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Overview of the talk

e We give a (brief) review of a solution method for a cellular automaton
version of the KdV equation, reminiscent of the well-known IST scheme
for the continuous KdV equation. [Joint work with A. Ramani and B. Grammaticos]

e We relate these results, in the case of the so-called Takahashi-Satsuma
soliton cellular automaton (or ‘Box & Ball’ system), to certain simple
combinatorial objects (rigged configurations) that offer a linearization
of the BBS time evolution in terms of action-angle variables.

e These same techniques can be used, almost without modification,
to provide action-angle variables for the Takahashi-Matsukidaira
‘BBS with carrier’, which is a CA version of the mKdV equation.



Overview of the talk

e (Brief) review of a solution method for a CA version of the KdV equation,
reminiscent of the IST scheme for the continuous KdV equation.

The ‘ultradiscrete’ KdV equation
(-1
it — min[1—Ug, Z(U;—U;;“)] (U:7% = R)

k=—o0

with boundary conditions U, = 0 for ¢ < —1 (vt > 0) and initial
conditions UP € R with finite support, i.e.: [¢|>1: U) =0,

e A solitonic system, with all information evolving from left to right.
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(-1
it — min[1—Ug, Z(U;—U;;“)] (U:7% = R)
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with boundary conditions U, = 0 for ¢ < —1 (vt > 0) and initial
conditions UP € R with finite support, i.e.: [¢|>1: U) =0,

e Can be obtained from a suitable discretization of KdV by a special
limiting procedure: the ultradiscrete limit. [Tokihiro et al. PRL 76 (1996) 3247]
Ut + Ul = min[1, V} + U] )

this is most easily seen on its ‘Yang-Baxter’ form:
( Y ° {%WEH—WHG
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The ‘ultradiscrete’ KdV equation
(-1
it — min[1—Ug, Z(U;—U;;“)] (U:7% = R)

k=—o0

with boundary conditions U, = 0 for ¢ < —1 (vt > 0) and initial
conditions UP € R with finite support, i.e.: [¢|>1: U) =0,

o If U) € {0,1}, the ud-KdV evolution is closed on this set and the system
contains only solitons: the Takahashi-Satsuma Boxé&Ball system.



The Box&Ball system [Takahashi & Satsuma J. Phys. Soc. Jpn. 59 (1990) 3514]

/—1
Ut = min[1—Ug, Z(U;;—U;;“)] with U € {0,1}
k=—o0
‘ —
t 1 1 1 -1 1 1
i 111 11 -1
-1 1 1 -1 1 1
1 1 1 : 1 1 1



The Box&Ball system [Takahashi & Satsuma J. Phys. Soc. Jpn. 59 (1990) 3514]

/—1
Ut = min[1—Ug, Y (U;;—U,g“)] with U € {0,1}
k=—o0
‘ —
t 1 1 1 -1 1 1
i 111 11 -1
-1 1 1 -1 1 1
1 1 1 : 1 1 1

e All initial conditions decompose into solitons (i.e. into sequences of 1s that move with
a speed equal to their length) and in fact, its Cauchy problem can be solved exactly.

e Soliton interactions give rise to pair-wise additive phase-shifts:
when two solitons interact, the slower one is retarded by an amount twice its own speed,
while the faster one is advanced by that amount.
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Overview of the talk

o (Brief) review of a solution method for a CA version of the KdV equation,
reminiscent of IST for the continuous KdV equation.

e Can one solve the Cauchy problem for the ud-KdV equation over the reals ?
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IST : continuous vs. ultradiscrete

KdV: U + usy + 6uuy, = 0

Lp+up =N\ (%)

Lax pair for KdV: \
Do =—(4Z5¢+ 6uLd+ 3ug)

+o0
. Suitable initial conditions u(x,0) € L; := {p(ﬁ) measurable‘ / Ip(E)(1 + [¢])dE < oo}
have a finite and simple discrete spectrum, when taken as potentials in (x).
« Asymptotically, a generic initial condition separates into a right-moving solitonic

part (= discrete spectrum) and a non-solitonic remainder consisting of modulated

dispersive wave trains and collisionless shock waves (/& continuous spectrum).



