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Abstract. Given any smooth germ of a threefold flopping contraction, we first give
a combinatorial characterisation of which Gopakumar–Vafa (GV) invariants are non-

zero, by prescribing multiplicities to the walls in the movable cone. This allows us

to describe, and even draw, the critical locus of the associated quantum potential.
We prove that the critical locus is the infinite hyperplane arrangement of [IW], and

moreover that the quantum potential can be reconstructed from a finite fundamental

domain. We then iterate, obtaining a combinatorial description of the matrix which
controls the transformation of the non-zero GV invariants under a flop. There are

three main ingredients and applications: (1) a construction of flops from simultaneous
resolution via cosets, which describes how the dual graph changes, (2) a closed for-

mula which describes the change in dimension of the contraction algebra under flop,

and (3) a direct and explicit isomorphism between quantum cohomologies of different
crepant resolutions, giving a Coxeter-style, visual proof of the Crepant Transformation

Conjecture for isolated cDV singularities.
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1. Introduction

Many key results in algebraic geometry can be established using topological and combina-
torial descriptions of a given variety, or of its degenerations and deformations. However,
even with a clear combinatorial model on such a degeneration or deformation, determin-
ing which properties of the original variety can be controlled by combinatorics is still in
general a difficult question.

This paper considers arbitrary smooth 3-fold flopping contractions, which form a
fundamental building block of the minimal model programme. Our main point is that,
as far as their enumerative geometry is concerned, all such flopping contractions are
combinatorial, provided we are content with describing only the shape of the enumerative
invariants, rather than their precise values. This qualitative perspective allows us to
extract, and prove rather easily, many fundamental results. We determine which curve
classes give rise to non-zero invariants, then control how these invariants transform under
flop, in a visually pleasing and satisfyingly combinatorial manner. Along the way it is
necessary to enhance existing geometric structures, such as the movable cone.

The authors were supported by EPSRC grant EP/R009325/1. The first author was additionally supported
by the Herchel Smith Fund, and the second by ERC Consolidator Grant 101001227 (MMiMMa).
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1.1. Gopakumar–Vafa: finite arrangements. Let f : X → SpecR be a crepant reso-
lution of a 3-fold isolated cDV singularity, equivalently a germ of a smooth 3-fold flopping
contraction. The morphism f contracts a finite collection {Ci ⊆ X | i ∈ Ic} of complete
curves to a point, and these freely generate the group of algebraic curve classes

A1(X) = 〈Ci | i ∈ Ic〉Z.
Given β ∈ A1(X), Katz defines an associated Gopakumar–Vafa (GV) invariant [Kat08]

nβ = nβ(X) ∈ Z≥0

which we recall in Subsection 3.1 below. It is an important invariant of flopping contrac-
tions, with close connections to other known invariants [DW16,Tod15].

Our first result determines those β for which nβ 6= 0. The description is direct and
combinatorial, encoded in the associated finite hyperplane arrangement HI of Iyama and
the second author [IW]. It turns out that this arrangement is the movable cone, and thus
the GV invariants are to first approximation encoded by the walls of this cone. There is
however a slight catch: combinatorially the walls carry multiplicities, and this data is not
part of the definition of the movable cone. This multiplicity, which is new information
(see Remark 5.6), turns out to be the key to determining whether nβ 6= 0.

As is standard, and recalled in Subsection 2.2, slicing X → SpecR by a generic
hyperplane section gives rise to a partial crepant resolution of an ADE surface singularity.
From this slicing we thus obtain the Dynkin diagram ∆ of the ADE surface singularity,
together with a subset I of nodes: the full minimal resolution dominates the partial
resolution, and I are the curves which are contracted by this morphism.

Example 1.1. As the running example, consider a two-curve smooth 3-fold flop for which

the corresponding Dynkin data is , where by convention I equals the six black
nodes. The Dynkin data gives rise to a finite intersection arrangement HI ⊆ R|∆|−|I| = R2

[IW, Section 3]. One method of calculating HI is to first restrict all 120 positive roots of
E8 to the subset Ic = ∆ \ I, and thus obtain the set

{01, 11, 21, 42, 31, 41, 10, 20, 30}.
These so-called restricted roots give rise to hyperplanes in the dual space, where for ex-
ample 42 gives rise to the hyperplane 4x + 2y = 0. The output is thus the following
hyperplane arrangement, which we emphasise is constructed entirely from I ⊆ ∆.

x

y

1

1

2 11 3

Restricted Root

01
11

21, 42
31
41

10, 20, 30

(1.A)

Note that the restricted root 42 gives rise to the hyperplane 2(2x + y) = 0, and so the
blue diagonal 2x + y = 0 line carries the list [1, 2] of multiplicities. We write 2 beside
the blue line to emphasise this fact. Similarly, the line x = 0 carries the list [1, 2, 3] of
multiplicities, as a consequence of 20 and 30.

Returning to general flopping contractions X → SpecR, since by construction the
nodes in ∆\I can be identified with the curves in X, after some natural identifications
HI (with multiplicities) can be viewed inside PicX⊗ R. So can the movable cone. After
forgetting the multiplicities, HI is equal to the movable cone [Pin83,Wem18].
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The following is our first main result. It describes the non-zero GV invariants in an
elementary combinatorial way, and asserts that it is the hyperplanes of HI, counted with
multiplicity, that control the non-zero GV invariants.

Theorem 1.2 (3.1). For β ∈ A1(X) the GV invariant nβ is non-zero if and only if β is
a restricted root.

The theme of this paper is that the shape of the enumerative geometry of X is
controlled, in a very visual way, from this finite amount of initial data.

1.2. Gromov–Witten: infinite arrangements. Given any subset I of a Dynkin dia-
gram, the finite arrangement HI of the previous subsection has an infinite cousin Haff

I .
Given a restricted root β = (βi)i∈Ic , the hyperplane

∑
i∈Ic βixi = 0 appearing in the

finite arrangement gets translated over the integers Z, to give an infinite family∑
i∈Ic

βixi ∈ Z. (1.B)

Repeating this over every restricted root results in an infinite arrangement of affine hy-
perplanes, written Haff

I . Note that multiplicities on hyperplanes of HI result in more
translations, as if say 2β = (2βi) is also a restricted root, then its translates give rise to
the family

∑
2βixi ∈ Z, i.e. to

∑
βixi ∈ 1

2Z. This is larger than (1.B).
In the running Example 1.1, taking all the relevant translations of (1.A) results in

the following Haff
I .

x

y

(1.C)

Returning to a general flopping contraction X→ SpecR, the next main result relates
the Gromov–Witten (GW) theory of X to the associated infinite arrangement Haff

I . The
GW invariants are virtual degrees of moduli spaces of stable maps, and provide a system
of curve counts related to the more enumerative GV invariants by multiple cover formulae.
The GW invariants form the structure constants for the quantum cohomology algebra,
but for our purposes it is more convenient to package this information into a generating
function, called the quantum potential (see Subsection 3.2 for details).

Theorem 1.3 (3.4). Let X → SpecR be a smooth 3-fold flopping contraction. The pole
locus of the quantum potential is the complexification of the infinite arrangement Haff

I .

By [HW], the complement of the complexified arrangement Haff
I forms the base of the

Bridgeland stability covering map, for a natural compactly-supported subcategory of the
derived category of X. Theorem 1.3 therefore connects quantum-cohomological Frobenius
manifolds and spaces of stability conditions, a phenomenon which has been observed in
other contexts [Bri06, IQ,McA].

1.3. Flops via simultaneous resolution. To track the change of GV/GW invariants
under iterated flops requires us to first rework some of the theory of simultaneous reso-
lutions, which may be of independent interest. Our new contribution is to use the wall
crossing formula from [IW], which indexes chambers of the movable cone by certain cosets,
to construct iterated flops from simultaneous (partial) resolutions, and explain how the
dual graph changes under flop. This completes work of Reid [Rei83], Pinkham [Pin83],
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and Katz–Morrison [KM92] in the 80s and 90s, rounding off a circle of ideas going back
to Brieskorn [Bri68].

For any Kleinian singularity C2/G, consider the corresponding Dynkin diagram ∆,
root space h, and Weyl group W . As is standard, C2/G admits a versal deformation
SpecV over the base hC/W . For any subset I ⊆ ∆, consider the parabolic subgroup
WI := 〈si | i ∈ I〉, and take the pullback to obtain

SpecVI SpecV

hC/WI hC/W .

gI

When I = ∅, the parabolic WI = 1, and in this case classically SpecV∅ admits a simulta-
neous resolution.

As is now standard, to describe smooth 3-fold flops requires singular surface geometry,
and so the ability to consider I 6= ∅ is crucial. By [KM92], for each I there is a preferred, or
standard simultaneous partial resolution hI : YI → SpecVI (see Subsection 2.4). Further,
by loc. cit. all smooth flops can be constructed via appropriate classifying maps µ : Disc→
hC/WI from the formal disc to hC/WI for some I, giving the following cartesian diagram

X YI

SpecR SpecVI SpecV

Disc hC/WI hC/W .

hI

gI

µ

The question is, given X → SpecR, how to construct the flop at a given curve from the
classifying map µ. This was solved in the case I = ∅ by Reid [Rei83], but the general case
is harder, since the subset I changes under flop. Pinkham [Pin83] counts only the number
of simultaneous resolutions.

We solve this problem by appealing to the wall crossing combinatorics of [IW]. The
key point is that when I 6= ∅, chambers in the movable cone are indexed by cosets, not
by elements of the Weyl group. For any curve Ci ⊆ X, set wi = `I`I∪{i} ∈ W where
`Γ denotes the longest element in the Weyl group WΓ. Then there is a unique subset
ωi(I) ⊆ ∆, described explicitly in Section 4, for which WIwi = wiWωi(I).

Theorem 1.4 (4.4). Post-composing µ with w−1
i : hC/WI → hC/Wωi(I) and taking the

pullback constructs the flop X+
i → SpecR of the curve Ci ⊂ X. In particular

(1) ωi(I) is the dual graph of the exceptional locus of X+
i → SpecR.

(2) All other crepant resolutions can be obtained from the fixed µ by post-composing
with x−1 : hC/WI → hC/WK and pulling back along YK, as the pair (x,K) ranges
over the (finite) indexing set Cham(∆, I).

We describe the above in detail in Section 4, but emphasise here that everything is
formed intrinsically from the Dynkin data, once X→ SpecR and thus µ is fixed.

1.4. Tracking fundamental regions. With the above in hand, tracking the change in
GV/GW invariants under all possible flops becomes easy, and satisfyingly visual. In our
running Example 1.1, each of the 12 crepant resolutions Xi → SpecR admits a fundamen-
tal region in (1.C). As calibration, the fixed X → SpecR corresponds to the unit box in
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the purple axes

x

y

(1.D)

The other 12 chambers in the movable cone generate similar fundamental regions as in
(1.D) and this is illustrated in Figure 1.

