 = U(~α1, β1) and V1 = V(~α1, β1).



A Darboux transformation can be inverted and iterated and defines
a shift operator S such that

S : (Ψi , ~αi , βi ) 7→ (Ψi+1, ~αi+1, βi+1)

If the Darboux matrix contains a free parameter µ then we denote
it by Mµ and the corresponding shift by Sµ. Commutativity of the
shifts Sµ and Sν implies the discrete Lax representation

Sν(Mµ)Mν = Sµ(Mν)Mµ

which is equivalent to a system of partial difference equations. The
shifts Sµ and Sν act on the Z2 lattice where on each vertex (m, n)
we attach the variables

~αm,n = Smµ Snν ~α, βm,n = Smµ Snνβ.



We assume that the Darboux matrix M(λ) for the vSG is rational
in λ (without loss of generality) and invariant under the lifted
action of h, r and s, i.e.

r : M(λ) 7→ M(λ)−T = M(λ)

h : M(λ) 7→ M(λ) = M(λ)
s : M(λ) 7→ QM(−λ)Q−1 = M(λ)

Proposition: Assume that the Darboux matrix M of the vSG is
invariant under the action of r , h and s and independent of λ.
Then M is a constant matrix of the form

M = ±

 1 0 0
0 1 0
0 0 Ω


where Ω ∈ ON(R). Moreover,

β1 = β, ~α1 = Ω~α.



We are interested in the simplest Darboux matrix M(λ), rational in
λ, with a pole at λ = µ and invariant under the action of s, r and
h.
First we average over the Gs ' Z2 subgroup generated by s

Mµ(λ) =

〈
M0 +

M1

λ− µ

〉
Gs

= A∞ +
A

λ− µ
− QAQ−1

λ+ µ

where

A∞ = 〈M0〉Gs
=

1

2
(M0 + QM0Q

−1) and A =
1

2
M1.



Since A∞ ∈ GLGs
N+2 and from equations

DxMµ = U1Mµ −MµU and DtMµ = V1Mµ −MµV

follows that A∞ is a constant matrix and of the form

A∞ =

 m 0 0
0 m 0
0 0 Ω



Mµ(λ)Mµ(λ)T = 1, Mµ(λ) = Mµ(λ)⇒ A∞ ∈ ON+2(R).

Conclusion: A∞ is a constant Darboux matrix and thus without
loss of generality I can assume that

Mµ(λ) = 1 +
A

λ− µ
− QAQ−1

λ+ µ



The orthogonality condition Mµ(λ)Mµ(λ)T = 1 implies also that

AAT = 0 and A

(
1− 1

2µ
QATQ

)
+

(
1− 1

2µ
QAQ

)
AT = 0

Assumption: A is a rank one matrix i.e.

A = |b〉 〈a| , 〈a| = (p, q, a1, . . . , aN), |b〉 = (b1, . . . , bN+2)T

It follows that

〈a| a〉 = 0 and |b〉 =
2µ

〈a|Q |a〉
Q |a〉

Mµ(λ) = 1 +
2µ

λ− µ
P − 2µ

λ+ µ
QPQ, P =

Q |a〉 〈a|
〈a|Q |a〉

Remark1: P is a projector, i.e. P2 = P
Remark2: |a〉 7→ c |a〉 does not change P
Remark3: PPT = PQP = 0
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The reality condition Mµ(λ) = Mµ(λ) is satisfied in two cases:

Case 1: µ ∈ R and P = P
This assumption implies that |a〉 ∈ RN+2 and since 〈a| a〉 = 0
it follows that |a〉 = 0. In this case we have a trivial Darboux
matrix Mµ(λ) = 1.

Case 2: µ ∈ iR and P = QPQ
This assumption implies that

〈a| = (ip, q, a1, . . . , aN), with p, q, ai ∈ R

It follows (since I can multiply |a〉 with p−1) that

|a〉 =

(
i
u

)
where (since 〈a| a〉 = 0) ||u||2 = 1.
Remark: It follows that 〈a|Q |a〉 = 2 and thus

P =
1

2
Q |a〉 〈a|
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We have proven
Proposition: The matrix

Mµ(λ) = 1 +
iµ

λ− iµ
Q |a〉 〈a| − iµ

λ+ iµ
|a〉 〈a|Q

with µ ∈ R and

|a〉 =

(
i
u

)
, u ∈ SN

satisfies the following relations

M(λ)−1 = M(λ)T , M(λ) = M(λ), QM(−λ)Q−1 = M(λ).



The Darboux matrix Mµ has to satisfy the semi-discrete zero
curvature conditions

DtMµ = V1Mµ −MµV, DxMµ = U1Mµ −MµU

from where we obtain that

u =
v1 + v

||v1 + v||
, v =

(
β
~α

)
and also the Bäcklund transformation

Dt

(
v1 + v

||v1 + v||

)
= − 1

2µ
(v1 + v)

Dx~α1

β1
− Dx~α

β
= − 2µ

||v1 + v||
(~α1 + ~α)

Remark: When N = 1 we obtain the known Bäcklund
transformation of the SG equation
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Related Yang-Baxter map

The re-factorisation problem of the product of two Darboux
matrices can lead to a Yang-Baxter map.