IST : continuous vs. ultradiscrete

KdV: U + usy + 6uuy, = 0

Lp+up =N\ (%)

Lax pair for KdV: \
Do =—(4Z5¢+ 6uLd+ 3ug)

« The contribution from the discrete spectrum is characterized by the eigenvalues A;
and the right and left normalization coefficients, ¢’ and c?, for the eigenfunctions for

the corresponding bound states.
« The phase-shift s; the 7' soliton undergoes as t runs from —oo to +o0o is given by

rebya 171y
TR R ()

for Ay > Xy > -+ > Ay > 0. [Ablowitz & Kodama 1982 ; Ablowitz & Segur 1977]



IST : continuous vs. ultradiscrete

KdV: U + usy + 6uuy, = 0

8x2 ¢ +ug = )‘2¢ (*)

Lax pair for KdV: \
Do =—(4Z5¢+ 6uLd+ 3ug)

« The contribution from the continuous spectrum to the phase-shifts of the solitons
can be represented in terms of the (right) reflection coefficient, b,(x), which is also

part of the scattering data required in the IST scheme for KdV.

o The phase-shift s; the j* soliton undergoes as t runs from —oo to +oo is given by
j g

13~ A=A 1 o N —Ak L [ log(1—|br(m)[2)
TN ]; DV +AJ- Yy Z D 7T,/0 2y

for Ay > Xy > - > Ay > 0. [P.C. Schuur, Lect. Notes Math. 1232, Springer-Verlag (1986)]
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IST : continuous vs. ultradiscrete

| 1 111 2r—6 - - - - :
l—7 - « « - 7=27r 1111 47—12 . .
l—m - - « « + « « < 13—47r 1 11 1 67—18

background: speed 1 soliton with speed 27 — 1
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IST : continuous vs. ultradiscrete

Il —m 1 1 1 1 1 27r—-6
l—m : - - - 7T =27

—2 m+1 4—-27m

I 111 4n—12

13—47 1 1 1 1 6w —18

-1 2r—3 6 —27 -
- —T 2r—5 1 7-—27m

—

—Tr

background

2r—6 1 1 7—27m

2r—6 1 1 7—27
soliton with speed 3
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Phase-shifts for ultradiscrete solitons & background

e Phase-shifts for the fast solitons (A,,) and background (A,,) are given by:
B =2 (TNt Y U) sy —2(X)
w' <w w'>w ¢e{bg} w'>1

(slow (= speed 1) solitons can be taken to be part of the background)



Phase-shifts for ultradiscrete solitons & background

e Phase-shifts for the fast solitons (A,,) and background (A,,) are given by:

Aw>1=2<2w'—zw—|—ZUébg)>’ Ay, = _2(21>

w' <w w'>w ¢e{bg} w'>1

(slow (= speed 1) solitons can be taken to be part of the background)

1 1 1 —= :
S 3 7
—2 7m+1 4—2n
. —mr 2r—3 6—27m :
: - 2r—=5 1 T7—2r .
: —T - 2r—06 1 1 7-—27 .
: —T : - - 2r—=6 1 1 7—2nm

phase shift: -2 phase shift: —2x
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reminiscent of IST for the continuous KdV equation.

e Can one solve the Cauchy problem for the ud-KdV equation over the reals 7

e Step 1: relate the ud-KdV equation to a linear system and define the
discrete spectrum, bound states etc. of a given initial condition.
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only a soliton-less ‘background’, the Cauchy problem for which is trivial.
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A linear system for ud-KdV [Willox et al. J. Phys. A 43 (2010) 482003]

/—1
Ut = min|1-Uf, S (U= U]

k=—o0

[ max[®,, —r, ®L_,| = &+ max[-U}, Ut — 1]
max |} —k, O] = O + max|Uf -1, — U]
max|®) + Kk —w, T+ UL +k—1] = D))

tHl gt t _ &l
max | Py, Oy + U —1] =

for some constants x,w >0

. This system is ‘linear’ in the semi-field R U {co}ax + , in the sense that its

solution @} is only defined up to an additive constant : ¢} — &f + (L.
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SOlViIlg Ud-KdV through ‘IST, [Willox et al. Contemporary Mathematics 580 (2012)]

max |®),, —k, ®)_,| = O+ max|-Uf, U, —1]

