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Abstract. This paper gives a description of the full space of Bridgeland stability con-

ditions on the bounded derived category of a contraction algebra associated to a 3-fold
flop. An immediate consequence is a homological proof of the K(π, 1)-theorem in vari-

ous finite settings, which includes ADE braid groups. The main result is that stability

conditions provide the universal cover of a naturally associated hyperplane arrangement,
which is known to be simplicial, and in special cases is an ADE root system. The key new

insight is to study stability conditions not on the image of a spherical functor, but on the

base, where contractibility can be approached via silting-discreteness. There are further
geometric corollaries: a very short proof of faithfulness of pure braid group actions in

various settings follows immediately, the first that avoids normal forms, as does a proof

that a certain stability space Stab◦C associated to a 3-CY category C is contractible.

1. Introduction

Let Λcon denote the contraction algebra [DW1, DW3] associated to a 3-fold flopping
contraction f : X → SpecR, where X has at worst Gorenstein terminal singularities. The
purpose of this article is to give a description of stability conditions on the bounded derived
category Db(Λcon) = Db(mod Λcon) of this finite dimensional algebra, motivated in part
since this category plays a fundamental role in the proposed classification of flops, and in
part from the purely algebraic viewpoint of cluster-tilting theory. Our main corollaries are
topological and geometric.

1.1. Change of Categories. Associated to the flopping contraction f is the subcategory

C := {F ∈ Db(cohX) | Rf∗F = 0}

of Db(cohX). With its finite dimensional Hom-spaces, and 3-CY property when X is
smooth, the category C acts as a local model of a compact CY 3-fold. Furthermore, stability
conditions on C are intimately related to the birational geometry of X. Indeed, it was
recently established in [HW2] that there is a component of the space of stability conditions,
Stab◦C, and a regular covering map

Stab◦C→ Cn\HC,

where H is the real simplicial hyperplane arrangement associated to f (see §2.2 for details),
and Cn\HC is its complexified complement. It is further proved that Stab◦C is contractible,
however this part relies on Deligne’s proof of the K(π, 1)-theorem for simplicial hyperplane
arrangements [D1]. This is deeply unsatisfactory, as stability conditions are expected to be
contractible in any reasonable geometric setting.

In this paper we solve this problem, by essentially mirroring the space of stability condi-
tions on an associated singular 0-CY category, and proving contractibility there. This turns
out to be much easier: we do not need to use anything about stability on the category C,
any known faithfulness results about actions on C or Db(Λcon), any normal forms, nor any
previous work on surfaces [B3, BT]. Most of these fall out, for free, from our proof. In the
process, we give an independent proof not only of Deligne’s K(π, 1)-theorem for ADE root
systems, but also for their intersection arrangements.

The transfer between the algebra, in the form of the finite dimensional algebra Λcon,
and the geometry, in the form of X, is provided by deformation theory. Associated to the
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contraction f is a universal sheaf E [DW3] and a functor

−⊗L
Λcon

E : Db(Λcon)→ Db(cohX)

whose image equals C. Our main new insight is to change categories, from C to Db(Λcon).
Establishing results on Db(Λcon) is significantly easier. The above functor, which is known to
intertwine well with tilting t-structures at simples, then allows us to transfer this information
back to the geometry.

1.2. Main result. Our change in category brings one major advantage, namely that Λcon

is a silting-discrete algebra [A1, 3.10]. This fact has two happy consequences. First, we are
able to describe the full space of stability conditions on Db(Λcon), not just a component
as in the case of C. Second, it is known that all silting-discrete algebras have contractible
stability manifolds [PSZ], and thus Stab Db(Λcon) is contractible, before we even begin.

Alas, the change in category also brings one major disadvantage. Whilst contractibility
comes for free, moving to finite dimensional algebras means that we lose the technology of
Fourier–Mukai transforms, and so controlling standard equivalences becomes significantly
more difficult. Indeed, after constructing in Lemma 4.7 a natural map

Stab Db(Λcon)→ Cn\HC,

all the hard work goes into proving that it is a regular cover. The age-old algebraic problem
of knowing whether a given autoequivalence which is the identity on simples is globally the
identity functor rears its head. Happily, in our setting we tame this problem by appealing
to a commutative diagram that intertwines our algebraic equivalences with the geometric
flop functors, where we can use a standard Fourier–Mukai argument (see Theorem 4.3).

Our main result is the following.

Theorem 1.1 (4.10). If Λcon is the contraction algebra of f , then the natural map

Stab Db(Λcon)→ X = Cn\HC

is a regular cover. Furthermore, Stab Db(Λcon) is contractible and so this cover is universal.

The simplicial hyperplane arrangement H can be described in many ways: intrinsically for
Λcon, it arises as the g-vector fan of its two-term silting complexes. Moreover, it should come
as no surprise that H appears in the description of the stability manifold of the contraction
algebra, as it is already known that H controls all of its tilting theory [A2]. The chambers
of H are labelled by the contraction algebras of flopping contractions reached from f by
iterated flops, and each path α in the skeleton graph of H is assigned a standard derived
equivalence Fα. With this notation, the Galois group in Theorem 1.1 is the image of a pure
braid group under the group homomorphism π1(X)→ Auteq Db(Λcon) sending α 7→ Fα.