Figure 1. The 12 fundamental regions corresponding to the 12 crepant resolutions.

Reassuringly, flopping a single curve turns out to correspond to the neighbouring
region. Although Figure 1 only illustrates the two-curve flop in the running Example 1.1,
similar things happen in full generality (see Section 5). The following is our third main
result, which controls how GV invariants transform under iterated flops. As notation, set
X+

i to be the scheme obtained from X after flopping only a single curve Ci, and further
write nβ,X for the GV invariant of curve class β in X. In what follows Mi is an explicit
matrix, defined in (5.A), that can be easily built using Dynkin combinatorics.

Theorem 1.5 (5.4). With the notation as above,

nβ,X+
i

=

{
nβ,X if β ∈ ZCi

nMiβ,X else.

Example 5.5 illustrates this in the case of the running Example 1.1.

1.5. Applications. The above results have a series of corollaries. The first is a direct
and explicit proof of the Crepant Transformation Conjecture for germs of 3-fold flop-
ping contractions. Indeed, combining Theorems 1.3 and 1.5 allows us to easily extract
the following, which recovers the main result of [LR01]. We remark here that our sim-
plified approach also gives more refined information, in the form of the explicit matrix
Ni = (M−1

i )? which identifies the quantum potentials. Our proof also avoids the use of
symplectic cuts, side-stepping the associated technical difficulties.
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Corollary 1.6 (5.13). Under the identification of the Novikov parameters given by the
explicit matrix Mi of Theorem 1.5, the quantum potentials of X and X+

i coincide, up to a
correction term which does not depend on the Novikov parameters, namely

Φ
X+

i
r

(
γ1,γ2,γ3

)
−ΦX

r (Niγ1,Niγ2,Niγ3) = −(γ1·C+
i )(γ2·C+

i )(γ3·C+
i )
∑
k≥1

k3nkCi,X. (1.E)

Here Ni : H2(X+
i ;C) → H2(X;C) is the dual of M−1

i . The above identification holds after
a specific analytic continuation in the quantum parameters.

The correction terms on the right-hand side arise due to the non-compactness of X (see
Remarks 3.7 and 5.14). The key point is that the quantum potential of X+

i can be
effectively reconstructed from the quantum potential of X. Thus, whilst the GW invariants
themselves are not combinatorial, their transformation across the flop is combinatorial,
which is why we obtain such an elementary proof; compare [LR01] and [McL20].

The explicit matrix Ni turns out to have many different incarnations: it arises nat-
urally as the image in K-theory of the Bridgeland’s flop functor, but more interestingly
it can be calculated using very simple Dynkin-style combinatorics (see Remark 5.12).
However, simply by iterating and multiplying matrices, it is possible to obtain a direct
isomorphism between the generating functions of any two crepant resolutions of SpecR.

The second corollary is algebraic. The flopping contraction X→ SpecR has an asso-
ciated contraction algebra Acon [DW16,DW19], and it is known by Hua–Toda [HT18] for
single curves, and Toda [Tod18] in general (see A.4), that the dimension of the contraction
algebra is determined as the weighted sum of GV invariants

dimC Acon =
∑

β∈A1(X)

nβ(β · 1)2

where β · 1 is the sum of the entries of β. For any curve Ci ⊆ X, the contraction algebra
can be intrinsically mutated to obtain νiAcon, and this is the contraction algebra for the
flop X+

i → SpecR.
It is known [Dug15, Aug20a] that Acon and νiAcon are derived equivalent via a two-

term tilting complex, but what is surprising here is that their dimension transforms in a
very elementary manner, dictated by the K-theory of that derived equivalence.

Corollary 1.7 (5.16). Under mutation at vertex i,

dimC νiAcon =
∑

β∈A1(X)

nβ
(

(M−1
i β) · 1

)2
where Mi is the explicit matrix in Corollary 1.5.

The above is remarkable: it says that not only are there just finitely many algebras
in the derived equivalence class of the finite dimensional algebra Acon (by [Aug20b]),
furthermore the dimensions of all the other algebras can be easily obtained combinatorially
from the first. The proof of Corollary 1.7 is slightly subtle, since it is not a priori clear
that the GV invariants defined by Toda are the same as the GV invariants defined here,
but this is all discussed in Appendix A.

Acknowledgements. We thank Tom Coates and Misha Feigin for helpful discussions on
quantum cohomology, and Jenny August, Ben Davison, Okke van Garderen and Yukinobu
Toda for wider discussions on GV invariants and contraction algebras.

Conventions. All cDV singularities and related algebraic geometry takes place over C.
Vector spaces will be over R, unless stated otherwise, and the complexification of a vector
space V will be written VC.
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2. Root theory, deformations and perturbations

Fix an isolated 3-fold cDV singularity SpecR with a crepant resolution f : X → SpecR.
There is a finite collection of exceptional complete curves in X, contracted to a point
p ∈ SpecR, and such that f restricts to an isomorphism on the complement. In other
words, f : X → SpecR is a germ of a smooth 3-fold flopping contraction, and conversely
every such germ arises in this way [Rei83].

2.1. Elephants. The pullback along f of a general hyperplane section through p ∈ SpecR
is a partial crepant resolution of an ADE surface singularity, the so-called general elephant
[Rei83, (1.14)]

XY

C2/G ∼= SpecR/g SpecR.
(2.A)

Let ∆ be the Dynkin diagram associated to C2/G, and let the composition

Z → Y → C2/G

be the full minimal resolution. By the McKay correspondence, the exceptional curves
Ci ⊆ Z are indexed by the nodes i ∈ ∆. We write

I ⊆ ∆

for the subset indexing those curves Ci ⊆ Z which are contracted by the morphism Z → Y ,
so that the complement Ic = ∆ \ I indexes the curves that survive. In particular

{Ci | i ∈ Ic}

forms the set of exceptional curves in both Y and X, and the group A1(Y ) = A1(X) is
freely generated by their cycle classes.

Notation 2.1. Write Y = YI for the partial resolution of C2/G obtained from the full
minimal resolution Z by blowing down the curves in I.

The geometry of X will be studied by viewing it as the total space of a one-parameter
deformation of YI. This requires detailed control over the associated root theory, which
we establish in the following subsections.

2.2. Root theory. For any Dynkin diagram ∆, let h be the R-vector space based by the
set of simple roots {αi | i ∈ ∆}, so that

h =
⊕
i∈∆

Rαi,

and write Θ = h? for the dual. The Weyl group W acts naturally on both h and Θ.
For every positive root α ∈ h, write Dα ⊆ h for the perpendicular hyperplane, and write
Hα ⊆ Θ for the dual hyperplane.

Notation 2.2. For any subset I ⊆ ∆, consider the following data.

(1) The complement Ic = ∆ \ I.
(2) The parabolic subgroup WI := 〈si | i ∈ I〉 ⊆W .
(3) The R-vector space hI obtained as the quotient of h by the R-subspace spanned

by {αi | i ∈ I}. The associated quotient map will be written

πI : h→ hI.

Note that hI has basis {πI(αi) | i ∈ Ic} and may be identified with the subspace
of h based by {αi | i ∈ Ic}.

(4) The restricted positive roots in hI, which are precisely the non-zero images of
positive roots under πI.
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(5) For ϑi ∈ R with i ∈ ∆, write (ϑi) =
∑

i∈∆ ϑiα
?
i , and consider

ΘI := {(ϑi) ∈ Θ | ϑi = 0 for all i ∈ I} ⊆ Θ.
The reflecting hyperplanes in Θ intersect ΘI, and in this way ΘI inherits the
structure of a finite hyperplane arrangement. Note that ΘI has basis {α?

i | i ∈ Ic}.
Of course, hI and ΘI are dual, and both have dimension |Ic|.

(6) The set Cham(∆, I) which indexes chambers of ΘI [IW, 1.8]. Combinatorially,
Cham(∆, I) can be defined as the set of all pairs (x,K) with x ∈ W and K ⊆ ∆
for which WIx = xWK and length(x) = min{length(y) | y ∈ xWK}.

For a given restricted positive root β ∈ hI, there are in general many different positive
roots α ∈ h such that πI(α) = β. The following result controls the possible lifts. It is a very
mild generalisation of [BKL01, Lemma 2.4], and will be used later to relate enumerative
invariants to hyperplane arrangements.

Lemma 2.3. For any ADE Dynkin diagram ∆, and any subset I ⊆ ∆, let α,α′ ∈ h be
positive roots such that πI(α),πI(α

′) ∈ hI are non-zero. Then the following are equivalent.

(1) πI(α) = πI(α
′).

(2) α and α′ are identified under the action of WI on h.
(3) Dα and Dα′ are identified under the action of WI on h.

Proof. Since I is fixed, to ease notation set π = πI.

(1)⇒(2) This is the only difficult part, and is a direct case analysis. Consider first the
An root system, where the positive roots are precisely the connected chains of 1s on the
Dynkin graph

αij := 0 . . . 0 1 . . .1 0 . . . 0 (1 ≤ i ≤ j ≤ n).
i j

By definition of the action of W on h, the reflection si acts by

si(αij) = αi+1 j for i < j (2.B)

which has the effect of replacing the leftmost 1 with a 0. Similarly sj(αij) = αi j−1 for
i < j, which has the effect of replacing the rightmost 1 with a 0.

Suppose now that we are given positive roots αij and αkl, and assume without loss
of generality that i ≤ k. Since π(α) = π(α′) is nonzero, the two chains of 1s must overlap,
and any position at which they do not overlap must be indexed by an element of I. By
iteratively applying (2.B), we can shorten both αij and αkl using only elements of WI

and force them to line up on the left, at the leftmost element belonging to the overlap.
They can similarly be forced to line up on the right as well, proving the claim.

The case Dn for n ≥ 4 is similar in spirit, albeit more involved. As usual, write
α1, . . . ,αn for the simple roots, then the positive roots are given by the following linear
combinations. Note that the support of each is a connected subset of the Dynkin graph.

q 1 ≤ i ≤ j ≤ n− 2,
αpq
ij := 0 . . . 0 1 . . .1 0 . . . 0 p p, q ∈ {0, 1},

i j (p, q) 6= (0, 0)⇒ j = n− 2

1
βij := 0 . . . 0 1 . . .1 2 . . . 2 1 1 ≤ i < j ≤ n− 2

i j

In addition, the collection αpq
ij includes two special cases αn−1 and αn, which we interpret

as (p, q) = (1, 0) and (p, q) = (0, 1) with the string of 1s between i and j being empty.
For every 1 ≤ i ≤ n the reflection si acts on the coefficient in the ith position

by negating it and then adding the sum of the coefficients in adjacent positions. The
coefficients in all other positions are left unchanged.