. max|®}T] —k, ®7]] = O + max|Uf -1, — U]
maX:CDZ—FK,—w, CDZ“—FU;—HQ—H — @Zﬂ
| max Qo @), + U - 1] = @

for some constants x,w > 0

« Consider the above system at ¢ = 0, with a ‘potential’ U given by some initial
condition for ud-KdV (over the reals, with finite support).
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SOlViIlg Ud-KdV through ‘IST, [Willox et al. Contemporary Mathematics 580 (2012)]

[ max[®) , —r, ) ] = &) + max[-UY, UY, —1]
max [P}, —k, P}, = ¢} + max|U) -1, — U} ]

max[®) +k —w, O, +U) +k—1] = &,

max (@), , B, + U9 —1] = &

for some constants x,w > 0

(~—00: o +krY

« The system has solutions with special asymptotics: { 0~ 400 - 0

for oy = g — wt (linear!), and which obey the dispersion relation : x = min |1, w|.



Solving ud-KdV through ‘IST"

Definition of a bound state :

If, for U} with finite support, the ultradiscrete linear system

has a solution ®! for some positive k and w, such that

= O+ D) — Kl t] <
Ncp I?EaZX[ g"‘ /—1 KL+ w ] +00,

we say that the potential U} has a bound state.

. N3 is invariant under the ud-KdV time evolution.

. It can be shown that, if there is a bound state for some Uy, the associated
w is the speed of the fastest soliton contained in that initial condition.
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Solving ud-KdV through ‘IST"

Definition of a bound state :

If, for U} with finite support, the ultradiscrete linear system

has a solution ®! for some positive k and w, such that

= oL+ Pt — kY t
N I?EaZX[ L+ P, — kl+wt] < oo,

we say that the potential U} has a bound state.

. The quantity Q) := ®,+ ®, , — k{+wt is an analogue of the

squared eigenfunction for KdV.

(~—00: 20p+k(f—1)—wt

. It has the asymptotics : {E ~ 400 : — kil + wit



Solving ud-KdV through ‘IST"

Theorem 1 : [Willox et al. Contemporary Mathematics 580 (2012) 135-155]
V0. U+Up <0 — pure background : no bound state exists
W 0<Up+Up <u<li — bound state(s) exist with w =x =pu <1

(p: maximal)

W Up+Upy > 1 o bound state(s) exist with Kk =1, w > 1

. w is obtained uniquely by solving the system for ®), ®;, as w = ag — a,
and at most one bound state can be found for any initial condition.

. Generically, there are no unique functions ®Y, ®; for this bound state.

. However, ®), ®; can be found algorithmically.
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Solving ud-KdV through ‘IST"

Theorem 2 :

Define the following transformation of Uy, in terms of the functions ®9, ®,
that correspond to a bound state w for that U, :

U U 2 | Ui=Up+®), + 0 — 0 — D),

This transformation corresponds to an undressing of the potential U, :

+0o0 +o0
e The ‘mass’ of the potential U, decreases by w : Z U = Z U, —w

{=—00 f=—00
e the region where large values of the sum U, + Uy, 1 occur shrinks under the
undressing and U, corresponds to an initial value for ud-KdV in which a speed w

soliton was eliminated.
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Solving ud-KdV through ‘IST"

Theorem 2 :

Define the following transformation of Uy, in terms of the functions ®9, ®,
that correspond to a bound state w for that U, :

U U 2 | Ui=Up+®), + 0 — 0 — D),

This transformation corresponds to an undressing of the potential U, :

e the region where large values of the sum U, + Uy, 1 occur shrinks under the

undressing

e Hence, a finite iteration leads to a potential without bound states, i.e. a
background without solitons (when considered as an initial condition for ud-KdV).
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Example of an undressing

Ugf—>[75

U : : -1 7/5 —2 : : /3 1 1 /7
®): ap—10 ap—9 ap—7 w/3—-6  7/3-3 T/3—2 7/3—1

¢, : ay—10 ;-9 ay—8 «a;—6 —107/21-6 —107/21-3 —107/21-2 —x/7—2 —w/7—1 —=x/7

Uy : : : —1 /5 —2 : 1—n/3

where oy = 87/15 and ay = —297/105 — 1, and thus w := ap — a; = 1 + 177/21.
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Example of an undressing