1.3. Corollaries. The arrangement H associated to f is always an intersection arrangement
inside the root system of some ADE Dynkin diagram. As such, Theorem 1.1 allows us to
prove K(π, 1) for ADE braid groups without using [B3, BT], or normal forms. Indeed, if Λcon

is a contraction algebra with associated Cn\HC = hreg, then it follows from Theorem 1.1
that the composition

Stab Db(Λcon)→ hreg → hreg/W

is also a covering map.

Corollary 1.2 (5.1). The K(π, 1)-conjecture holds for all ADE braid groups.

We recall the K(π, 1)-conjecture in Section 5. We remark that our techniques are slightly
more general, and indeed we prove that given any intersection arrangement in any ADE
root system, its complexified complement has contractible universal cover. This class of
intersection arrangements is a bit eclectic: as a consequence, we prove K(π, 1) for the
Coxeter groups In for n = 3, 4, 5, 6, 8, but none of the other n. The upcoming memoir [IW2]
describes in more detail the types of arrangements that can arise.

Another consequence of the silting-discrete contractibility theorem is the following, which
gives a very short proof of [A2, 1.4]. Our approach here is also a conceptual improvement:
faithful group actions should really be implied by the topology, and not from technical Ext
group calculations and normal forms.
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Corollary 1.3 (5.2). The homomorphism π1(X) → Auteq Db(Λcon) sending α 7→ Fα is
injective.

Combining the topological Corollary 1.3 with the algebraic-geometric Theorem 4.3 allows
us to side-step algebra automorphism issues, and to fully classify one-sided tilting complexes
in Db(Λcon). The following is a strengthening of [A2, 7.2].

Corollary 1.4 (5.3). There is bijection between morphisms in the Deligne groupoid of H

ending at the vertex associated to Λcon and the set of isomorphism classes of basic one-sided
tilting complexes of Λcon.

A more surprising consequence of the silting-discrete contractibility theorem is that it
also implies both the faithfulness of the geometric action π1(X) → Auteq Db(cohX), and
the contractibility of Stab◦C. The logic of the first statement is straightforward: given any
element in the kernel of the geometric action, there is an element in the kernel of the algebraic
action, and we can appeal directly to Corollary 1.3. As such, the following recovers the main
result of the paper [HW1], but is a vast simplification. Relying on topological properties is
both conceptually better, and shorter.

Corollary 1.5 (5.5). The homomorphism π1(X) → Auteq Db(cohX) sending α 7→ Flopα,
where Flopα is the corresponding composition of Bridgeland-Chen flop functors, is injective.

Given the faithful action from Corollary 1.5, which is implied from the silting-discrete
contractibility theorem, we are also able to deduce that Stab◦C is contractible. The logic
again is straightforward: universal covers are unique. The proof of the following corollary is
the only part of the paper where we use any prior results about Stab◦C.

Corollary 1.6 (5.6). Stab◦C is contractible.

1.4. Comparison to Literature. It is possible to use surfaces to prove K(π, 1) for ADE
braid groups, by combining [B3], [BT] and [QW]. Indeed, the first describes the stability
manifold of the surfaces analogue of C as a regular cover of an ADE root system, the second
establishes universality, and using both of these results the third proves contractibility. Our
approach via contraction algebras in the 3-fold setting is more general, but happily it is also
easier and shorter. Our main point is that to extend K(π, 1) to more general settings requires
categories such as our C and Db(Λcon) which no longer admit any easy combinatorial A∞
description. However, this lack of combinatorial underpinning is more than made up for by
the much nicer structural properties that the 3-fold setting affords.

The contraction algebra Λcon, which is a symmetric finite dimensional algebra, allows
us to construct the regular cover, control it, and prove contractibility, all very easily. As
above, since Λcon is silting-discrete [A1, 3.10], contractibility is known before we begin. The
t-structures in Db(Λcon) are all the tracking of module categories under the functors Fα,
following [PSZ], and we furthermore argue in Theorem 4.3 that a certain autoequivalence
of Db(Λcon) is the identity using Fourier–Mukai techniques. None of these arguments are
topological in nature, although the latter is scheme-theoretic.

Topologically, we do rely on the following two facts.

(1) That π1(X) is isomorphic to the vertex group of the Deligne groupoid of H. This
is a well-known and general fact (see e.g. [D2, p9]), not specific to finite simplicial
hyperplane arrangements, and it is significantly weaker than K(π, 1).