Consider now positive roots α,α′ with π(α) = π(α′) 6= 0. We work through the
different cases. The first case is α = αpq

ij and α′ = αrs
kl . If (p, q) 6= (r, s) then we can use
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the reflections sn−1, sn to transform α,α′ until (p, q) = (r, s). For instance, if (p, q) = (0, 1)
and (r, s) = (0, 0) then since π(α) = π(α′) we must have n ∈ I. Applying sn ∈ WI to α
replaces (p, q) = (0, 1) with (p, q) = (0, 0). The other cases are similar, and so we may
assume that (p, q) = (r, s). Given this, we follow the strategy in the An case. The only
difference is when j = n− 2 and l < n− 2, in which case (p, q) = (r, s) = (0, 0) since the
chain of 1s is connected. Then sn−2 ∈WI and sn−2(α00

i n−2) = α00
i n−3. This, and all other

situations, then simply mirror the An proof.
The next case is α = αpq

ij and α′ = βkl. If i ≤ k then necessarily j ≥ k since otherwise
the supports do not overlap. In particular si, si+1, . . . , sk−1 ∈WI which gives

(sk−1 ◦ · · · ◦ si)(αpq
ij ) = αpq

kj .

Similarly if i ≥ k we use sk ◦ · · · ◦ si−1 to achieve the same transformation. For the next
step, notice that sj+1, . . . , sn−2 ∈WI, and applying these left-to-right gives

(sn−2 ◦ · · · ◦ sj+1)(αpq
kj) = αpq

k n−2.

As in the previous case, if (p, q) 6= (1, 1) then we may use the reflections sn−1, sn to
transform αpq

k n−2 into α11
k n−2. Now, going back from right-to-left gives the required

(sl ◦ · · · ◦ sn−2)(α11
k n−2) = βkl.

The next case is α = βij and α′ = βkl, where without loss of generality i ≥ k. But then
si−1, . . . , sk ∈ WI which is applied directly to give (sk ◦ · · · ◦ si−1)(βij) = βkj . If j ≥ l,
then sj−1, . . . , sl ∈WI, and (sl ◦ · · · ◦ sj−1)(βkj) = βkl. The case j ≤ l is similar.

This completes the proof for Dn, except for some special cases involving αn−1 and
αn. These are more elementary, and so are left to the reader.

The remaining cases E6, E7, E8 encompass finitely many possibilities. It is possible to
verify these by hand, but it is also possible to employ computer algebra [BCP97]. Source
code is available from the authors upon request. This completes the proof of (1)⇒(2).

(2)⇒(1) This holds since applying elements of WI to a given positive root cannot change
the coefficients associated to elements of Ic.

(2)⇒(3) If s ∈ W and v ∈ h then s(Dv) = Ds(v) since s preserves the Cartan pairing. In
particular this applies when v = α is a positive root and s(v) = α′ is its image.

(3)⇒(2) Suppose there is an element s ∈ WI such that s(Dα) = Dα′ . We then have
Dα′ = Ds(α) and since both α′ and s(α) are roots it follows that s(α) equals either α′ or
−α′. We claim that s(α) must be a positive root, thus ruling out the latter possibility.
If s = si for some i ∈ I, then si permutes the set of positive roots excluding αi. But
certainly α 6= αi since π(α) 6= 0, so si(α) must be a positive root. The argument for
general s follows by induction, since π(α) = π(si(α)) for any α and any si with i ∈ I. �

2.3. Hyperplane arrangements: finite and infinite. To the above data of a Dynkin
diagram ∆ and a subset I ⊆ ∆ it is possible to associate two hyperplane arrangements
encoding the set of restricted positive roots: one finite and one infinite [IW]. Recalling
Notation 2.2, both arrangements live inside ΘI

∼= R|Ic|.
The real vector space hI is dual to ΘI, and so for each restricted positive root 0 6=

β = πI(α) ∈ hI we may consider the dual hyperplane

Hβ := {(ϑi) |
∑
βiϑi = 0} ⊆ ΘI.

Since there are only finitely many restricted roots, the collection of Hβ forms a finite
hyperplane arrangement in ΘI, which we refer to as the finite linear arrangement, namely

HI := {Hβ | β is a restricted positive root} . (2.C)

The above list includes repetitions, whenever two restricted roots are proportional. As in
Example 1.1, we remember these repetitions by attaching a finite list of multiplicities to
each hyperplane. We refer to this data as the enhanced finite arrangement.
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Remark 2.4. In the setting of Subsection 2.1, HI is the set of walls in the movable cone
of X [Pin83,Wem18]. However, the movable cone does not remember multiplicities.

To define the infinite arrangement, for each restricted positive root β, consider the
infinite disjoint union of affine hyperplanes in ΘI defined by

Haff
β = {(ϑi) |

∑
i∈Ic βiϑi = z for some z ∈ Z}.

The infinite affine arrangement Haff
I is then defined to be

Haff
I :=

⋃
β

Haff
β . (2.D)

There is an inclusion HI ⊆ Haff
I , as HI can be recovered from Haff

I as the subset of
hyperplanes which pass through the origin. On the other hand to construct Haff

I from the
finite arrangement HI it is necessary to remember the multiplicities, since Haff

2β 6= Haff
β .

2.4. Simultaneous partial resolution. The enumerative geometry of the 3-fold X will
be studied by replacing X with a generic perturbation, a strategy employed by many
authors [Mor96, Wil99, BKL01]. In the first instance this will allow us to qualitatively
characterise the GV invariants, and extract the poles of the quantum product. However
the real strength in this approach, and indeed our new contribution, is to use the wall
crossing formula from [IW] to construct iterated flops via simultaneous (partial) resolution.
This iteration step is harder, and so will be delayed until Section 4.

In this subsection we simply recall the necessary background and set notation, largely
following [BKL01, Section 2], together with [Bri68,Pin83,Fri86,KM92].

2.4.1. Simultaneous Resolution. With notation as in Subsection 2.2, given any Kleinian
singularity C2/G with associated Dynkin diagram ∆, consider the complex vector space
hC =

⊕
i∈∆Cαi, based by the simple roots. Write SpecV for a versal deformation of

C2/G, then as is very well known, base changing with respect to the Weyl group

SpecW SpecV

hC hC/W

gives SpecW→ hC, which admits a simultaneous resolution. Since dimW ≥ 3, there are
in fact many such simultaneous resolutions, since minimal models are not unique.

In [KM92, Theorem 1] Katz–Morrison construct a particular simultaneous resolution,
from a particular SpecV→ hC/W , for which positive roots and their hyperplanes control
those curve classes that survive under deformation [KM92, Theorem 1(c)]. We will recap
this result in greater generality in Theorem 2.6 below, but for now write Z → SpecW
for this preferred resolution. Katz–Morrison refer to their particular choice of Z as the
standard simultaneous resolution [KM92, Section 6].

2.4.2. Simultaneous Partial Resolution. Given any subset I ⊆ ∆, consider the standard
simultaneous resolution Z→ SpecW from Subsection 2.4.1 above. As explained in [KM92,
above Theorem 3] following [Pin83] it is possible to blow down Z at the curves in I and
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take the quotient by WI to obtain YI, which sits in the following commutative diagram

Z

Y
†
I

YI

SpecW SpecVI SpecV

hC hC/WI hC/W

gI

hI

(2.E)

with all squares cartesian. By construction, the fibre (hI◦gI)−1(0) is the partial resolution
of C2/G obtained from the full minimal resolution by blowing down the curves in I.
Namely, recalling Notation 2.1, (hI ◦ gI)−1(0) = YI.

In a similar way as in Subsection 2.4.1, the middle morphism hI : SpecVI → hC/WI

admits simultaneous partial resolutions. Again these are not unique, however we will
refer to the choice YI → SpecVI constructed above as the standard simultaneous partial
resolution associated to I. From our perspective, the point is that YI is precisely the
partial simultaneous resolution for which Theorem 2.6 below holds.

2.5. Surface deformations via simultaneous partial resolution. Fix a subset I ⊆ ∆
and consider the composition

sI = hI ◦ gI : YI → hC/WI

from (2.E). This is a versal deformation of the surface YI.

Definition 2.5. The standard discriminant locus

DI ⊆ hC/WI

is the set of points p ∈ hC/WI such that the fibre s−1
I (p) contains a complete curve.

There is a similar definition of a discriminant locus associated to any simultaneous
partial resolution: the word standard in Definition 2.5 emphasises the choice made in (2.E).
The following discussion draws heavily on [KM92, Theorem 1] as used in [BKL01, Propo-
sition 2.2], while also incorporating Lemma 2.3 above to relate the resulting combinatorics
to the enhanced movable cone.

To set notation, recall that Dα ⊆ h is the hyperplane perpendicular to α, and let
Dα,C ⊆ hC denote its complexification. Recall from Notation 2.2 that for I ⊆ ∆ there is a
quotient map πI : h→ hI, where the vector space hI has basis {πI(αi) | i ∈ Ic}, and that
there is a natural identification

hI ∼= A1(YI)R (2.F)

πI(αi) 7→ Ci.

Every restricted positive root πI(α) ∈ hI has non-negative integer coefficients, and so may
be interpreted as a curve class πI(α) = β ∈ A1(YI).

Theorem 2.6 (Katz–Morrison). For any subset I ⊆ ∆, the following statements hold.

(1) The standard discriminant locus DI ⊆ hC/WI from Definition 2.5 decomposes as

DI =
⋃

πI(α)6=0

Dα,C/WI

where the union is over all positive roots α such that πI(α) 6= 0. The irreducible
components Dα,C/WI ⊆ DI are indexed by the restricted positive roots πI(α).
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(2) For p ∈ Dα,C/WI the fibre s−1
I (p) is a deformation of YI containing a complete

curve of class β := πI(α). If in addition p does not belong to any other component
of DI, then this is the only complete curve in s−1

I (p).
(3) If β ∈ A1(YI) is not a restricted positive root, then there are no deformations of

YI containing a complete curve of class β.

Proof. (1) If I = ∅ then by [KM92, Theorem 1(3)] (see also [BKL01, Proposition 2.2])
there is a decomposition of the standard discriminant locus

D∅ =
⋃
α

Dα,C ⊆ hC

where the union is over all positive roots α. The analogous decomposition for general I fol-
lows by considering the standard simultaneous resolution Z of the standard simultaneous
partial resolution YI from 2.4

Z YI

hC hC/WI.

tI sI

φI

The map Z → YI is given by blowing down Z at the curves in I and then taking the
quotient by WI.

Fixing a point p ∈ hC, it follows that the fibre s−1
I (φI(p)) contains a complete curve

if and only if the fibre t−1
I (p) contains a complete curve which is not blown down. Again

by [KM92, Theorem 1(3)], the fibre t−1
I (p) contains a complete curve if and only if p ∈ Dα,C

for some positive root α, and this curve is not blown down if and only if πI(α) 6= 0. This
produces the desired decomposition of DI. It then follows from Lemma 2.3 that the
components Dα,C/WI are indexed by the restricted positive roots πI(α), i.e. Dα,C/WI =
Dα′,C/WI if and only if πI(α) = πI(α

′).