Ug —> [75
U : : -1 7/5 —2 : : /3 /7
®): ap—10 ap—9 ap—7 w/3—-6  7/3-3 T/3—2 7/3—1
¢, : ay—10 ;-9 ay—8 «a;—6 —107/21-6 —107/21-3 —107/21-2 —x/7—2 —w/7—1 —=x/7
Uy : : : -1 /5 —2 : 1—n/3

Compare this with the time evolution of the initial value U, for udKdV :
-1 n/5 -2 . : /3 1 r w7
-1 7/5 -2 - 1-—7/3 : - 1—x/7T 1 1 20%/21—2 :
1 x5 -2 - 1-%/3 - - . . 3-20m/21 1 1 1 377r/21 —5

result of undressing : Uy soliton with speed 1+ 177/21
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Solving ud-KdV through ‘IST"

o Iteration of the undressing U, — Uy yields an (ordered) list of data :

[0, 0), (@, 0), .o, (@,af)] . W 2w > > )

where N = the # of eliminated bound states.

e Ultimately, one obtains a background U, which is free of bound states and
which, as an initial value for ud-KdV, evolves undeformed at speed 1.

e The set { {(w(l), oz(()l)), (w®, a(()Q)), ooy (W), oz(()N)ﬂ, U, } constitutes the

ultradiscrete scattering data.



Solving ud-KdV through ‘IST"
o Iteration of the undressing U, — Uy yields an (ordered) list of data :
[(wu)’ oi), (wW®,a?), . (W™, aém)} W > @ > > @)
where N = the # of eliminated bound states.

e Ultimately, one obtains a background (Afg which is free of bound states and
which, as an initial value for ud-KdV, evolves undeformed at speed 1.

This is in fact the ultradiscrete analogue of a famous theorem due to

P. Deift & E. Trubowitz [Comm. Pure. Appl. Math. 12 (1979) 121-151]
stating that the fastest soliton in any given initial state can be removed
by Darboux transformation, without perturbing the rest of the spectrum.
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Solving ud-KdV through ‘IST"
e Iteration of the undressing U, — U, yields an (ordered) list of data :
[(wmj@gw)’ (w® o), ... (ww))@gm)} W > @ > > W)
where N = the # of eliminated bound states.

e Ultimately, one obtains a background U, which is free of bound states and
which, as an initial value for ud-KdV, evolves undeformed at speed 1.

e The set { {(w(l), ozél)), (w@), 0482)), - (wW), ozém)} : ﬁg } constitutes the
ultradiscrete scattering data.

e In the absence of faster solitons, the evolution of a background ﬁg can be
described explicitly, for all times ¢, as: [Hirota Stud. Appl. Math. 122 (2009) 361]

400

1 ~
Ui =Ten 4TI - T =T, Ti=5 3 Oefe— k4|

k=—o0
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Solving ud-KdV through ‘IST"

Theorem 3 : [Nakata J. Phys. A: Math. Gen. 42 (2009) 412001]

A solution 175 to ud-KdV can be ‘dressed’ by the transformation:

Téf —> Tg = %max [min[l,w]f—wt — C—i—QTF_l, —min[l,w]f—l—wt—l—c—l—Qﬁ_l}

This yields a map Uf =T}, + T, —Tf = THD — Ul =T}, + T -1 — T}

which adds a speed w soliton to U! (provided there are no faster solitons).



Solving ud-KdV through ‘IST"

Theorem 3 : [Nakata J. Phys. A: Math. Gen. 42 (2009) 412001]

A solution 175 to ud-KdV can be ‘dressed’ by the transformation:

Ti — T} = 1 max [min[l,w] {—wt—c+ 2T, —min[l,w] £+ wt +c + 2T

This yields a map Uf = Tt,, + T — B¢ — Tt o U = Tfy, + T0 —T¢ — T3]

which adds a speed w soliton to U! (provided there are no faster solitons).

e This dressing procedure yields an explicit solution, for all / and ¢ (!)

. 1R~ . .
Starting from the background 7, = 5 Z Up|¢ — k — t|,solitons are inserted

k=—o0
one by one, in reverse order, i.e.: w®™) — W=D ... 5 L with phases c

given by the normalization coeflicients oz(()j ): cU) = —oz(()j )



Conclusions (1)

e “a solution method for a CA version of the KAV equation, similar to

the inverse scattering method for the continuous KdV equation.