(2) That the stability manifold for a silting-discrete algebra A is contractible [PSZ]. In
turn, this relies on two results about the classifying spaces of posets: first, that the
poset of silting pairs for A is a CW poset whose classifying space is contractible [BPP,
6.2, 7.1], and second, that Stab Db(A) has a regular, totally normal, CW-cellular
stratification [QW] and hence it is homotopy equivalent to the classifying space of
its poset of strata [FMT]. To relate these, [PSZ, 13] shows that the poset of strata is
described algebraically as the poset of silting pairs. These techniques are not specific
to finite simplicial hyperplane arrangements, as there are plenty of silting-discrete
algebras whose g-vectors do not form a simplicial hyperplane arrangement.



4 JENNY AUGUST AND MICHAEL WEMYSS

Conventions. Throughout we work over the field of complex numbers. Given a noetherian
ring A, modules will be right modules unless specified, and modA denotes the category
of finitely generated A-modules. We use the functional convention for composing arrows,
so f ◦ g means g then f . With this convention, given a ring R, an R-module M is a
left EndR(M)-module. Furthermore, HomR(M,N) is a right EndR(M)-module and a left
EndR(N)-module, in fact a bimodule.

2. Wall Crossing and Functorial Composition

Throughout this paper f : X → SpecR is a fixed 3-fold flopping contraction, where X
has at worst Gorenstein terminal singularities, and R is complete local. Necessarily R is an
isolated cDV singularity [R]. Associated to f is a rigid Cohen–Macaulay (=CM) module
N , an algebra Λ := EndR(N), and a contraction algebra Λcon. We first briefly review these
notions, mainly to set notation.

2.1. Rigid Modules. Since R is Gorenstein, recall that

CMR := {X ∈ modR | ExtiR(X,R) = 0 for all i > 0}.

For X ∈ CMR, we say that X is basic if there are no repetitions in its Krull–Schmidt
decomposition into indecomposables. We call X a generator if one of these indecomposable
summands is R, and we call X rigid if Ext1

R(X,X) = 0. We say X ∈ CMR is maximal rigid
if it is rigid, and furthermore it is maximal with respect to this property (see [IW1, 4.1]).

By the Auslander–McKay correspondence for cDV singularities, there is a one-to-one
correspondence between flopping contractions Y → SpecR, up to R-isomorphism, and basic
rigid generators in CMR [W, 4.13]. In particular, both sets are finite. For our fixed flopping
contraction f : X → SpecR, the corresponding basic rigid CM generator across the bijection
will throughout this paper be denoted N . The contraction algebra of f may then be defined
as the stable endomorphism algebra Λcon := EndR(N) [DW1, DW3].

The set of basic rigid CM generators carries an operation called mutation. Indeed, given
such an L, with indecomposable summand Li � R, there is the so-called exchange sequence

0→ Li →
⊕
j 6=i

Lj
⊕bij → Ki → 0 (2.A)

and νiL := L
Li
⊕Ki [W, (A.A)]. Given the summand Ki of νiL we can mutate again, and

obtain νiνiL. It is a general fact for isolated cDV singularities [IW2, §7] that νiνiL ∼= L,
and moreover in the second exchange sequence

0→ Ki →
⊕
j 6=i

Lj
⊕cij → Li → 0

we have bij = cij for all i, j. Furthermore, there are equivalences of derived categories

RHom(HomR(L,νiL),−) : Db(mod EndR(L))
∼−→ Db(mod EndR(νiL))

RHom(HomR(νiL,L),−) : Db(mod EndR(νiL))
∼−→ Db(mod EndR(L)).

We will abuse notation and notate both as Φi, and refer to them as the mutation functors.
Given our fixed basic rigid CM generator N corresponding to f , write Mut0(N) for the set

of basic rigid CM generators that can be obtained from N by iteratively mutating at non-free
indecomposable summands. Geometrically, across the Auslander–McKay correspondence,
this corresponds to all varieties that can be obtained from X by iteratively flopping curves.

2.2. Hyperplanes and Labels. For every L ∈ Mut0(N), and each indecomposable sum-
mand Li of L, there is an exact sequence

0→
n⊕

j=0

N
⊕aij

j →
n⊕

j=0

N
⊕bij
j → Li → 0

where the first and second terms do not share any indecomposable summands. In the setting
where N ∈ CMR is maximal rigid, this fact is very-well known; in the setting here for rigid
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generators we rely instead on [IW2, §7]. In any case, consider the cone

CL :=


n∑

i=1

ϑi

 n∑
j=1

(bij − aij) ei

∣∣∣∣∣∣ ϑi > 0 for all i

 ⊂ Rn.

It is clear that CN = {
∑n

i=1 ϑiei | ϑi > 0 for all i} which we denote throughout by C+.
Furthermore, the chambers CL, as L varies over Mut0(N), sweep out the chambers of
a simplicial hyperplane arrangement H [HW1, IW2]. This H is always an intersection
arrangement inside some ADE root system.

We fix a decomposition N = R⊕N1⊕ . . .⊕Nn, and will often implicitly declare N0 = R.
As explained by the general Coxeter-style labelling of walls and chambers in [IW2, §1, §7],
this fixed decomposition induces an ordering on the summands of all other elements L of
Mut0(N), such that crossing a wall locally labelled si always corresponds to replacing the
ith summand. In this way, there is a global labelling on the edges of the skeleton of H. We
illustrate this in one example.