(2)(3) First recall what it means for a curve in s−1
I (p) to have class β ∈ A1(YI). The

inclusion of the central fibre i0 : s−1
I (0) = YI ↪→ YI induces an isomorphism

i0? : A1(YI)
∼−→ A1(YI).

Now consider an arbitrary fibre s−1
I (p) with inclusion ip : s−1

I (p) ↪→ YI. If C ⊆ s−1
I (p) is a

complete curve, then C has class β ∈ A1(YI) if ip?C = i0?β. The same definition applies
to the full simultaneous resolution Z. Both (2) and (3) are known for Z by loc. cit., and
the general case follows by tracking curve classes from Z to YI. �

Remark 2.7. Consider classes β,β′ ∈ A1(YI) which are proportional but distinct, i.e.
kβ = k′β′ for some distinct integers k, k′ ≥ 1. If both β,β′ are restricted positive roots,
then the lifts α,α′ will not be proportional, by the root system axioms. In particular,
the corresponding components of the standard discriminant locus DI will be distinct.
Every component of the discriminant locus therefore corresponds to a unique curve class
β. This is in contrast to the components of the hyperplane arrangement HI ⊆ ΘI from
Subsection 2.3.

Remark 2.8. The description of the standard discriminant locus DI in Theorem 2.6 is
a union over positive roots α ∈ h such that πI(α) 6= 0. The complementary union of
hyperplane quotients

EI =
⋃

πI(α)=0

Dα,C/WI

parametrise points p ∈ hC/WI such that the fibre s−1
I (p) is singular. Clearly

D∅/WI = DI ∪ EI.
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For a generic point p ∈ EI, the fibre s−1
I (p) contains a single A1 singularity. The locus

EI will play a less central role than DI. The translation between our notation and that
of [BKL01, Section 2] is as follows: DI = Dcurv,EI = Dsing and DI ∪ EI = D.

2.6. 3-fold perturbations via surface deformations. Given the flopping contraction
X→ SpecR, a choice of local equation for the hypersurface SpecR/g ⊆ SpecR produces
a flat family SpecR → Disc over a formal disc, with central fibre an ADE surface singu-
larity. By composition this produces a flat family X→ Disc with central fibre the partial
resolution Y ∼= YI of the ADE singularity [Rei83]. This exhibits X, respectively SpecR, as
the total space of a one-parameter deformation of the surface YI, respectively SpecR/g.
These deformations are induced by an associated classifying map

µ : Disc→ hC/WI

where hC/WI is as described in the previous subsection, and the contraction X→ SpecR
is obtained from the simultaneous partial resolution of Subsection 2.4 by base change

X YI

SpecR SpecVI

Disc hC/WI.

f gI

hI

µ

The central fibre of SpecR→ Disc is the ADE singularity corresponding to ∆, so µ(0) = 0.
On the other hand, since X contains no complete curves outside of Y the map µ does not
intersect the discriminant locus away from the origin, so µ−1(DI) = µ−1(0) = 0.

As in [BKL01, below Lemma 2.7] there exists a one-parameter perturbation of µ

(µt)t∈[0,ε] : Disc× [0, ε]→ hC/WI

such that µ0 = µ and for t 6= 0 the following transversality condition is satisfied

µt intersects DI ∪ EI transversely and away from codimension two strata (2.G)

where EI is defined in Remark 2.8. Furthermore, making ε smaller if necessary, we can
assume that µ−1

t (DI) is bounded away from the boundary of Disc.
The spaces Xt 6=0 give generic perturbations of the target X0 = X. The following is

well-known, and will be used to reduce the enumerative geometry of Xt, locally, to that
of the Atiyah flop.

Lemma 2.9. For any t 6= 0, the total space Xt of the family of surfaces associated to µt
is a smooth 3-fold. Further, every complete curve in Xt is isolated, smooth, and rational,
with normal bundle isomorphic to OP1(−1)⊕ OP1(−1).

Proof. This is essentially [BKL01, Proposition 2.2], which it itself is extracted from the
proof of [KM92, Theorem 1]. �

Write X for the 4-dimensional total space of the entire family (µt)t. Then as explained
in [Wil92, Section 3], pulling back along inclusions of fibres induces isomorphisms

H2(YI;Z)
∼=←− H2(X;Z)

∼=←− H2(X;Z)
∼=−→ H2(Xt;Z) (2.H)

for any t. Any class L in H2(X,Z) ∼= Pic(X) thus induces an invertible sheaf L on X with
L|X0

= L. Similarly, pushing forward curve classes along the inclusion of fibres induces
isomorphisms

A1(YI)
∼=−→ A1(X)

∼=−→ A1(X)
∼=←− A1(Xt) (2.I)

for any t. Given β ∈ A1(X) we abuse notation and let β ∈ A1(Xt) denote the image of β
under the composition of the natural isomorphisms above. Further, combining (2.I) and
(2.F) it makes sense to ask when curve classes are restricted roots.
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Corollary 2.10. Fix t 6= 0 and β ∈ A1(X) non-zero. Then the following statements hold:

(1) If β is not a restricted positive root, i.e. there does not exist a positive root α with
πI(α) = β, then there is no complete curve in Xt of class β.

(2) If β is a restricted positive root, with πI(α) = β, then the number of complete
curves in Xt of class β is equal to |µ−1

t (Dα,C/WI)| and is always ≥ 1.

Proof. This follows from Theorem 2.6, the only new claim being that |µ−1
t (Dα,C/WI)| ≥ 1.

We observed above that µ(0) = 0. Since µ = µ0 and 0 ∈ Dα,C/WI for every positive root

α, it follows that |µ−1
0 (Dα,C/WI)| ≥ 1 for every positive root α. This quantity does not

change under a small perturbation of µ0 to µt. �

3. Curve counting and hyperplane arrangements

This section obtains structural results governing the systems of enumerative invariants
attached to X. These turn out to be intimately related to the associated arrangement
of hyperplanes from Subsection 2.3, and this correspondence is then used to describe the
pole locus of the associated quantum potential.

3.1. Gopakumar–Vafa. Curve counting invariants of X can be be defined using the
perturbed target Xt (for some fixed t 6= 0) constructed in Subsection 2.6. Given a curve
class β ∈ A1(X) the associated genus-zero Gopakumar–Vafa (GV) invariant

nβ = nβ,X ∈ Z≥0

is defined as the number of complete curves in Xt of class β. By Corollary 2.10 this is zero
if β is not a restricted positive root, and otherwise is equal to the number of intersection
points of µt with the appropriate component of the discriminant locus, i.e.

nβ = |µ−1
t (Dα,C/WI)| (3.A)

where α is any positive root with πI(α) = β. This number is independent of the choice
of small perturbation µt.

In what follows, for a curve class β consider the dual hyperplane Hβ ⊆ ΘI.

Corollary 3.1. If β ∈ A1(X) then nβ is non-zero if and only if β is a restricted positive
root, equivalently if and only if Hβ belongs to the enhanced finite arrangement HI.

Proof. This follows immediately from Corollary 2.10, together with the definition of en-
hanced finite arrangement in Subsection 2.3. �

Note that Hβ and H2β should be considered as different hyperplanes in the enhanced
finite arrangement. See also the discussion in Subsection 2.3, and Remark 2.7.

Remark 3.2. It follows from Corollary 3.1 that there are only finitely many non-zero
GV invariants. There is already a known range outside of which the GV invariants are
guaranteed to vanish. Indeed, every simple root i ∈ ∆ has an associated length δi, given
by the coefficient of αi in the maximal root, and writing β = ΣimiCi it is known that
nβ = 0 unless mi ≤ δi for all i. However, this bound is far from sharp, while Corollary 3.1
provides a precise characterisation.

3.2. Gromov–Witten. We refer to [CK99, Section 7] for an introduction to Gromov–
Witten theory. For every non-zero curve class β ∈ A1(X) there is an associated genus-zero
Gromov–Witten (GW) invariant

Nβ = Nβ,X ∈ Q
defined as the virtual degree of the corresponding moduli space of stable maps to X. By
deformation invariance this coincides with the virtual degree of the moduli space of stable
maps to Xt for t 6= 0, as constructed in Subsection 2.6.

The latter space decomposes as a disjoint union of spaces of stable maps to P1,
and applying the Aspinwall–Morrison multiple cover formula [AM93, Voi96] for the local
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invariants of OP1(−1)⊕OP1(−1) gives the following relationship between the GW invariants
and the GV invariants from Subsection 3.1, namely

Nβ =
∑
d|β

nβ/d

d3
. (3.B)

More generally, given k ≥ 0 and homogeneous classes γ1, . . . ,γk ∈ H?(X;C), the associ-
ated GW invariant with cohomological insertions at marked points is defined to be

〈γ1, . . . ,γk〉X0,k,β :=

∫
[M0,k(X,β)]virt

k∏
i=1

ev?
i γi

and provides a virtual count of rational curves in X of class β passing through the cycles
γ1, . . . ,γk. Note that in particular Nβ = 〈〉X0,0,β. Since X is a Calabi–Yau 3-fold, the
invariant vanishes unless the input data satisfies the dimension constraint

k∑
i=1

degγi = 2k. (3.C)

The cohomology of X is well-understood, see e.g. [Cai05, 5.2]. In particular

H0(X;C) = C · 1, H1(X;C) = 0, H2(X;C) = PicX⊗ C.
Moreover, as we work in the complete local setting, by e.g. [VdB04, 3.4.4] PicX is dual
to the group A1(X) of curve classes, since there is a basis of divisor classes PicX = 〈Di |
i ∈ Ic〉Z which satisfies Di · Cj = δij .

Given a GW invariant 〈γ1, . . . ,γk〉X0,k,β, if any γi = 1 then the invariant vanishes

by the string equation. It follows from (3.C) that the invariant vanishes unless each
γi ∈ H2(X;C). But then the γi are divisors, and the k-pointed invariants with divisorial
insertions are related to the 0-pointed invariants by the divisor equation

〈Dj1 , . . . , Djk〉X0,k,β =

(
k∏

i=1

Dji · β

)
Nβ.

In this way, the non-zero GW invariants are controlled entirely by the Nβ, which by (3.B)
are controlled entirely by the GV invariants nβ. The latter constitutes a finite list of
numbers.

3.3. Quantum cohomology. As is well known, the GW invariants form the structure
constants for quantum cohomology. The information defining quantum cohomology is
equivalent to the quantum potential, defined in our setting as

ΦX
t (γ1,γ2,γ3) :=

∑
β∈A1(X)
β 6=0

∑
k≥0

1

k!
〈γ1,γ2,γ3, t, . . . , t〉X0,k+3,β. (3.D)

Here we exclude the case β = 0 from the sum, since for non-compact X such invariants
are not defined (see Remark 3.7 below). We view (3.D) as a family of multilinear maps

ΦX
t : H?(X;C)⊗3 → C

parametrised by the formal variable t ∈ H?(X;C). By the earlier dimension arguments,
we see that the quantum potential only depends on the component of t in the H2(X;C)
direction. Thus we may assume t ∈ H2(X;C) and write

t = (ti)i∈Ic =
∑
i∈Ic

tiDi.

