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Structure of the talk

» Symmetric functions and reverse plane partitions (RPP)
» Affine symmetric group and cylindric RPP

» Frobenius algebras (2D TQFT) and generalised symmetric
group
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Ak = C[x1, x2, . .., x,]°*: ring of symmetric functions in k variables.

A = lim_ Ag: ring of symmetric functions in infinite variables.

Let A = (A1, A2, ...) a partition. Two basis of A are given by
» monomial symmetric functions my =", x“.

Example. m@a2) = XX+ XEx3 + xPxG + xixE 4 ...

» complete symmetric functions h, =)y, , my, hy = hy, hy, -+

Example. hy = m) 4+ m(11), hs = m(gy + me 1y + mg1y)

Hall inner product: (my, h,) = dx,.

Coproduct A : A — A® A such that (Af,g ® hy = (f, gh).
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Using the product expansion m,m, = fl;\l,m)\ we get

hau=>_ fihy

We will give a combinatorial description of hy/,, in terms of RPP.
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Example. Let A =(3,2,2,1) = ,n=1(2,2,1) =

All the permutations « of p (v ~ p) such that o C A are (in grey):

Define X/, as the cardinality of the set {av ~ p|a C A}

Here x»,, = 6.
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Example. Let A = =

RPP of shape \/u: = | [1 1
2(3
A0 — @) = A2 = B =
X — X{nultiplicity of linm X2mu|tip|icity of 2inm _ Xf X5 X3
Lemma. | hyu =Y xaXT| Xr = Xaw/a0  Xa@/aw
™

The sum is over all RPP of shape \/pu.
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=1, 0j0j4+10/ = 0i110i0/+1, a;aj:aja;for\i—j]>1
Py = 7X
Let A = (A1,..., k) € Pk. Right action of Sy on Py:

()\1,...,)\k).0'f = ()\1,... 7)\i+17)\i7'~7)\k)

Sy = {w € Sk | \.w = A\}: stabilizer subgroup of A.

S*: coset representatives in Sy \ Sk
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» The coefficient fMAV appearing in hy,, =, f,j\,,hu can be
expressed as the cardinality of the set [Butler, Hales, '93]

{(w,w') € S x ¥ | p.w +v.w' = A}

Example. k=2, p=(2,1), v =(1,0), A = (2,2).
A= p+rv.oy = p.oy +v. Hence f;f\z/ =2

» The set {a ~ pu|a C A} (whose cardinality we denoted with
Xx/u) can be expressed as

{w e S*|p.w C A}

How can we generalise this to the affine symmetric group?
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Define the cylindric complete symmetric functions as

hyjda/u = ZX%X” ) X = X3 /30 * X3@ /30 "
#

The sum is over all cylindric RPP of shape A\/d/u.

Theorem [Korff, DP, '17]. | hy/q/, = ZNﬁth

» The sum is restricted tov € 73,(+ such that |v| = nd + || — |pl.
» N s the cardinality of the set

nv

{(w,w') € S* x ¥ | p.w + v.w' = \.y® for some o € Py}

Remark. If d = 0 then hy o/, = hy/,, and N/;\,, = fﬁf‘y.
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Fix k and n. Consider the quotient

Vi(n) = Clxy, ..., )% \(x = 1)
N————

Nk

A(m)={AePrIn>X > >N > 1}

Theorem [Korff, DP, "17]. {mx}xca,(n) is a basis of Vi(n) and

A
m,m, = Z Ny, m)
/\eAk(n)

where the structure constants N;‘,/ coincide with the non-negative

integers appearing in hy;q,, = >, N2, h,.
Vi(n) is a Frobenius algebra (i.e. a 2D TQFT) with bilinear form

5>\u*
S

<mu7mu>: ) :U’*:(n_,ukv"'vn_)ul)
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Theorem [Korff, DP, '17]. Let " =1 and ¢* = (¢M, ..., (™).

» Verlinde formula :

SuoSua Syt 1 Y

S«
O’G.Ak’,1 nto

» Modular group relations :

(ST =82=C Tap = OauC 203 S Min=)

G = Oxpx

Remark. For k =1, V1(n) is the §l,-Verlinde algebra
(Grothendieck ring of a modular tensor category) at level 1.
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The simple modules £ of S(n, k) are labelled in terms of

multipartitions A = (AD), ... A(M) A() partitions [Osima, '54].
Representation ring RepS(n, k): Ly ® L, =D, ciu Ly.

Proposition [Korff, DP, "17]. The structure constants Nﬁ‘y of
Vi(n) have the alternative expression

» f\(»: number of standard tableaux of shape NOE

» The sum runs over )\ such that ])\(i)| = n;j(\), where \)\(i)] is
the number of boxes in A();

» Similarly for 41 and v.
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Example. Let n =3, k = 2. For all the multipartitions below we
have f, = f, = fy = 1. Let

gz(@,D,D) — n=(3,2)
v=(0.0,0) = v=(1)

We have

(3,3) (3,3) (2,1)

Thus, the only non-zero N[L\l, are

NG =2, NEY=1



Conclusions and outlook
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We defined cylindric complete symmetric functions hy 4/, by
means of cylindric RPP and the affine symmetric group.

The expansion coefficients appearing in hy 4/, = >, Nﬁyhy are
the structure constants of Frobenius Algebras and have
representation theoretic interpretation.

Plan for the future:

» Have a geometrical interpretation of NK#.

Cylindric Schur functions: sy/q/, = >, Cj‘l,s,, [Postnikov,
05']. Here C/j‘l, are 3-point, genus 0 Gromov-Witten invariants
(counting of curves intersecting 3 Schubert varieties).

» Generalise to other (affine) Coxeter groups?



Thank you for your attention!