Example 2.1. There exists a two-curve flop over a cD4 singularity with the following
simplicial hyperplane arrangement. Each local wall is labelled by si for i = 1, 2, and under
crossing wall si the ith summand gets replaced. For clarity, in each chamber we have not
written the zeroth summand R.

N1⊕N2

A1⊕N2

A1⊕B2

C1⊕B2

C1⊕D2

B1⊕D2

B1⊕A2

N1⊕A2

s1

s2

s1

s2

s1

s2

s1

s2

Note that CN = C+ is the top right chamber.

Fixing an ordering of the summands of N not only fixes an ordering of the projective
modules Pi = HomR(N,Ni) of Λ = EndR(N), and via the pairing between simples and
projectives, an ordering of its simples S0, S1, . . . , Sn, but it also fixes an ordering on the
projectives and simples of EndR(L) for all L ∈ Mut0(N).

To fix notation, for L ∈ Mut0(N) suppose that the induced ordering on the summands of
L is L = L0⊕L1⊕ . . .⊕Ln, where L0

∼= R. There is an induced ordering on the projectives
Qi := HomR(L,Li) of EndR(L), and again via the pairing between simples and projectives,
an ordering of its simples S′0, S

′
1, . . . , S

′
n. The simples for the contraction algebra EndR(L)

are S′1, . . . , S
′
n.

2.3. Standard Equivalences for Simple Wall Crossings. Let L ∈ Mut0(N), with asso-
ciated A := EndR(L) and contraction algebra Acon := EndR(L). To ease notation, suppose
that B := EndR(νiL), with contraction algebra Bcon, and consider the good truncation

Ti := τ≥−1(Bcon ⊗L
B HomR(L,νiL)⊗L

A Acon), (2.B)

which is a complex of Bcon-Acon bimodules. In this basic rigid setting, it is already known
that the complex Ti is a two-sided tilting complex [A2, 4.3].

Theorem 2.2. Suppose that L,M ∈ Mut0(N), which correspond to the flopping contractions
XL → SpecR and XM → SpecR say. Then the following are equivalent.

(1) CL and CM share a codimension one wall in H.
(2) M ∼= νiL for some i 6= 0.
(3) XL and XM are related by a flop at a single irreducible curve.
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In this case, set A := EndR(L), Acon := EndR(L), and B := EndR(νiL), Bcon := EndR(νiL).
Then the mutation operations intertwine via the following commutative diagram

Db(Acon) Db(A) Db(cohXL)

Db(Bcon) Db(B) Db(cohXνiL)

res −⊗L
AV

∼

res −⊗L
BV+

∼

Fi:=RHomAcon (Ti,−) ∼ Φi ∼ Flopi ∼

where Φi is the mutation functor, Flopi is the inverse of the Bridgeland–Chen flop functor
[B1, C], V and V+ are the standard projective generators of zero perverse sheaves [VdB], and
res is restriction of scalars induced from the ring homomorphisms A→ Acon and B→ Bcon.

Proof. The statement (1)⇔(2) is clear; see also [HW2, 3.6]. The statement (2)⇔(3) is [W,
4.13], where since we are mutating only at indecomposable summands and R is isolated,
[W, 4.20(1)] overrides the caveat in the latter part of [W, 4.13]. The left hand diagram
commutes by [A2, 1.1], and the right hand diagram commutes by [W, 4.2]. �

2.4. K-theory. Since Λcon is a finite dimensional algebra, consider the Grothendieck group

G0(Λcon) := K0(Db(Λcon)),

which is well-known to be a free abelian group based by the ordered simples [S1], . . . , [Sn].
The notation G0 is chosen since we are including in the Grothendieck group all modules,
whereas K0 often only deals with vector bundles, and thus projectives.

Continuing the notation from Theorem 2.2, for any L ∈ Mut0(N) consider its associated
contraction algebra Acon = EndR(L) and its mutations νiAcon := EndR(νiL). Abusing
notation slightly, consider the standard equivalences

Db(Acon) Db(νiAcon)
Fi

Fi

where the functor from right to left is induced by the mutation νiL → νiνiL ∼= L. These,
and their inverses, induce the following four isomorphisms on K-theory

G0(Acon) G0(νiAcon)
Fi

Fi

G0(Acon) G0(νiAcon).
F−1
i

F−1
i

(2.C)

As in Subsection 2.2, write {S′1, . . . , S′n} for the ordered simples of Acon. For lack of suit-
able alternatives, also write {S′1, . . . , S′n} for the correspondingly ordered simples in νiAcon.

Lemma 2.3. With the notation in (2.A), Fi : G0(Acon)→ G0(νiAcon) sends

[S′t] 7→
{

−[S′i] if t = i,
bit[S

′
i] + [S′t] if t 6= i.