The parameter space for the quantum potential is thus co-ordinatised by the ti. An
alternative co-ordinate system is given by the Novikov parameters, defined by

qi := exp(ti).
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The following result resembles expressions appearing in earlier work [Mor96, Wil92], but
is more explicit, being given in terms of canonical bases for H2(X;C) and A1(X). This
refined information will allow us in Corollary 3.4 to pinpoint the non-vanishing terms using
Dynkin combinatorics, and in Corollary 5.13 to track the change in quantum potential
under iterated flops.

Theorem 3.3. The quantum potential has a natural analytic continuation over the pa-
rameter space, given as a finite sum of terms indexed by the non-vanishing GV invariants

ΦX
t (γ1,γ2,γ3) =

∑
β=(mi)

nβ(γ1 · β)(γ2 · β)(γ3 · β)

∏
i∈Ic q

mi
i

1−
∏

i∈Ic q
mi
i

. (3.E)

The sum is over non-zero curve classes

β = (mi)i∈Ic =
∑

miCi ∈ A1(X).

Each term is a cubic polynomial in the input variables, multiplied by a specific rational
function in the Novikov parameters, and weighted by the GV invariant nβ. We will also
use the term ‘quantum potential’ to refer to this analytic continuation.

Proof. Write the formal parameter t and the curve class β as sums

t =
∑
i∈Ic

tiDi, β =
∑
i∈Ic

miCi.

Applying the divisor equation together with the multiple cover formula (3.B) then gives

ΦX
t (γ1,γ2,γ3) =

∑
β

∑
k≥0

1

k!
〈γ1,γ2,γ3, t, . . . , t〉X0,k+3,β

=
∑
β

〈γ1,γ2,γ3〉X0,3,β
(∑

k≥0
(t·β)k

k!

)
=
∑
β

Nβ(γ1 · β)(γ2 · β)(γ3 · β) exp
(∑

i∈Ic miti
)

=
∑
β

nβ
∑
d≥1

1

d3
(γ1 · dβ)(γ2 · dβ)(γ3 · dβ) exp

(∑
i∈Ic dmiti

)
=
∑
β

nβ(γ1 · β)(γ2 · β)(γ3 · β)
∑
d≥1

exp
(∑

i∈Ic miti
)d

=
∑
β

nβ(γ1 · β)(γ2 · β)(γ3 · β)
∑
d≥1

(
Πi∈Icqmi

i

)d
.

Note that this sum is finite, since nβ = 0 for all but finitely many β (Corollary 3.1). For
fixed inputs (γ1,γ2,γ3), the above is a formal power series in the Novikov parameters. It
is the Taylor series for the following rational function, expanded about the point (qi)i =
(0, . . . , 0), equivalently (ti)i = (−∞, . . . ,−∞),

ΦX
t (γ1,γ2,γ3) =

∑
β

nβ(γ1 · β)(γ2 · β)(γ3 · β)

∏
i∈I q

mi
i

1−
∏

i∈I q
mi
i

.

This expression provides a natural analytic continuation of the quantum potential beyond
the radius of convergence {|qi| < 1 | i ∈ Ic}. �

Recall that after combining (2.I) with (2.F) we can ask which curve classes are re-
stricted roots.

Corollary 3.4. Under the uniformly rescaled co-ordinates pi := ti/2π
√
−1 on H2(X;C),

the pole locus of the quantum potential is given by⋃
β=(mi)

{∑
i∈Ic mipi ∈ Z

}
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where the union is over all restricted positive roots β. This is precisely the complexification
of Haff

I under the natural identification H2(X;R) ∼= ΘI dual to (2.F).

Proof. The pole locus of (3.E) is the union of loci in the parameter space given by∏
i∈Ic

qmi
i = 1 ⇔

∑
i∈Ic

miti ∈ 2π
√
−1 · Z ⇔

∑
i∈Ic

mipi ∈ Z

where β = (mi)i∈Ic =
∑

miCi is such that nβ is non-zero. The first statement then
follows from Corollary 3.1, since nβ is non-zero if and only if β is a restricted positive
root. The second is an immediate consequence of the definition of Haff

I in (2.D). �

Example 3.5. For a single-curve flop with I = , the complexification of Haff
I is

R

iR

−1 0 1
4

1
3

1
2

2
3

3
4

1

extended to infinity in both directions. The non-zero GV invariants are nkC for 1 ≤ k ≤ 4.

Example 3.6. In the running Example 1.1, namely a two-curve flop with I = ,
the complexification of Haff

I is the complexification of the real arrangement in (1.C).

Remark 3.7. The definition of the quantum cohomology algebra requires a perfect pair-
ing on cohomology in order to raise indices, but since here X is non-compact, such a pairing
does not exist. This technical issue is often circumvented by localising to a torus-fixed
locus which is compact, see e.g. [BG08,CIJ18]. Since our geometries do not always carry
a suitable torus action, instead we simply equate ‘quantum cohomology’ with the data of
the quantum potential (3.D), as this is consistent with other approaches [LR01]. In cases
where a natural quantum cohomology algebra can be defined, our results apply equally
well to that algebra. The only modification required is to reinstate the β = 0 terms in
the quantum potential, which encode the given perfect pairing.

4. Flops via simultaneous partial resolutions

This section constructs flops, and describes how their dual graph changes, via simultaneous
partial resolutions, completing work of Pinkham [Pin83]. As a consequence we obtain an
explicit change-of-basis matrix, which in Subsection 5.1 is used to track the change of GV
invariants under iterated flop.

The construction requires some more Dynkin notation, so for a subset I ⊆ ∆, j ∈ I

and i ∈ Ic write
I + i = I ∪ {i} and I− j = I \ {j}.

Further, to every Dynkin diagram Γ is an associated Dynkin involution, which we will
denote ιΓ. For Type An and E6 this is the obvious reflection, for E7 and E8 it is trivial, and
for Dn the behaviour depends on the parity of n, see e.g. [IW, (1.2.B)]. If Γ is a disjoint
union of Dynkin diagrams, then ιΓ by definition acts separately on each component.
Further, if ∆ is ADE, and Γ is a subset of ∆, then automatically the subgraph Γ is a
disjoint union of ADE diagrams, and so there is an associated ιΓ.

Notation 4.1 ([IW, 1.16]). For i ∈ Ic, the wall crossing ωi(I) is defined by the rule

ωi(I) := I + i− ιI+i(i) ⊆ ∆.

Example 4.2. Consider the running Example 1.1, namely I = , where by con-
vention I equals the six black dots. There are two choices for i ∈ Ic, namely the two pink
nodes. Let i be the rightmost. Then I + i equals the black dots in the following.

I + i =
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The black dots form A1 ×A6, and so applying the Dynkin involution ιI+i illustrated, we
see that ιI+i(i) is the top node. Thus, for this choice of i,

ωi(I) = I + i− ιI+i(i) = .

Consider now the fixed flopping contraction X→ SpecR which slices under (2.A) to
give YI → C2/G. Pick a flopping curve Ci in X. This corresponds to a choice of i ∈ Ic,
so we can form ωi(I). In what follows consider `I`I+i, where `I and `I+i are the longest
elements in the parabolic subgroups WI and WI+i respectively.

Lemma 4.3. The action by `I`I+i induces an isomorphism hC/Wωi(I) → hC/WI.

Proof. Writing w = `I`I+i, the point is that wWωi(I) = WIw (see e.g. [IW, 1.20(1)(a)]).
The action by w is an isomorphism hC → hC, and under this isomorphism any orbit
(Wωi(I))p gets sent to w(Wωi(I))p = (WI)wp, which is an orbit under WI. �

Note that `ωi(I)`I+i`I`I+i = 1 [IW, 1.2(3)], and thus `ωi(I)`I+i : hC/WI → hC/Wωi(I)

is the inverse map. Recall the notation in (2.E). Using the universal property of the pull-
back gives a non-obvious isomorphism between VI and Vωi(I), which sits in the following
commutative diagram.

SpecVωi(I) SpecV

hC/Wωi(I) hC/W

SpecVI SpecV

hC/WI hC/W

`I`I+i·

∼

Now let YI, respectively Yωi(I), be the standard simultaneous resolution associated to
I, respectively ωi(I). As explained in Subsection 2.6, X can be obtained from µ : Disc→
hC/WI by pulling back YI. Hence, setting ν = (`ωi(I)`I+i)◦µ = (`I`I+i)

−1 ◦µ and pulling

back to Yωi(I) constructs a variety X+
i , sitting within the following commutative diagram.

X+
i

Yωi(I)

SpecR′ SpecVωi(I) SpecV

Disc hC/Wωi(I) hC/Wν

X YI

SpecR SpecVI SpecV

Disc hC/WI hC/W
µ

`I`I+i·

∼∼ (4.A)

Composing the map X+
i → SpecR′ with the isomorphism SpecR′ → SpecR yielding a

morphism X+
i → SpecR.

Theorem 4.4. With notation as above, X+
i → SpecR is the flop of X at the curve Ci.

In particular, the following statements hold.

(1) ωi(I) ⊆ ∆ is the Dynkin data associated to the flopping contraction X+
i → SpecR.

(2) All other crepant resolutions of SpecR can be obtained from the fixed µ by post-
composing with x−1 : hC/WI → hC/WK and pulling back along YK, as the pair
(x,K) ranges over the (finite) indexing set Cham(∆, I) of Notation 2.2.
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Proof. Since the exceptional locus of gI : YI → SpecVI has codimension two, Cl(VI) ∼=
Cl(YI). But YI is smooth, so the latter is isomorphic to Pic(YI), which in turn is isomorphic
to Z|Ic| based by divisors dual to the |Ic| curves above the origin. Choosing this basis, we
may write Cl(VI) ∼=

⊕
j∈Ic Ze?j , and further by definition YI is obtained by blowing up

any element in the characteristic cone

CI := {(zj) | zj > 0 for all j} ⊆
⊕
j∈Ic

Ze?j .

Applying a similar analysis to the standard simultaneous resolution Z→ SpecW, we have
Cl(W) ∼=

⊕
j∈∆ Ze?j , and since by construction YI is obtained from Z by simultaneously

blowing down curves, it is clear that

Cl(VI) Cl(W)

⊕
j∈Ic Ze?j

⊕
j∈∆ Ze?j

∼ ∼ (4.B)

where the bottom morphism is the obvious inclusion induced by the inclusion Ic ⊆ ∆.
There is a natural identification of Cl(VI), respectively Cl(WI), with the lattice inside ΘI,
respectively Θ.

By the universal property of the pullback, the action of any sj ∈ W on hC induces
an automorphism of W

SpecW SpecV

hC hC/W

SpecW SpecV

hC hC/W

sj ·

∼

The effect on homology of Z is via the Weyl reflection sj on roots [Rei83], and thus the
action on Cl(W) is the dual, namely the action of the Weyl reflection sj on coroots.