1. Yu.B. Suris and A.P. Veselov. Lax matrices for Yang-Baxter maps.
J. Nonlinear Math. Phys., 10:223–230, 2003.

2. A. P. Veselov, Yang-Baxter maps and integrable dynamics, Phys.
Lett. A 314, 214–221 2003.

3. T. Kouloukas and V. Papageorgiou. Poisson Yang-Baxter maps with
binomial Lax matrices. J. Math. Phys., 52 12:404012, 2011.

4. S. Konstantinou-Rizos and A. V. Mikhailov. Darboux
transformations, finite reduction groups and related Yang-Baxter
maps. J. Phys. A: Math. Theor., 46, 2013.



For the Darboux matrix Mν(x ;λ)

Mν(x ;λ) = 1 +
iν

λ− iν
Q |a〉 〈a| − iν

λ+ iν
|a〉 〈a|Q

with |a〉 = (i, x)T and x ∈ SN we consider the re-factorisation
problem

Mν(x ;λ)Mµ(y ;λ) = Mµ(Y ;λ)Mν(X ;λ).

If for a given x and y the re-factorisation problem has a unique
solution for X and Y then we can define a map

R(ν, µ) : SN × SN → SN × SN

(x , y) → (X ,Y ) = (X (x , y ; ν, µ),Y (x , y ; ν, µ))

In this case
I (λ) = Tr (Mν(x ;λ)Mµ(y ;λ))

is a generating function for invariants of the maps.



R

x

y

X

Y

x

y

z

x

y

z

x0

y0

z0

z0

y0
x0

=
R12

R13
R23

R12

R23

R13



We also define the extended maps in SN × SN × SN as follows:

R1,2(ν, µ) : (x , y , z) 7→ (X (x , y ; ν, µ),Y (x , y ; ν, µ), z)
R1,3(ν, κ) : (x , y , z) 7→ (X (x , z ; ν, κ), y ,Y (x , z ; ν, κ))
R2,3(µ, κ) : (x , y , z) 7→ (x ,X (y , z ;µ, κ),Y (y , z ;µ, κ))

and we say that R(ν, µ) is a parametric Yang-Baxter map if it
satisfies the (set theoretical) parametric Yang-Baxter equation

R1,2(ν, µ)◦R1,3(ν, κ)◦R2,3(µ, κ) = R2,3(µ, κ)◦R1,3(ν, κ)◦R1,2(ν, µ).

In our case we obtain the vector Yang-Baxter map
(X ,Y ) = R(ν, µ) defined on the unit sphere, where

X =
(ν2 − µ2)x + 2µ(ν + µ 〈x , y〉)y

ν2 + µ2 + 2µν 〈x , y〉
,

Y =
(µ2 − ν2)y + 2ν(µ+ ν 〈x , y〉)x

ν2 + µ2 + 2µν 〈x , y〉



• R(ν, µ) ◦ R(ν, µ) = id (involution)

• (X ,Y ) = R(ν, µ)(x , y) = (fν,µ(x , y), fµ,ν(y , x))

fν,µ(x , y) =
(ν2 − µ2)x + 2µ(ν + µ 〈x , y〉)y

ν2 + µ2 + 2µν 〈x , y〉

• If P(x , y) = (y , x) then
P ◦ R(µ, ν) ◦ P = R(ν, µ) = R(ν, µ)−1 (reversible)

• I (x , y) = 〈x , y〉 (scalar invariant)

• H(x , y) = νx + µy (vector invariant)

1. V.G. Papageorgiou, A.G. Tongas, and A.P. Veselov, Yang-Baxter
maps and symmetries of integrable equations on quad-graphs,
Journal of mathematical physics, 47 (2006), no. 8, 083502

2. V. E. Adler, Integrable deformations of a polygon, Physica D 87,
52–57 (1995).



(U,V ) = R̃(a, b)(u, v) = (φ−1ν × φ−1µ ) ◦ R(ν, µ) ◦ (φν × φµ)

x = φν(u) = ν−1u, y = φµ(v) = µ−1v

SN × SN R̃(ν2−2,µ2−2) //

φν×φµ

��

SN × SN

SN × SN

R(ν,µ)
// SN × SN

φ−1
ν ×φ−1

µ

OO

U = v +
a− b

||u + v ||2
(u + v),

V = u − a− b

||u + v ||2
(u + v),

||u||2 = 2 + a, ||v ||2 = 2 + b, a = ν2 − 2, b = µ2 − 2



Discrete vector sine-Gordon

Starting from the refactorisation problem of the YB map

Mν(x ;λ)Mµ(y ;λ) = Mµ(Y ;λ)Mν(X ;λ)

we set

y =
v0,1 + v

||v0,1 + v||
, X =

v1,0 + v

||v1,0 + v||
and

x = Sµ(X ) =
v1,1 + v0,1
||v1,1 + v0,1||

, Y = Sν(y) =
v1,1 + v1,0
||v1,1 + v1,0||

where

v =

(
β
~α

)
where we use the notation vn,m = SnνSmµ v, v0,0 = v.