(2.D)

Proof. The fact that Φi(S
′
i) = S′i[−1] is [W, 4.15]. Theorem 2.2 then implies that Fi(S

′
i)

maps, under restriction of scalars, to S′i[−1]. It follows that F (S′i)
∼= S′i[−1] in Db(Acon), see

e.g. [A2, 6.6]. This establishes the top row.
For the second row, applying HomR(L,−) to (2.A) and using the rigidity of L gives an

exact sequence

0→ Qi →
⊕
j 6=i

Q
⊕bij
j → HomR(L,Ki)→ 0.

Applying HomA(−, S′t) to this, with t 6= i, yields

RHomA(HomR(L,Ki), S
′
t) = C⊕bit .

Further, it is clear that RHomA(Qj , S
′
t)
∼= HomA(Qj , S

′
t) is zero if j 6= t, and equals C if

j = t. Combining, we see that Φi(S
′
t) = RHomA(HomR(L,νiL), S′t) is a module, filtered by

bit copies of S′i, and one copy of S′t. Again, the left hand side of the commutative diagram
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in Theorem 2.2 then shows that Fi(S
′
t) must also be a module, filtered by bit copies of S′i,

and one copy of S′t. The second row follows. �

Remark 2.4. Applying the above to L = N , basing G0(Λcon) by the ordered simples
[S1], . . . , [Sn], the above transformation (2.D) assembles into a n×n matrix, with coefficients
in Z, representing the map Fi : Zn → Zn. As is standard in linear algebra, the dual map

F∗i : G0(νiΛcon)∗ → G0(Λcon)∗,

where G0(Λcon)∗ has dual basis e1, . . . , en say, is given by the transpose matrix. But the
transpose is precisely the transformation

et 7→
{

et if t 6= i,
−ei +

∑
j 6=i bijej if t = i.

which is precisely the transformation ϕi seen in moduli tracking [W, §5], or in K-theory
of projectives in [HW2, 3.2]. In particular, it will be convenient to think of the dual basis
e1, . . . , en as being the basis [P1], . . . , [Pn] of K0(per Λ)/[P0], where per Λ is the full subcate-
gory of Db(Λ) consisting of perfect complexes. Then the transformation F∗i can be identified
with these transformations elsewhere in the literature, and we can then use those results
freely. Note that the hyperplane arrangement H from Subsection 2.2 is defined in terms of
ei, and so naturally lives in G0(Λcon)∗.

By the above remark, the proof of the following does follow as the dual of [HW2, 3.2]. It
is however instructive to give a direct proof.

Lemma 2.5. All four isomorphisms in (2.C) are given by the same matrix, namely the one
from (2.D), and this matrix squares to the identity.

Proof. By (2.D), the matrices are controlled by the numbers bij appearing in the relevant
exchange sequences. Say the top Fi is controlled by numbers bij , and the bottom Fi is
controlled by numbers cij . That the two matrices labelled Fi are the same is simply the
statement that bij = cij , which has already been explained in Subsection 2.1. Given this
fact that bij = cij , we see that FiFi = Id by simply observing

[S′t]
Fi7−→

{
−[S′i] if t = i,

bit[S
′
i] + [S′t] if t 6= i.

Fi7−→
{

−(−[S′i]) if t = i
−bit[S′i] + (bit[S

′
i] + [S′t]) if t 6= i,

which is clearly the identity. Applying F−1
i to each side of the equation FiFi = Id gives

F−1
i = Fi, and all statements follow. �

2.5. Groupoids. As in Subsection 2.2, associated to every contraction algebra is a hyper-
plane arrangement H. As is standard, there is an associated graph ΓH defined as follows.

Definition 2.6. The vertices of ΓH are the chambers, i.e. the connected components, of
Rn\H. There is a unique arrow a : v1 → v2 from chamber v1 to chamber v2 if the chambers
are adjacent, otherwise there is no arrow.

By definition, if there is an arrow a : v1 → v2, then there is a unique arrow b : v2 → v1

with the opposite direction of a. For an arrow a : v1 → v2, set s(a) := v1 and t(a) := v2.
A positive path of length n in ΓH is a formal symbol

p = an ◦ . . . ◦ a2 ◦ a1,

whenever there exists a sequence of vertices v0, . . . , vn of ΓH and arrows ai : vi−1 → vi in
ΓH. Set s(p) := v0, t(p) := vn, `(p) := n, and write p : s(p) → t(p). If q = bm ◦ . . . ◦ b2 ◦ b1

is another positive path with t(p) = s(q), we consider the formal symbol

q ◦ p := bm ◦ . . . ◦ b2 ◦ b1 ◦ an ◦ . . . ◦ a2 ◦ a1,

and call it the composition of p and q.

Definition 2.7. A positive path α is called minimal if there is no shorter positive path in
ΓH, with the same start and end points as α.
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Following [D2, p7], let ∼ denote the smallest equivalence relation, compatible with mor-
phism composition, that identifies all morphisms that arise as positive minimal paths with
same source and target. Then consider the free category Free(ΓH) on the graph ΓH, whose
morphisms correspond to directed paths, and its quotient category

G+ := Free(ΓH)/ ∼,

called the category of positive paths.