In a sense, the dynamics exhibited by the BBS is ‘as rich’ as that of
its discrete or continuous counterparts.

e Eissential ingredients for solving the Cauchy problem are : the soliton
speeds, the insertion points of the solitons in the dressing, and the
background on which the solitons are superimposed.

This information is completely determined by the scattering data.

e In fact, in the case of the Takahashi-Satsuma ‘Box & Ball’ system, we
can link this method to combinatorial techniques that yield a linearization
of the BBS time-evolution in terms of action-angle variables, which turn
out to be equivalent to the scattering data.
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Combinatorics and the Cauchy problem for the BBS

e The Cauchy problem for the BBS was first solved for periodic boundary
conditions (using the inverse scattering technique for the discrete Toda lattice
and by taking an appropriate ultradiscrete limit.)

[T. Kimijima & T. Tokihiro Inv. Probl. 18 (2002) 1705]

e For non-periodic boundary conditions, the Cauchy problem was first solved
by applying a procedure called “10 elimination”

[J. Mada et al. J. Phys. A 41 (2008) 175207]



BBS: 10 elimination

e Connect all 10 pairs in the BBS state by arcs. Then, neglecting all connected pairs,
connect all new 10 pairs and keep on repeating this process.

Fact: interchanging 1s and 0s in every arc amounts to one time-step in the BBS !
p=1

[Mmﬂﬁ’{\[ﬁ/rﬁ;\\ =

00111011100100011110001101000000

[J. Mada et al., RIMS Kokyuroku 1541 (2007) 15]

e The number of arcs at each stage can be recorded in a Young diagram, which encodes

the speeds (w; := wNF1=9)) of the solitons in the initial state | S we=5
—ws =4

—wy =2

[ — w3 =1

| —wy =1

| —w; =1

e This Young diagram is invariant w.r.t. the BBS time evolution, but does not
uniquely characterize a BBS state (as it does not give the soliton positions).
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Combinatorics and the Cauchy problem for the BBS

e The Cauchy problem for the BBS can also be solved by linearizing the evolution
by means of action-angle variables [A. Kuniba et al., Nucl. Phys. B 747 (2006) 354-397],

using a Kerov-Kirillov-Reshetikhin (KKR) type bijection between BBS states
and so-called “rigged configurations” (which yield the action-angle variables).

e This approach is intimately related to 10 elimination. [A.N. Kirillov & R. Sakamoto,
Lett. Math. Phys. 89 (2009) 51].
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

11 13 14 15 17 18 21

0 1 5 7
01111100111 100101101110
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

11 13 14 15 17 18 21

0 1 5 7
ci11111001111001011T01110--- (5
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

0 1 5) 7 11 13 14 15 17 18 21
01111100111100101101110-+@
0 9 10

01111011101 110 @ 9

10
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

11 13 14 15 17 18 21

0 1 5 7
ci111110011110010110111T0--- (5

0 9 10
0111101110(1‘110---@ 9
10
0 3 5
0111‘11)110--.@ 3
5

10
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

11 13 14 15 17 18 21

0 1 5 7
ci111110011110010110111T0--- (5

0 9 10
0111101110(1‘110---@ 9
10
0 3 5
0111‘11)110--.@ 3
5

10
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BBS: 10 elimination

e Our version (based on [T. Takagi, SIGMA 6 (2010) 027] of this method is as follows:

11 13 14 15 17 18 21

0 1 5 7
ci111110011110010110111T0--- (5

9 10

0
0111101110‘1‘110---@ 9
10
0 3 )
0111‘11)110--.@ 3
5
01111110 @ .
10

another 6 times

0
()‘()... ©




BBS: 10 elimination

e This procedure yields a Young diagram (essentially that obtained by 10 elimination)
which gives the speeds/lengths of the solitons contained in the initial state — here,

9, 2 (twice) and 1 (twice) — and a ‘rigging’ of the solitons, 10, 9, 5, 3 and 0, which
yields the rigged configuration :

9
10

e Because of the rigging, there is a one-to-one correspondence between the rigged
configuration and a state of the BBS !

e This is a realization of the KKR bijection, in the case of the Takahashi-Satsuma BBS.



BBS: 10 elimination

e Such a rigged configuration offers a linearization of the BBS evolution in which
the soliton speeds are the action variables and the riggings the angle variables.