From the first component of the YB map

(X ,Y ) = (fν,µ(x , y), fµ,ν(y , x))

we obtain that

v1,0 + v

||v1,0 + v||
= fν,µ

(
v1,1 + v0,1
||v1,1 + v0,1||

,
v0,1 + v

||v0,1 + v||

)
which is equivalent to

v1,0 = −v + 2 〈fν,µ(x , y), v〉 fν,µ(x , y) = F (v, v0,1, v1,1; ν, µ)

Similarly, from the second component of the inverse YB map

(x , y) = (fν,µ(X ,Y ), fµ,ν(Y ,X ))

we obtain

v0,1 = −v + 2 〈fµ,ν(Y ,X ), v〉 fµ,ν(Y ,X ) = G (v, v1,0, v1,1; ν, µ)



For the dvSG equation there is a well defined initial value problem
with the initial data given by the staircase

{vk,k ∈ SN , vk,k+1 ∈ SN ; k ∈ Z, vk,k + vk,k+1 6= 0, vk−1,k + vk,k 6= 0}

vk,k

vk,k+1

vk+1,k

vk+1,k+1

vk+2,k+2vk+1,k+2

vk+2,k+1



1. The vector invariant H(x , y) = νx + µy of the YB map i.e.
the relation

νX + µY = νx + µy

implies the conservation law for the dvSG

(Sµ − 1)ν
v1,0 + v

||v1,0 + v||
= (Sν − 1)µ

v0,1 + v

||v0,1 + v||

2. When N = 1 we obtain the classical discrete sine-Gordon
equation
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A local flow on the sphere

Inverse Problem: Given a Darboux transformation find all the
Lax operators that are associated with it.

We consider a Lax operator

B = Dτ −W(λ)

which has the same reduction group with the operators L and A
and the same poles in λ with the Darboux matrix Mν .
First we average over the group Gr × Gs ' Z2 × Z2 generated by
the automorphisms r and s

W(λ) =

〈
iνb

λ− iν

〉
Gr×Gs

=
iνB

λ− iν
− iνQBQ−1

λ+ iν
, BT = −B

where B = 4−1(b − bT )
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The compatibility condition of the linear system

Ψτ =WΨ, Sν(Ψ) = MνΨ

is
DτMν =W1Mν −MνW

and implies the following conditions:

B1A = AB,

DτA = iν(B1 − B)− (2)−1 (B1QAQ − QAQB
+QB1QA− AQBQ) .

Remember:

Mν(λ) = 1 +
A

λ− iν
− QAQ

λ+ iν
, A = iνQ |a〉 〈a| , |a〉 =

(
i
u

)
and u ∈ SN .



It can be verified that

B =
Q |a−1〉 〈a| − |a〉 〈a−1|Q

〈a|Q |a−1〉

is skew symmetric and satisfies B1A = AB. Moreover with this
choice of B the reality condition

W(λ) =W(λ)

is satisfied.

The other equation is equivalent to

uτ = 2 (Sν − 1)
u + u−1
||u + u−1||2

, u ∈ SN

1. V.E. Adler. Classification of integrable Volterra-type lattices
on the sphere: isotropic case. Journal of Physics A:
Mathematical and Theoretical, 41(14):145201, 2008.

2. O. Ragnisco and P.M. Santini. A unified algebraic approach
to integral and discrete evolution equations. Inverse Problems,
6(3):441, 1990.
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But

u =
v1 + v

||v1 + v||
, v =

(
β
~α

)
and can be proven that v satisfies

Dτv =
||v + v−1||2(v1 + v)− ||v1 + v||2(v + v−1)

〈v1 + v, v + v−1〉+ ||v1 + v|| · ||v + v−1||

v
Miura−−−→ u

When N = 1 we obtain

φτ = tan

(
φ1 − φ−1

4

)
F. Nijhoff and H. Capel. The discrete Korteweg-de Vries equation. Acta

Applicandae Mathematica, 39(1–3):133–158, 1995.



But

u =
v1 + v

||v1 + v||
, v =

(
β
~α

)
and can be proven that v satisfies

Dτv =
||v + v−1||2(v1 + v)− ||v1 + v||2(v + v−1)

〈v1 + v, v + v−1〉+ ||v1 + v|| · ||v + v−1||

v
Miura−−−→ u

When N = 1 we obtain

φτ = tan

(
φ1 − φ−1

4

)
F. Nijhoff and H. Capel. The discrete Korteweg-de Vries equation. Acta

Applicandae Mathematica, 39(1–3):133–158, 1995.



Conclusions

1. Construction of a Darboux transformation for the vSG using
the reduction group

2. Derived the corresponding Bäcklund transformation

3. Constructed a related YB map

4. Constructed the dvSG

5. Constructed a new Lax operator and derived a
differential-difference equation and established its Miura
equivalence with another differential-difference equation.
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