Definition 2.8. The Deligne groupoid G is the groupoid defined as the groupoid completion
of G+, that is, a formal inverse is added to every morphism in G+.

It is a very well known fact [D1, P1, P3, S] (see also [P2, 2.1]) that for any vertex v ∈ G
there is an isomorphism EndG(v) ∼= π1(X) where X = Cn \HC. This fact is general, and is
significantly weaker and easier to establish than statements involving K(π, 1). We will use
this fact implicitly throughout.

2.6. Composition and K-theory. For any α ∈ Free(ΓH), say α = sit ◦ . . . ◦ si1 , consider

Fα := Fit ◦ . . . ◦ Fi1

Φα := Φit ◦ . . . ◦Φi1 .

The following is known, and is easy to establish just using the tilting order, in the case when
the modules are maximal rigid (e.g. if X is smooth). In our more general situation of rigid
generators, the same proof works, but it relies on some recent advances in [IW2].

Proposition 2.9. Let α : CL → CM be a positive minimal path. Set A := EndR(L),
B := EndR(M), Acon := EndR(L) and Bcon := EndR(M). Then the following hold.

(1) Φα is functorially isomorphic to RHomA(HomR(L,M),−).
(2) Fα is functorially isomorphic to RHomAcon(TLM ,−) where TLM is the two-sided

tilting complex τ≥−1(Bcon ⊗L
B HomR(L,M)⊗L

A Acon).

In particular, all positive minimal paths with the same start and end points are functorially
isomorphic.

Proof. (1) When N is maximal rigid, this is precisely [A2, 4.9(1)], [HW1, 4.6]. In the
more general setting here with L,M ∈ Mut0(N), then certainly L ∈ Mut0(M). Since R
is isolated cDV, it follows from the combinatorial and geometric description of mutation of
rigid modules in [IW2, §7] that HomR(L,M) is a tilting EndR(M)-EndR(L)-bimodule, of
projective dimension one when viewed as a right EndR(L)-module. This is the key technical
condition, explained in [A2, 4.9(2)], and not available when [HW1] was written, that now
allows us to use the main result [HW1, 4.6] freely in the more general setting here.
(2) When N is maximal rigid, this is [A2, 4.15]. The more general statement required here
follows by (1), and again the Remark [A2, 4.9(2)] which asserts, given (1), we are able to
apply the main result [A2, 4.15] to the setting of rigid objects. �

For any two positive minimal paths α and β with the same start and end points, the above
proposition shows that there is a functorial isomorphism Fα ∼= Fβ. Hence the association
α 7→ Fα descends to a functor from G+. Since Fα is already an equivalence, this in turn
formally descends to a functor from G. Using the same logic, the assignment α 7→ Φα also
descends to a functor from G+, and then a functor from G.

Furthermore, for every α ∈ HomG(CL, CM ), recycling the notation from the second
sentence in Proposition 2.9, the following diagram commutes

Db(Acon) Db(A)

Db(Bcon) Db(B)

res

res

Fα ∼ Φα ∼ (2.E)
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just by composition: by [A2, 1.1], respectively [A2, 3.2], both of the following commute.

Db(Acon) Db(A)

Db(νiAcon) Db(νiA)

res

res

Fi ∼ Φi ∼

Db(Acon) Db(A)

Db(νiAcon) Db(νiA)

res

res

F−1
i

∼ Φ−1
i

∼

Later, the following is one of the crucial ingredients in establishing that Stab Db(Λcon) is
a covering space. Recall that for the standard derived equivalence Fα associated to a path
α, the induced map on the K-theory is denoted Fα.

Proposition 2.10. Suppose that β : C → D is a positive minimal path in Free(ΓH).

(1) If α : C → D is any positive path, then Fα = Fβ.
(2) If α ∈ EndG(C), then Fα = Id.
(3) If α,γ ∈ HomG(C,D), then Fα = Fγ.

Proof. Having established Lemma 2.5, this is now word-for-word identical to [HW2, 4.8].
Note that this proof is elementary, and does not require Deligne normal form. �

2.7. The Dual Composition. For each L ∈ Mut0(N), consider ΛL := EndR(L) and recall
that Λ := EndR(N). Choose a positive minimal path β : CL → C+, which in turn gives rise
to a derived equivalence

ΦL := Φβ
2.9∼= RHomΛL

(HomR(L,N),−) : Db(mod ΛL)→ Db(mod Λ).

This derived equivalence is independent of choice of positive minimal path, by Proposi-
tion 2.9. It induces an isomorphism K0(per ΛL) → K0(per Λ) on the K-theory of perfect
complexes, so write

[ΦL(Qi)] =

n∑
j=0

(ϕL)ij [Pj ]

in K0(per Λ) ∼= Zn+1, where Qi = HomR(L,Li) and Pi = HomR(N,Ni). Since α is a
sequence of mutations that do not involve mutating the zeroth summand, at each stage the
zeroth summand is fixed. Hence this isomorphism descends to an isomorphism

ϕL : K0(per ΛL)/[Q0]
∼−→ K0(per Λ)/[P0].