Composing these sj , we can consider the action of `I`I+i. We already know that
the bottom right square in (4.A) commutes, and hence the bottom two squares in the
following are well defined, and commute.

SpecW SpecVωi(I) SpecV

hC hC/Wωi(I) hC/W

SpecW SpecVI SpecV

hC hC/WI hC/W

`I`I+i·

∼

`I`I+i·

∼

The universal property of pullbacks give the induced isomorphisms in the top squares.
The top left square induces the following bottom commutative square on class groups,
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and the top square is obtained by applying (4.B) to both I and to ωi(I).

⊕
j∈∆ Ze?j

⊕
j∈ωi(I)c Ze?j

Cl(W) Cl(Vωi(I))

i1

⊕
j∈∆ Ze?j

⊕
j∈Ic Ze?j

Cl(W) Cl(VI)

i2

`I`I+i·`I`I+i·

`I`I+i·

In the above diagram, every non-hooked arrow is an isomorphism. By construction, the
dotted arrow takes the characteristic cone

Cωi(I) := {(zj) | zj > 0 for all j} ⊆
⊕

j∈ωi(I)c

Ze?j

of Yωi(I) to the region `I`I+iCωi(I) ⊆
⊕

j∈Ic Ze?j . Since `I`I+i acts via the action on

coroots, this matches the conventions in [IW, Section 3]. It thus immediately follows
from [IW, 1.20(1)(d)] that `I`I+iCωi(I) and CI are neighbouring regions, adjacent via the
wall zi = 0.

We next restrict this information to 3-folds. As in (4.A), consider the following
commutative diagram.

X+
i

Yωi(I)

SpecR′ SpecVωi(I)

Disc hC/Wωi(I)ν

X YI

SpecR SpecVI

Disc hC/WI

µ
`I`I+i·

∼∼ (4.C)

As explained by Pinkham [Pin83], Cl(R) ∼= Cl(VI), and further Cl(VI) ∼=
⊕

j∈Ic Ze?j as

explained above. Hence Cl(R) ∼=
⊕

j∈Ic Ze?j , and under this choice of basis X is obtained

as the blowup of the characteristic cone CI. The same analysis holds for X+
i , which is the

blowup of the characteristic cone Cωi(I) under the choice of basis Cl(R′) ∼=
⊕

j∈ωi(I)c Ze?j
induced from Cl(R′) ∼= Cl(Vωi(I)).

Pulling across the middle horizontal plane in (4.C) it thus follows that the map
X+

i → SpecR is obtained by blowing up the region `I`I+iCωi(I) in Cl(R) ∼=
⊕

j∈Ic Ze?j .
Since these are neighbouring regions, separated by the codimension one wall e?i = 0, it is
implicit in [Pin83] (see also [Wem18]) that Xi → SpecR is the flop at the curve Ci. Since
X+

i is obtained from Yωi(I) via pullback, the statement on Dynkin data follows.
The final statement about all other crepant resolutions follows by iterating over all

possible simple flops. Indeed, the finite indexing set Cham(∆, I) is precisely the combina-
torial object which indexes all the chambers [IW, Section 1], and each chamber (x,K) can
be obtained from (1, I) by iteratively applying the wall crossing rule [IW, 1.20(2)]. �
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5. Applications

As before, consider a smooth 3-fold flopping contraction X→ SpecR. The main applica-
tions of the previous sections are to GV and GW invariants, the Crepant Transformation
Conjecture, and to the associated contraction algebras.

5.1. Tracking GV invariants under flop. The benefit of Theorem 4.4 is that both X

and a flop X+
i can be perturbed using essentially the same classifying map, and thus their

curve invariants can be easily compared. This requires three combinatorial results.

Lemma 5.1. `I`I+i : h→ h induces an isomorphism Mi : hωi(I) → hI.

Proof. Set w = `I`I+i, then it suffices to prove that w· restricts to an isomorphism between
the subspace spanned by {αj | j ∈ ωi(I)} and the subspace spanned by {αj | j ∈ I}. To
see this, recall that `Γαi = −αιΓ(i) for all Dynkin Γ and all i ∈ Γ, where ιΓ is the Dynkin
involution on Γ.

For all j ∈ ωi(I) ⊆ I+ i, it follows that `I`I+iαj = −`IαιI+i(j). Now ιI+i : ωi(I)→ I

is a bijection. Indeed, ιI+i : I + i → I + i is a bijection, sending ιI+i(i) to i, and so
removing these elements gives the claimed bijection. Hence for all j ∈ ωi(I), it follows
that ιI+i(j) ∈ I and so `IαιI+i(j) = −αιIιI+i(j). Combining gives `I`I+iαj = αιIιI+i(j) for
all j ∈ ωi(I). Since ιIιI+i(j) ∈ I, this proves the claim. �

Write Mi for the induced isomorphism in Lemma 5.1, so that the following diagrams
commute.

h h

hωi(I) hI

`I`I+i·

πωi(I) πI

Mi

h h

hI hωi(I)

`ωi(I)`I+i·

πI
πωi(I)

M−1
i

(5.A)

In essence, the bases of hωi(I) and hI really only differ at one element. Indeed, setting
ej = πI(αj) then {ej | j 6∈ I} is a basis for hI. On the other hand for hωi(I) we abuse
notation, setting ej = πωi(I)(αj) whenever j /∈ I + i, and ei = πωi(I)(αιI+i(i)). Then
{ej , ei | j /∈ I + i} is a basis for hωi(I).

Lemma 5.2. For i ∈ Ic the action of Mi is given in terms of the above bases as

ek 7→

{
ek + λkei if k /∈ I + i

−ei if k = i

for some λk ∈ Z≥0.

Proof. In (5.A), given any
∑

aiαi, since `I`I+i consists only of reflections si with i ∈ I+i,
the map `I`I+i cannot change the coefficient of any aj with j /∈ I + i. The claim that
the induced map Mi sends ek 7→ ek + λkei if k /∈ I + i follows. We next claim that λk
is positive. In the decomposition of `I`I+iαk into simple roots, there is at least some
positive coefficient (namely the coefficient of αk, which is 1). Hence all coefficients must
be positive, in particular the coefficient of αιI+i(i). But under the induced map, this
coefficient is what gives λk in the claim.

Now as in Lemma 5.1, for all Dynkin Γ and all i ∈ Γ, `Γαi = −αιΓ(i). Thus since
ιI+i(i) ∈ I + i, it follows that

Miei
(5.A)
= πI(`I`I+iαιI+i(i)) = πI(−`Iαi) = πI(−αi) = −ei,

where we have used the fact that `I only changes coefficients in I, and πI forgets these. �

Corollary 5.3. If β ∈ hωi(I) is a restricted root, the following hold.

(1) If β ∈ Zei, say β = zei, then Mi · (zei) = −zei.
(2) If β /∈ Zei, then all entries of Mi · β are positive.
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Proof. The first part is an immediate consequence of the k = i case in Lemma 5.2. For
the second part, by Lemma 5.2 the only coefficient of β =

∑
µiei that can change under

Mi is the coefficient on ei. Hence, provided there is some other positive coefficient µk,
this survives under Mi, so Mi · β has at least one positive entry. Now by assumption β is
a restricted root, say πωi(I)(α) = β, Under (5.A), w ·α is a root restricting to Mi ·β and
this root w · α must contain at least one positive coefficient, since Mi · β does. Hence all
must be positive. In particular, all entries of Mi · β must also be positive. �

The following is one of our main results. In order to obtain a unified statement, set
|Mi · β| to be the curve class obtained from Mi · β by making every coefficient positive.

Theorem 5.4. With the notation as above, for any curve class β ∈ A1(X+
i ) ∼= hωi(I),

nβ,X+
i

=

{
nβ,X if β ∈ Zei = ZC+

i

nMi·β,X else

= n |Mi·β|,X

Proof. With respect to the notation in (4.A), perturbing µ to µt gives, by composition, a
perturbation of ν to νt.

Set w = `I`I+i. Then for any positive root α for which πωi(I)(α) = β,

nβ,X+
i

= |ν−1
t (Dα,C/Wωi(I))| (by (3.A) applied to X+

i )

= |µ−1
t (Dw·α,C/WI)|. (since ν = (w−1·) ◦ µ)

Now by (5.A) we have πI(w · α) = Mi ◦ πωi(I)(α) = Mi · β and so w · α is a lift of Mi · β,
albeit not necessarily a positive one.
Case 1. If β /∈ ZC+

i , then by Corollary 5.3 all entries of Mi ·β are positive, and further as
argued in the proof, w · α is a positive root restricting to Mi · β. (3.A) then implies that
|µ−1

t (Dw·α,C/WI)| = nMi·β,X.
Case 2. If β ∈ ZC+

i , then by Corollary 5.3, Mi · β = −β. Arguing as above, it follows
that w · α is negative root restricting to Mi · β = −β, and thus −w · α is positive root
restricting to β. But negating a root does not effect the hyperplane, and combining this
fact with (3.A) it follows that

|µ−1
t (Dw·α,C/WI)| = |µ−1

t (D−w·α,C/WI)| = nβ,X.

This covers both cases. For the final equality, note in case 1 that |Mi · β| = Mi · β since
all coefficients are already positive, and in case 2 that |Mi · β| = | − β| = β. �

Example 5.5. Consider the running Example 1.1. Then after flop of the right pink curve,

by Theorem 4.4 and Example 4.2 we obtain ωi(I) = . Hence the restricted
roots, and thus curve classes giving nonzero GV invariants, on the flopped space X+

i are
as follows, where the hyperplanes are drawn in Θωi(I).

x

y

1

3
11

2
1

Restricted Root

01
11, 22, 33

43
32

21, 42

10
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Write 1 for the leftmost pink node, 2 for the orange node, and 2′ for the rightmost pink
node (in I). Under this wall crossing `I`I+i is very large, however the morphism

Mi : hωi(I) → hI

is easily described: in the notation of Lemma 5.2, λ1 = 1 and thus Mi sends µ1e1 +
µ2e2 7→ µ1e1 + (µ1 − µ2)e2′ . Under the dual transformation between the hyperplane
arrangements in Example 1.1 and here, the pictures are drawn so that hyperplanes are
sent to hyperplanes in such a way that the colours are preserved.

Indeed, Mi sends 01 7→ 0 −1, with all other restricted roots being permuted; e.g.
31 7→ 32. In particular, by Theorem 5.4 the GV invariants on X+

i can be obtained from
the GV invariants on X as follows

GV on X+
i GV on X

01 01
10 11

21, 42 21, 42
32 31
43 41

11, 22, 33 10, 20, 30

Remark 5.6. As explained in the introduction, the finite arrangement HI equals the
movable cone. The multiplicities of the restricted roots are assigned to each wall, and this
enhancement is required in order to describe the curve-counting invariants. It is possible,
albeit not a priori obvious, to enhance the movable cone without Dynkin combinatorics.
Given a chamber corresponding to some crepant resolution X† → SpecR say, then the
multiplicities on the walls of that chamber turn out to correspond to the lengths of all
the individual single-curve contractions obtained from X†. The issue with this method is
that, whilst it explains walls, it does not explain hyperplanes: it is not so clear that every
chamber touching the hyperplane containing the said wall should be enriched with the
same scheme-theoretic length. This geometric fact falls out from our approach.