0
t=0: ---01111100111100101101110000000000---
t=1: ---00000011000011010010001111111110---



BBS: 10 elimination

e Such a rigged configuration offers a linearization of the BBS evolution in which
the soliton speeds are the action variables and the riggings the angle variables.

0
t=0: ---01111100111100101101110000000000---
t=1: ---00000011000011010010001111111110---

10-elim: ---000000110000110 0 001111111110~

10 11

--00000010001000111111110---



BBS: 10 elimination

e Such a rigged configuration offers a linearization of the BBS evolution in which
the soliton speeds are the action variables and the riggings the angle variables.

0
t=0: ---01111100111100101101110000000000---
t=1: ---00000011000011010010001111111110---

10-elim: ---000000110000110 0 001111111110~

10 11

--00000010001000111111110---

000000 00 00111111110---



BBS: 10 elimination

e Such a rigged configuration offers a linearization of the BBS evolution in which
the soliton speeds are the action variables and the riggings the angle variables.

0
t=0: ---01111100111100101101110000000000---
t=1: ---00000011000011010010001111111110---

10-elim: ---000000110000110 0 001111111110---

10 11

--00000010001000111111110---

5 7

---000000000011111110---

9
9
which leads to:  ---00000000000---
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10
11




BBS: 10 elimination

e Such a rigged configuration offers a linearization of the BBS evolution in which
the soliton speeds are the action variables and the riggings the angle variables.

0
t=0: ---01111100111100101101110000000000---
t=1: ---00000011000011010010001111111110---

10-elim: ---000000110000110 0 001111111110---

10 11

--00000010001000111111110---

5 7

---000000000011111110---

9 9 = 049
5 = 342
which leads to:  +--00000000000-- Sy
10 = 9+1

11 = 1041




BBS: 10 elimination

e It can be shown that, for any BBS state, the riggings ¢, depend linearly on ¢:
Or(t) = o1 (0) + wit,
in terms of the soliton speeds wy (which are constant).

e This action-angle type linearization of the BBS was conjectured by Kuniba, Okado,
Takagi & Yamada in [RIMS Kokyoroku 1302 (2003) 91-107] and proven (by means of
a crystal theoric interpretation) in: [A. Kuniba et al., Nucl. Phys. B 740 (2006) 299-327].

e Our proof is direct and elementary. It mainly relies on the fact that 10-elimination
commutes with the time evolution of the BBS, up to a right-shift:

..01001110101100000--- 2= 9/01110000---

t—t+1 \l, t—t+1 \l, {—/7+1

...00100001010011110... =™ .0000001110---



BBS: 10 elimination

e [t can be shown that, for any BBS state, the riggings ¢, depend linearly on ¢:
P(t) = ¢(0) + wi t,

in terms of the soliton speeds wy, (which are constant).

e We can also establish a relation between the rigings and the normalization coefficients,
obtained from the IST-scheme for the BBS:

k—1

L+ r(t) + (N — k) wi + Y wp = —ay(t)

(where wy, is the k™ slowest soliton and qy, its corresponding normalization coefficient)
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BBS: 10 elimination

e [t can be shown that, for any BBS state, the riggings ¢, depend linearly on ¢:
O(t) = ou(0) + wit,
in terms of the soliton speeds wy, (which are constant).

e This action-angle type linearization of the BBS was conjectured by Kuniba, Okado,
Takagi & Yamada in [RIMS Kokyoroku 1302 (2003) 91-107] and proven (by means of
a crystal theoric interpretation) in: [A. Kuniba et al., Nucl. Phys. B 740 (2006) 299-327].

e Our proof is direct and elementary. It mainly relies on the fact that 10-elimination

commutes with the time evolution of the BBS, up to a right-shift:

e Our proof can easily be extended to the case of the Takahashi-Matsukidaira BBS
with a carrier (with finite capacity M) and box capacity L = 1.



