

The Open University

Aperiodic Order

To repeat, or not to repeat, that is the question

Uwe Grimm Department of Mathematics & Statistics The Open University, Milton Keynes

macroscopic features symmetry facetting

macroscopic features symmetry facetting

crystal lattice unit cell

macroscopic features symmetry facetting

macroscopic features symmetry facetting

0

macroscopic features symmetry facetting

Symmetry

. . .

- translational symmetry (periodicity)
- rotational symmetry order n <I→> rotation by 360°/n
- reflection symmetry (mirror symmetry)
- permutation ('colour') symmetry (symmetry under exchange)

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

0

Crystallographic restriction

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

A lattice in 2 or 3 dimensions can only have non-trivial rotational symmetry axes of order 2, 3, 4, or 6.

Why is this true?

Consider two points at minimal distance

Icosahedral symmetry

An unexpected discovery...

(Photo courtesy of the Ames Laboratory)

Dan Shechtman, Nobel prize for Chemistry 2011

Forbidden crystals

(Photo courtesy of the Ames Laboratory)

Forbidden crystals

(Figure reproduced with permission from D. Shechtman, I. Blech, D. Gratias and J.W. Cahn (1984), Metallic phase with long-range orientational order and no translational symmetry, *Phys. Rev. Lett.* **53**, 1951–1953. Copyright (1984) by the American Physical Society)

Forbidden crystals

(Figure reproduced with permission from D. Shechtman, I. Blech, D. Gratias and J.W. Cahn (1984), Metallic phase with long-range orientational order and no translational symmetry, *Phys. Rev. Lett.* **53**, 1951–1953. Copyright (1984) by the American Physical Society)

Quasicrystals

(Photo courtesy of Paul Canfield, Ames Laboratory)

Quasicrystals

(Picture courtesy of Conradin Beeli)

0

Aperiodic Tilings

- 'forbidden' symmetries
- pointlike diffraction
- atomic structure of quasicrystals
- generating tilings:
 - local (matching) rules
 - inflation
 - projection

Penrose Tilings

0

Penrose Tilings

Penrose Tilings

Sir Roger Penrose on his pattern...

... and a less desired application

"So often we read of very large companies riding rough-shod over small businesses or individuals, but when it comes to the population of Great Britain being invited by a multi-national to wipe their bottoms on what appears to be the work of a Knight of the Realm without his permission, then a last stand must be made." (David Bradley, Director of Pentaplex)

Leonardo da Pisa (Fibonacci), Liber Abaci (1202)

Substitution rule for L ('large') and S ('small')

 $L \mapsto LS$ and $S \mapsto L$ gives $L \mapsto LS \mapsto LSL \mapsto LSLLS \mapsto LSLLSLSL \mapsto \dots$

The Fibonacci numbers $f_{n+1} = f_n + f_{n-1}$ ($f_0 = 0$, $f_1 = 1$) are

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots$

with $\frac{f_n}{f_{n-1}} \rightarrow \frac{1+\sqrt{5}}{2} = 1,6180339...$ (golden ratio)

Geometric Realisation (Inflation)

One-dimensional aperiodic pattern

Projection

- crystallographic restriction: more symmetries in higher dimensions
- 5-, 8- and 12-fold symmetry realised in 4D, icosahedral symmetry in 6D lattices
- aperiodic tilings can be obtained as 'slices' of higher-dimensional periodic lattices
- 'cut & project' or 'model sets'
- inherit almost periodicity and pure point diffractivity

Almost periodicity $F(x) = \cos(2\pi x) + \cos(2\pi y)$

Almost periodicity $f(x) = \cos(2\pi x) + \cos(2\pi \sqrt{2}x) = \cos(2\pi x) + \cos(2\pi y)_{|y=\sqrt{2}x|}$

Almost periodicity $f(x) = \cos(2\pi x) + \cos(2\pi\sqrt{2}x) = \cos(2\pi x) + \cos(2\pi y)_{|y=\sqrt{2}x}$ $|f(x+n) - f(x)| = |2\sin(\pi\sqrt{2}n)\sin(\pi\sqrt{2}(n+2x))| \le 2|\sin(\pi\sqrt{2}n)|$

Almost periodicity $f(x) = \cos(2\pi x) + \cos(2\pi\sqrt{2}x) = \cos(2\pi x) + \cos(2\pi y)_{|y=\sqrt{2}x}$ $|f(x+n) - f(x)| = |2\sin(\pi\sqrt{2}n)\sin(\pi\sqrt{2}(n+2x))| \le 2|\sin(\pi\sqrt{2}n)|$

 $\sqrt{2} \simeq 1.41$ $5\sqrt{2} \simeq 7.07$ $12\sqrt{2} \simeq 16.98$ $29\sqrt{2} \simeq 41.01$

Fibonacci Projection

Ammann-Beenker Projection

Projection from $\mathbb{Z}^4 \subset \mathbb{R}^4$:

Ammann-Beenker Projection

Projection from $\mathbb{Z}^4 \subset \mathbb{R}^4$:

Euclidean Model Sets

with $L^{\circledast} = \pi(\mathcal{L}^*)$ and amplitude $A(k) = \frac{\operatorname{dens}(\Lambda)}{\operatorname{vol}(W)} \widehat{1_W}(-k^*)$

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

- 3D: Schmitt-Conway-Danzer 'einstein'
- **2D**: Penrose's $1 + \varepsilon + \varepsilon^2$ tiling (1995)

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

- 3D: Schmitt-Conway-Danzer 'einstein'
- **2D**: Penrose's $1 + \varepsilon + \varepsilon^2$ tiling (1995) Socolar-Taylor monotile (2011)

What about Integrable Systems?

- Ising-type spin systems on aperiodic structures (Korepin 1986/7, Tracy 1988, Au-Yang & Perk 2006)
- aperiodic quantum spin chains (Benza 1989, Luck 1993, Hermisson, Grimm & Baake 1997)
- entropy of random tiling ensembles (Widom 1993, Kalugin 1994, Nienhuis & de Gier 1996/7)
- aperiodic Schrödinger operators (lots of literature, good reviews by Damanik)
- diffraction measure and spectral measure

For more on this...

Michael Baake & UG Aperiodic Order. Vol 1. A Mathematical Invitation Cambridge University Press (2013)

Michael Baake, David Damanik & UG What is Aperiodic Order? arXiv:1512.05104

Michael Baake, David Damanik & UG Aperiodic order and spectral properties. arXiv:1506.04978

UG

Aperiodic crystals and beyond Acta Crystallographica B 71 (2015) 258-274. arXiv:1506.05276

Michael Baake, UG & Robert V. Moody What is Aperiodic Order? arXiv:math/0203252

UG & Michael Schreiber Aperiodic Tilings on the Computer. arXiv:cond-mat/9903010

'Buffalo' Tiling

Bibliography

B. Grünbaum and G.C. Shephard (1987). *Tilings and Patterns* (Freeman, New York).

Y. Meyer (1972). *Algebraic Numbers and Harmonic Analysis* (North Holland, Amsterdam).

R. Penrose (1974). The rôle of aesthetics in pure and applied mathematical research, *Bull. Inst. Math. Appl.* **10**, 266–271.

C. Radin (1999). *Miles of Tiles* (AMS, Providence, RI).

D. Shechtman, I. Blech, D. Gratias and J.W. Cahn (1984). Metallic phase with long-range orientational order and no translational symmetry, *Phys. Rev. Lett.* **53**, 1951–1953.

J.E.S. Socolar and J.M. Taylor (2011). An aperiodic hexagonal tile, *J. Comb. Theory A* **118**, 2207–2231.