5.2. Tracking fundamental regions. The previous subsection tracked GV invariants
from X to X+

i . As with the movable cone, it is possible to fix X and track all other crepant
resolutions back to X.

As notation, recall that the fixed X→ SpecR has an associated ΘI in Notation 2.2,
and recall from (5.A) that there is a map M−1

i : hI → hωi(I). Write

Ni : Θωi(I) → ΘI

for the dual. Below, ΘI will be temporarily be written ΘX, to allow for the flexibility of
considering another crepant resolution Y→ SpecR which has associated ΘY.

Definition 5.7. Let Y→ SpecR be a crepant resolution. Consider a chain of flops, each
flopping a single irreducible curve, that links Y to X, and the resulting maps

ΘY

Ni1−−→ . . .
Nit−−→ ΘX.

The composition will be called the comparison map, and will be written N : ΘY → ΘX.

By [HW, 4.8] the comparison map N is independent of the choice of chain of flops.

Definition 5.8. Given a crepant resolution Y → SpecR, the fundamental region FundY
of ΘY is defined as the intersection of the infinite hyperplane arrangement inside ΘY with
the unit box {(ϑi) | 0 ≤ ϑi ≤ 1 for all i}.

Proposition 5.9. For any crepant resolution Y → SpecR, N(FundY) generates ΘI via
translation. Furthermore two N(FundX1

) and N(FundX2
) share a codimension one wall if

and only if X1 and X2 are connected by a flop at a single curve.



24 NAVID NABIJOU AND MICHAEL WEMYSS

Proof. Since the axes belong to the finite hyperplane arrangement in ΘY, and the definition
of the infinite arrangement involves translating this finite collection of hyperplanes over Z
or at worst 1

kZ (see Subsections 1.2 and 2.3), it is clear that the fundamental region FundY
generates the arrangement in ΘY. The first statement then follows, since N is known to
preserve the infinite arrangements [IW, Section 9]. Since the only codimension one wall
that the fundamental regions can share belong to the finite arrangement, the last statement
is really a statement on the movable cone, which is e.g. [Wem18, Sections 5–6]. �

Example 5.10. Write Y → SpecR for the crepant resolution obtained after flop in
Example 5.5. Then the region N(FundY) is illustrated below, where for clarity we have
illustrated the images of the x and y co-ordinates in Example 5.5 under the map N.

Nx

Ny

It is visually clear that both FundX in (1.D) and N(FundY) above individually generate
Haff

I , via translation, and that FundX and N(FundY) are different.

Remark 5.11. The above example gives a visual proof of the Crepant Transformation
Conjecture of Subsection 5.3 below. The regions FundX and N(FundY) are different. But
they generate the same object, namely Haff

I , which by Corollary 3.4 is the pole locus of
the GW quantum potential. Thus, although the curve invariants of X and Y, captured in
the fundamental regions, are technically different, after a change in variables (namely N)
they can be compared, where they generate the same object.

Remark 5.12. The matrix Ni appears via moduli tracking in the HomMMP [Wem18, 5.4],
and via the K-theory of contraction algebras [AW, 2.4]. In contrast, Mi from (5.A) is the
dual, and it arises from the change in dimension vector [Wem18, 5.4], or in the K-theory
of projective modules [HW, 3.2]. For more details, see [AW, 2.4] and references therein.

5.3. Crepant Transformation Conjecture. We make no attempt at a comprehensive
summary of the Crepant Transformation Conjecture (CTC), and instead refer the reader
to [CR13,CIJ18,BG09,Lee11]. For a pair of smooth varieties related via a sequence of flops,
the conjecture asserts that their quantum potentials should coincide, under a suitable
identification of (co)homologies and analytic continuation in the Novikov parameters.
There has been extensive work on this conjecture within both algebraic and symplectic
geometry [LR01,McL20,LLW10,LLW16a,LLW16b,LLQW16].

Here we prove the CTC for germs of isolated 3-fold flops, as a direct application of
the expression for the quantum potential in Theorem 3.3 together with the construction
of flops via simultaneous partial resolutions in Theorem 4.4. This gives the first algebraic-
geometric proof of the CTC for flops of arbitrary type.

As before, consider a curve Ci ⊆ X and let X+
i be the flop of X at Ci. Recall that

the following vector spaces are based by the sets of exceptional curves

hI,C = A1(X)C = 〈Cj | j ∈ Ic〉C, hωi(I),C = A1(X+
i )C = 〈Cj ,C

+
i | j /∈ I + i〉C.

where as in Lemma 5.2 we abuse notation by denoting the flopped curve C+
i instead of

C+
ιI+i(i)

. As explained in Subsection 5.1, there is an explicit transformation matrix

Mi : A1(X+
i )C → A1(X)C.
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This is the complexification of the matrix Mi from earlier, but we use the same symbol.
Let Ni be the matrix dual to M−1

i which can be viewed as a linear map

Ni : H2(X+
i ;C)→ H2(X;C)

with the property that Niγ ·β = γ ·M−1
i β for γ ∈ H2(X+

i ;C) and β ∈ A1(X)C. We notate
the Novikov co-ordinates on the parameter spaces for the quantum potentials by

{qj | j ∈ Ic} on A1(X)C,
{rj | j ∈ Ic} on A1(X+

i )C.

The matrix M−1
i defines a monomial co-ordinate transformation relating the two sets of

Novikov parameters. Writing monomials as

qβ :=
∏
j∈Ic

q
mj

j , rβ :=
∏
j∈Ic

r
mj

j

this is given by the equation

qβ = rM−1
i β. (5.B)

By Lemma 5.2, qi = r−1
i whereas every other qj is a monomial in the rj with non-negative

coefficients.
Lastly, recall the quantum potentials of X and X+

i from Subsection 3.3, which to ease
notation will be written Φ and Φ+, namely

Φq(γ1,γ2,γ3) := ΦX
q (γ1,γ2,γ3),

Φ+
r (γ1,γ2,γ3) := Φ

X+
i

r (γ1,γ2,γ3).

The equation (5.B) will be used to express the quantum potential of X in the variables r,
and this will be denoted Φr(γ1,γ2,γ3).

Corollary 5.13 (Crepant Transformation Conjecture). On the r parameter space, the
quantum potentials of X and X+

i coincide, up to the following explicit term which does not
depend on the Novikov parameters

Φ+
r

(
γ1,γ2,γ3

)
−Φr(Niγ1,Niγ2,Niγ3) = −(γ1 ·C+

i )(γ2 ·C+
i )(γ3 ·C+

i )
∑
k≥1

k3nkCi,X. (5.C)

More precisely the pole loci are transformed into each other via (5.B), and away from
these the analytic continuations constructed in Theorem 3.3 coincide.

Remark 5.14. The quantum potentials of X and X+
i have no constant terms in their

respective Novikov parameters, due to the absence of a perfect pairing on cohomology
(see Remark 3.7). However, the change of parameters (5.B) introduces constant terms
into Φr(γ1,γ2,γ3), which form the right-hand side of (5.C). It follows that the quantum
potentials agree once these extraneous constant terms are removed from Φr(γ1,γ2,γ3). In
particular, Φ+ can be effectively reconstructed from Φ. In situations where an ordinary
cup product can be defined, the additional terms on the right-hand side account for
the defect between the cup products on X and X+

i , see e.g. [Mor96, Subsection 4.3 and
Equation (4.4)].

Remark 5.15. The expansion points for the quantum potentials differ, as

(rj)j∈Ic = (0, . . . , 0) ⇔ (qj)j∈Ic = (0, . . . , 0,∞, 0, . . . , 0)

with ∞ in the ith position. Thus, the term Φr(Niγ1,Niγ2,Niγ3) is analytically continued
from qi = 0 to qi = ∞, the analytic continuation occurring precisely in the Novikov
parameter corresponding to the flopped curve.

Proof of 5.13. We explicitly match both sides, using our knowledge of the structure of the
quantum potentials (Theorem 3.3) and the behaviour of the GV invariants under the flop
(Theorem 5.4).
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Separating curve classes according to whether or not they are a multiple of Ci, the
quantum potential for X may be written as the sum of contributions

Φq(Niγ1,Niγ2,Niγ3) = Gq(Niγ1,Niγ2,Niγ3) + Hq(Niγ1,Niγ2,Niγ3)

where

Gq(Niγ1,Niγ2,Niγ3) =
∑
k≥1

nkCi,X (Niγ1 · kCi)(Niγ2 · kCi)(Niγ3 · kCi)
qki

1− qki

Hq(Niγ1,Niγ2,Niγ3) =
∑

β∈A1(X)
β 6=kCi

nβ,X (Niγ1 · β)(Niγ2 · β)(Niγ3 · β)
qβ

1− qβ
.

Similarly, write the quantum potential of X+
i as

Φ+
r (γ1,γ2,γ3) = G+

r (γ1,γ2,γ3) + H+
r (γ1,γ2,γ3),

where

G+
r (γ1,γ2,γ3) =

∑
k≥1

nkC+
i ,X+

i
(γ1 · kC+

i )(γ2 · kC+
i )(γ3 · kC+

i )
rki

1− rki

H+
r (γ1,γ2,γ3) =

∑
β∈A1(X)
β 6=kCi

nβ,X+
i

(γ1 · β)(γ2 · β)(γ3 · β)
rβ

1− rβ
.

We begin with the G terms. Using (5.B) to change variables from q to r gives

Gr(Niγ1,Niγ2,Niγ3) =
∑
k≥1

nkCi,X (Niγ1 · kCi)(Niγ2 · kCi)(Niγ3 · kCi)
r−ki

1− r−ki

= (γ1 · C+
i )(γ2 · C+

i )(γ3 · C+
i )
∑
k≥1

k3nkCi,X
1

1− rki
.

where the second equality follows from Niγ · Ci = γ ·M−1
i Ci = −γ · C+

i and the equality

r−ki

1− r−ki

=
1

rki − 1
.

Using nkCi,X = nkC+
i ,X+

i
by Theorem 5.4, the difference G+

r (γ1,γ2,γ3)−Gr(Niγ1,Niγ2,Niγ3)

is equal to

(γ1 · C+
i )(γ2 · C+

i )(γ3 · C+
i )
∑
k≥1

k3nkCi,X

(
rki

1− rki
− 1

1− rki

)
= −(γ1 · C+

i )(γ2 · C+
i )(γ3 · C+

i )
∑
k≥1

k3nkCi,X.