Basing the first by [Q1], . . . , [Qn] and the second by [P1], . . . , [Pn], the matrix representing
the isomorphism is (ϕL)ij for 1 ≤ i, j ≤ n. By Remark 2.4, later we will think of these bases
as e′1, . . . , e

′
n of G0(EndR(L))∗ and e1, . . . , en of G0(Λcon)∗ respectively.

Remark 2.11. The above description of ϕL is in terms of projectives of the ambient
EndR(L), since this is convenient later. There is however a much more intrinsic description
of ϕL that does not rely on this larger algebra, via the two-term tilting complexes of the
contraction algebra Λcon. In particular, in the language of g-vectors, ϕL(e′i) = gLi , where
gLi is the g-vector of the two-term complex of Λcon associated to the rigid object Li via the
bijection [A1, 2.16]. We do not use this description below.

3. Stability and t-structures

3.1. Stability Generalities. Throughout this subsection, T denotes a triangulated cate-
gory whose Grothendieck group K0(T) is a finitely generated free Z-module.

Proposition 3.1 ([B2, 5.3]). To give a stability condition on T is equivalent to giving a
bounded t-structure T with heart A, and a group homomorphism Z : K0(A)→ C, called the
central charge, such that for all 0 6= E ∈ A the complex number Z(E) lies in the semi-closed
upper half-plane

H := {reiπϕ | r > 0, 0 < ϕ ≤ 1},
and where furthermore Z must satisfy the Harder–Narasimhan property.
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Write StabT for the set of locally-finite stability conditions on T. We do not define these
here, as below this condition is automatic for all stability conditions on Db(Λcon), since
all hearts of bounded t-structures will be equivalent to finite dimensional modules on some
finite dimensional algebra.

Theorem 3.2 ([B2, 1.2]). The space StabT has the structure of a complex manifold, and
the forgetful map

StabT → HomZ(K0(T),C)

is a local isomorphism onto an open subspace of HomZ(K0(T),C).

Any triangle equivalence Φ : T → T′ induces a natural map

Φ∗ : StabT → StabT′

defined by Φ∗(Z,A) := (Z ◦ φ−1,Φ(A)), where φ−1 is the corresponding isomorphism on

K-theory K0(T′)
∼−→ K0(T) induced by the functor Φ−1. In this way, the group Auteq(T) of

isomorphism classes of autoequivalences of T acts on StabT.

3.2. t-structures for Db(Λcon). The contraction algebra Λcon is a silting-discrete symmet-
ric algebra [A1, 3.3, 3.10]. Being symmetric, the technical condition of being silting-discrete
is equivalent [AM, 2.11] to there being only finitely many basic tilting complexes between
P and P [1] (with respect to the silting order ≤), for every tilting complex P obtained by
iterated irreducible left mutation from the free module Λcon. Geometrically, for each such
P , this set is finite since it is in bijection with R-schemes obtained by iterated flops of
irreducible curves starting from X, which is well-known to be finite.

This fact has the following remarkable consequence.

Proposition 3.3. Suppose that A is the heart of a bounded t-structure on Db(Λcon). Then
A = Aα for some L ∈ Mut0(M) and for some α ∈ HomG(CL, C+), where

Aα := Fα(mod EndR(L))

and Fα is the derived equivalence from Subsection 2.6 associated to α.

Proof. Since Λcon is silting-discrete, necessarily A has finite length [PSZ]. Furthermore, by
the bijections in [KY, §5] there exists a silting complex T in Db(Λcon) such that, in the
notation of [KY, §5.4],

A = C≤0 ∩ C≥0 = {x ∈ Db(Λcon) | HomDb(Λcon)(T, x[i]) = 0 for all i 6= 0}. (3.A)

Since Λcon is symmetric, silting equals tilting, and so T is a tilting complex. It is already
known (see [A1, 2.8]) that every tilting complex T in Db(Λcon) can be obtained as a com-
position of mutations from Λcon, so say T ∼= µβΛcon for some β ∈ HomG(C+, CL). Set
Bcon := EndR(L), then [A1, 3.8(1)] gives Fβ(µβΛcon) ∼= Bcon, and hence Fβ(T ) ∼= Bcon.

Thus applying Fβ to (3.A),

Fβ(A) = {y ∈ Db(Bcon) | Hom(Bcon, y[i]) = 0 for all i 6= 0} = mod Bcon,

and so applying F−1
β = Fβ−1 shows that A = Fβ−1(mod Bcon). Since β−1 ∈ HomG(CL, C+),

the result follows. �

Recall that inside Db(Λcon) are the simples S1, . . . , Sn, which base the K-theory G0(Λcon).
In a similar way, the simple modules S′1, . . . S

′
n of EndR(L) base its Grothendieck group.

Corollary 3.4. If σ ∈ Stab Db(Λcon), then σ = (Z,Aα) for some α ∈ HomG(CL, C+) and
some Z satisfying Z(Fα[S′i]) ∈ H for all i = 1, . . . , n.