BBS with carrier [Takahashi-Matsukidaira J. Phys. A 30 (1997) L733-L739]

(Tiu, Tyv) =: Rya(u,v) : Yang-Baxter map =
1 Eﬂ: - winfm, £ - 1
mKdV: Tiu=wv i uuv) Trv = - camer w0, 1+ )
+ KUV Tiu I o 1 [
\l/ ud-lim - ------
m ' —_— "
(T,U =V +max|0,U +V — M] ) @)
) —max[0, U +V — L] = -
\TE V — V + U — E U befiwe passing efter passing

e This is the combinatorial R : By X By — By X By, for Agl)—type crystals.
e For L =1, M = oo this system reduces to the KdV-type BBS:

UEH + Uf = min[1, V} + U/]
Vi + U =V + U
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BBS with carrier: evolution rule
L=1,M=2
t=0: ---011101100110011110000000---
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BBS with carrier: evolution rule
L=1,M=2
t=0: ---011101100110011110000000°---
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BBS with carrier: evolution rule

L=1,M=2
t=0: ---011101100110011110000000---
t=1: ---000110111001100111100000---
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BBS with carrier: evolution rule

L=1,M=2
t=0: ---011101100110011110000000---
t=1: ---000110111001100111100000---
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BBS with carrier: evolution rule

L=1M=2
t=0: ---011101100110011110000000---
t=1: ---000110111001100111100000---
(=2 ---000001011110011001111000---
=3 ---000000100111100110011110---

= the maximum speed is 2 (= M), even if some of the solitons are longer !
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BBS with carrier: evolution rule

L=1,M=2
t=0: ---011101100110011110000000---
t=1: ---000110111001100111100000---
t=2: ---000001011110011001111000---
t=3: ---000000100111100110011110---

L=1M=3
¢=0: ---011101100110011110000000---
¢=1: ---000010111001100111110000---
t=2: ---000001000110011001111110---

= changing the value of M radically changes the evolution !
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BBS with carrier: ‘rigged configuration’
L=1,M=3 0
t=0: ---011101100110011110000000---
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BBS with carrier: ‘rigged configuration’
L=1,M=3 0
t=0: ---011101100110011110000000---

2
10-elim for M = 3: ---011/110101110---
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BBS with carrier: ‘rigged configuration’

L=1,M=3 0
t=0: ---011101100110011110000000°---

2
10-elim for M = 3: OlllOlOlllO
0
2
10-elim for M = 2: OllHllO 3 T
2
10-elim for M = 1: --01110--- —_——— —_——

This yields two sets of conserved quantities: soliton speeds 4 extra soliton content
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BBS with carrier: ‘rigged configuration’

L=1,M=3
0
t=0: ---011101100110011110000000---
2
10-elim for M = 3: OlllOlOlllO
0
2 2 4
10-elim for M = 2: OllHllO 2
2
10-elim for M = 1: ---01110--- —_——— —_——
soliton speeds extra soliton content
0
t=2: ---000001000110011001111110---
1
10-elim for M = 3: 00000001010111110
6 + 6=0+2x3
10-elim for M =2: ---000000011110--- 6
6=2+2%2
10-elim for M = 1: ---00000001110--- 4=2+4+2x1

The ‘riggings’ evolve linearly, with the speeds of the solitons.
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BBS with carrier: ‘rigged configuration’

L=1M=2

t=0:

10-elim for M = 2:

10-elim for M = 1:

t=3:

10-elim for M = 2:

10-elim for M = 1:

The ‘riggings’ evolve linearly with the speeds of the solitons.

0
---011101100110011110000000---

2
01110101 110--- 2
2 4
2
011110--- 2
—_———

2

0

—_——

soliton speeds + extra soliton content

0
.000000100111100110011110--

5

--00000001110101110---
6 8 8+3x%2
000000011110~~~ 8 4+
5=2+3x%1

8

6=0+3x%x2



Conclusions (2)

e We have shown that the time evolution of the general Agl)—type BBS (with box
capacity 1), can be linearized in terms of action angle variables. These can be
represented (uniquely) by a rigged configuration (Young diagram + rigging)
giving the soliton speeds + a ‘rigged composition’ for the extra soliton content.

e We believe it should be possible to extend these results to the case the Aq(zl)—type
BBS with arbitrary carrier (at the very least, for box capacity 1).

e We also believe that it is possible to extend these results to the case where L > 1.
(But this is a much harder problem !)

e However, a generalization to general L for the Agl)—type BBS with infinite carrier
capacity would give a combinatorial interpretation of the scattering data in the IST
scheme for the Takahashi-Satsuma BBS over the rationals !