We next examine the H terms. Note that for β ∈ A1(X) we have β ∈ ZCi if and only if
M−1

i β ∈ ZC+
i . Consequently

Hr(Niγ1,Niγ2,Niγ3) =
∑

β∈A1(X)
β 6=kCi

nβ,X (Niγ1 · β)(Niγ2 · β)(Niγ3 · β)
rM−1

i β

1− rM−1
i β

=
∑

β∈A1(X+
i )

β 6=kC+
i

nMiβ,X (Niγ1 ·Miβ)(Niγ2 ·Miβ)(Niγ3 ·Miβ)
rβ

1− rβ

=
∑

β∈A1(X+
i )

β 6=kC+
i

nβ,X+
i

(γ1 · β)(γ2 · β)(γ3 · β)
rβ

1− rβ
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= H+
r (γ1,γ2,γ3).

where the penultimate equality holds since Niγ ·Miβ = γ ·M−1
i Miβ = γ ·β and nMiβ,X =

nβ,X+
i

again by Theorem 5.4. Combining the comparison of the G terms with the com-

parison of the H terms gives (5.C), as required. �

5.4. The contraction algebra under flop. The flopping contraction X → SpecR has
an associated contraction algebra Acon, defined using noncommutative deformation theory
[DW16,DW19]. After flopping a single curve Ci to obtain X+

i → SpecR, noncommutative
deformation theory associates to this another contraction algebra, written νiAcon. The
algebra νiAcon can be intrinsically obtained from Acon via a certain mutation procedure,
and in fact Acon and νiAcon are derived equivalent [Aug20a]. Both Acon and νiAcon are
finite dimensional algebras [DW16, 2.13].

Fix the GV invariants nβ associated to X→ SpecR, then Toda’s dimension formula
(see A.4) asserts that

dimC Acon =
∑

β∈A1(X)

nβ
(
β · 1

)2
In many, but not all, cases the dimension of Acon is in fact enough to recover the nβ.
The next result asserts that the numbers nβ associated to Acon, together with the matrix

M−1
i , completely determine the dimension of νiAcon.

Corollary 5.16. Under mutation at vertex i, equivalently flop at Ci,

dimC νiAcon =
∑

β∈A1(X)

nβ
(

(M−1
i β) · 1

)2
where Mi is the explicit matrix in (5.A).

Proof. Combining previous results, it follows that

dimC νiAcon =
∑

γ∈A1(X+
i )

nγ(γ · 1)2 (by A.4)

=
∑

β∈A1(X)

nβ
(
|M−1

i β| · 1
)2

(γ = |M−1
i β| in Theorem 5.4)

=
∑

β∈A1(X)

nβ
(

(M−1
i β) · 1

)2
(by Corollary 5.3)

where the point is that, by Corollary 5.3, the sign issue doesn’t matter once we square. �

In particular, it is possible to compute the dimension of νiAcon without first having
to present it.

Example 5.17. As in [SW], consider the cA2 example Rk = C[[u,v,x,y]]
uv−xy(xk+y)

for k ≥ 1,

and the specific crepant resolution X→ SpecRk described in [SW, 3.1], obtained first by
blowing up (u, y) then (u, x). In this case, as explained in [SW, Subsection 6.2] Acon can
be presented as

a

b

(ab)ka = 0 = b(ab)k.

We can immediately read off the GV invariants, namely n1,0 = 1, n0,1 = 1, and n1,1 = k.
Thus dimC Acon = n1,0·(1+0)2+n0,1·(0+1)2+n1,1·(1+1)2, which equals 1+1+4k = 4k+2.

We now flop the right hand curve. In this Type A example M−1
i sends (1, 0) 7→ (1, 1),

(1, 1) 7→ (1, 0) and (0, 1) 7→ (0,−1). Thus, by Corollary 5.16,

dimC νiAcon = n1,0 · (1 + 1)2 + n0,1 · (0 + 1)2 + n1,1 · (0− 1)2,

which equals 4 + 1 + k = k + 5. In particular, νiAcon � Acon provided that k ≥ 2.
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Appendix A. Toda’s dimension formula

This appendix contains a proof of the general form of Toda’s dimension formula, which
relates the dimension of the contraction algebra to a weighted sum of GV invariants. This
formula first appeared in [Tod15] for single-curve flops, then in [Tod18] in general. Alas,
the GV invariants in [Tod18] are defined with respect to moduli spaces of the contraction
algebra, and not via perturbation as done here (Subsection 3.1), and furthermore [Tod18,
Subsection 4.4] contains no proof. As such, we briefly sketch the argument to convince the
reader (and ourselves!) that the formula contains nothing specific to single-curve flops.

As notation, let f : X → SpecR be a smooth 3-fold flopping contraction, with con-
traction algebra Acon. Write V for the Van den Bergh tilting bundle on X [VdB04] which
generates zero perverse sheaves, and set A = EndX(V).

Lemma A.1. RHomA(Acon,A) ∼= M[−3] for some Acon-bimodule M for which dimC M =
dimC Acon.

Proof. First, by CY duality

ExtiA(Acon,A) ∼= Ext3−i
A (A,Acon)?,

which is zero unless i = 3, when it equals HomA(A,Acon)? ∼= (Acon)?. In particular,
it follows that the cohomology of RHomA(Acon,A) is concentrated in a single degree
(namely, three), where as a vector space it has dimension dimC Acon. Truncating in the
category of bimodules then yields the result. �

Remark A.2. M ∼= Acon as Acon-bimodules [Aug20a, 2.6], but we will not need this fact.

In what follows, set B := A⊗ Aop, so that B-modules are the same as A-bimodules.
The following is then [Tod15, 2.3] adapted to our setting.

Corollary A.3. RHomA(Acon,A) ⊗L
B (V? � V) ∼= G[−2] for some G ∈ cohX × X which

admits a filtration
0 = G0 ⊂ . . . ⊂ GdimC Acon

= G

such that each Gt/Gt−1 is isomorphic to OCi
(−1)�OCj

(−1) for some i, j with 1 ≤ i, j ≤ n.

Proof. As notation, let T0,T1, . . . ,Tn be the simple left A-modules, and S0, S1, . . . , Sn be
the simple right A-modules. All have dimension one, as a vector space, and by convention
T0 (respectively S0) is the only simple which is not an Acon-module.

Now M from Lemma A.1 is a finite dimensional B-module, so it is filtered by finite
dimensional simples. But these all have the form Ti ⊗C Sj for some 0 ≤ i, j ≤ n (see
e.g. [EGH+11, 3.10.2]). Since M is an Acon-bimodule, i = 0 or j = 0 is not possible.
Hence M admits a filtration with quotients all of the form Ti ⊗C Sj where i, j 6= 0. The
length of the filtration must be dimC Acon, since each Ti ⊗C Sj is one-dimensional.

Now, as observed by Toda [Tod15]

RHomX×X
(
V? � V,OCi(−1) � OCj (−1)[−2]

)
∼= RHomX(V?,OCi(−1)[1])⊗C RHomX(V,OCj (−1))[−3]

∼= Ti ⊗C Sj [−3] (by [VdB04, 3.5.6, 3.5.7])

Since RHomA(Acon,A) ∼= M[−3], applying the inverse functor −⊗L
B V?�V and inducting

along the filtration of M[−3] gives the result. �

Now as explained in Subsection 2.6, there exists a flat deformation

X

SpecR

T

g
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for some Zariski open neighbourhood T of 0 ∈ A1, such that

• the central fibre g0 : X0 → SpecR0 is isomorphic to f : X→ SpecR.
• all other fibres gt : Xt → SpecRt are flopping contractions with exceptional locus

a disjoint union of (−1,−1)-curves.

Regarding the flopping curves C1, . . . ,Cn of f as curves in the central fibre of X → T ,
and thus as a curve in X, then the GV invariant nβ is defined in Subsection 3.1 to be the
number of gt-exceptional (−1,−1)-curves C such that for every line bundle L on X,

deg(L|C) = β ·
(

deg(L|C1), . . . ,deg(L|Cn)
)

:=

n∑
i=1

βi deg(L|Ci).

Here we are using the identification (2.H) of line bundles on each fibre of X→ T with line
bundles on the total space X.

Theorem A.4 (Toda). If X→ SpecR is a smooth 3-fold flopping contraction, then

dimC Acon =
∑

β∈A1(X)

nβ(β · 1)2

where the nβ are the GV invariants defined as in Subsection 3.1.

Proof. The proof very closely follows the single-curve strategy in [Tod15], and so we only
outline the parts where some care is required.

The 4-fold g : X → SpecR is a flopping contraction, and so by [Che02, Section 6] g
admits a flop X+ → SpecR and a derived equivalence Db(X) → Db(X+). Flopping back
gives another equivalence Db(X+) → Db(X), and thus the composition gives rise to an
autoequivalence

Ψ : Db(cohX)→ Db(cohX)

with FM kernel P ∈ Db(X ×T X), say. Define Pt = Lj?t P, where jt is the inclusion
Xt × Xt → X×T X.

On one hand, for t = 0, as in [Tod15, (18)] the restriction of Ψ to the zero fibre results
in the NC twist functor of [DW16], so by uniqueness of FM kernels

P0
∼= Cone(F0[−2]→ O∆X0

)

where F0 = G in Corollary A.3.
On the other hand, for t 6= 0, the birational map from Xt to Xt is the composition

of the flops of all the curves in that fibre. Since all the curves have normal bundle
(−1,−1), the restriction of Ψ to the neighbouring fibre Xt results in composition of the
corresponding (classical) spherical twists. Grouping the curves in Xt together via their
curve class, namely {Cβ,i | 1 ≤ i ≤ nβ}β, then again as in [Tod15, (19)], uniqueness of
FM kernels yields

Pt
∼= Cone(Ft[−2]→ O∆Xt

)

where Ft ∈ cohXt × Xt is the sheaf now defined by

Ft =
⊕
β

nβ⊕
i=1

Oβ,i(−1) � Oβ,i(−1) (A.A)

where Oβ,i is the structure sheaf of Cβ,i. Using [Tod15, 3.1, 3.2], which are general, it
follows that Ft with t 6= 0 is a flat deformation of F0. Since both F0 and Ft have compact
supports, their Hilbert polynomials must therefore be equal. In particular, let L be the
g-ample line bundle on X such that deg(L|Ci) = 1 for all i = 1, . . . , n, which exists by
(2.H) and the sentence underneath, then

χ(F0 ⊗ (L� L)) = χ(Ft ⊗ (L� L)). (A.B)
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But χ is additive on filtrations, and so by Corollary A.3

χ(F0 ⊗ (L� L)) =

dimC Acon∑
i=1

χ(OCi
)χ(OCj

) = dimC Acon. (A.C)

Conversely, given the form of Ft in (A.A), it is clear that

χ(Ft ⊗ (L� L)) =
∑
β

nβ∑
i=1

χ(Oβ,i(−1)⊗ L)2 =
∑
β

nβ(β1 + . . . + βn)2 (A.D)

since deg(L|Cβ,i
) = β1 +. . .+βn. Combining (A.B), (A.C) and (A.D) gives the result. �
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