Proof. By Proposition 3.3 every abelian heart is of the form Aα for some α ∈ HomG(CL, C+),
and hence every point of StabT is of the form (Z,Aα). To be a stability condition is
equivalent to the map Z : K0(Aα)→ C sending all simples of Aα to H. Since the simples of
Aα are of the form Fα(S′i), it follows that (Z,Aα) is a stability condition precisely when Z
satisfies Z([Fα(S′i)]) = Z(Fα[S′i]) ∈ H for all i. �
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The general action of Auteq Db(Λcon) on Stab Db(Λcon) simplifies somewhat if we restrict
to those standard equivalences given by EndG(C+). The functorial assignment α → Fα
defines a group homomorphism

π1(X) ∼= EndG(C+)→ Auteq Db(Λcon)

and we set PBr to be the image of this homomorphism. Then, using Corollary 3.4 to describe
the points of Stab Db(Λcon), the action of Fβ ∈ PBr on Stab Db(Λcon) is

Fβ · (Z,Aα)
2.10(2)

= (Z,Fβ(Aα)) = (Z,Aβ◦α). (3.B)

4. Stability on Contraction Algebras as a Universal Cover

In order to realise Stab Db(Λcon) as a universal cover, fix the isomorphism

HomC(G0(Λcon),C)
∼−→ Cn

given by Z 7→ (Z[S1], . . . , Z[Sn]) =
∑n

i=1 Z[Si] ei, where S1, . . . , Sn are the simples of Λcon.
Composing this with the forgetful map from Theorem 3.2, we thus obtain

p : Stab Db(Λcon)→ HomC(G0(Λcon),C)
∼−→ Cn. (4.A)

Combining with Corollary 3.4, p sends an arbitrary point (Z,Aα) to (Z[S1], . . . , Z[Sn]). In
this section we will show that p is a regular covering map onto its image. To do this, it will
be convenient to also consider the stability manifolds of the other contraction algebras of R,
and to track information between them.

Lemma 4.1. For any α ∈ HomG(CL, C+), the following diagram commutes

Stab Db(EndR(L)) Stab Db(Λcon)

Hom(G0(EndR(L)),C) Hom(G0(Λcon),C)

Cn Cn

(Fα)∗

−◦F−1
α

ϕL

∼ ∼

where the topmost vertical arrows are the forgetful maps, F−1
α is the image in K-theory of

the inverse of the functor Fα defined in Subsection 2.6, and ϕL is defined in Subsection 2.7.
The right hand vertical composition is p.

Proof. The top square commutes by definition of (Fα)∗. For the bottom square, by Propo-
sition 2.10(3) applied to α−1, we have F−1

α = Fα−1 = Fβ, where β is a positive minimal path
C+ → CL. Writing β = sit ◦ . . . ◦ si1 , then the middle map is the composition

G0(EndR(L))∗
F∗
it−−→ . . .

F∗
i1−−→ G0(Λcon)∗. (4.B)

By Remark 2.4, each step is just the tracking of the projectives basing K0(per)/[Q0] under
the mutation functors. Hence (4.B) is precisely

G0(EndR(L))∗
ϕit−−→ . . .

ϕi1−−→ G0(Λcon)∗. (4.C)

Consider the path β = si1 ◦ . . .◦sit : CL → C+. Being the opposite path to β, it follows that
β is also positive minimal. But then by Proposition 2.9 there is a functorial isomorphism

ΦL := Φβ
∼= Φi1 ◦ . . . ◦Φit .

Hence ϕL, the image of this functor in K0(per)/[P0], realises (4.C). �

As is standard, consider the subset of Cn

H+ :=


n∑

j=1

ajej | aj ∈ H

 ∼= Hn.
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Corollary 4.2. For any point of Stab Db(Λcon), which is necessarily of the form (Z,Aα)
for some α ∈ HomG(CL, C+),

p(Z,Aα) = ϕL

(
n∑

i=1

Z(Fα[S′i]) e′i

)
∈ ϕL(H+).

Proof. The first statement is Corollary 3.4. By definition Aα = Fα(mod EndR(L)), hence

p(Z,Aα) = p
(
Z,Fα(mod EndR(L))

)
= p ◦ (Fα)∗(Z ◦ Fα,mod EndR(L)) (since Fα ◦ F−1

α = Id)

= ϕL

(
n∑

i=1

Z(Fα[S′i]) e′i

)
. (by Lemma 4.1)

The final statement that p(Z,Aα) ∈ ϕL(H+) again follows from Corollary 3.4. �

4.1. A Covering Map. As in Section 3.2, let PBr be the image of the homomorphism

π1(X)→ Auteq Db(Λcon)

sending β 7→ Fβ. Then Fβ ∈ PBr acts on the space of stability conditions via the action in
(3.B). In this subsection we will establish that this action is free and properly discontinuous,
so that Stab Db(Λcon)→ Db(Λcon)/PBr is a covering map.

The following is one of our main technical results. It establishes a condition when elements
of PBr, inside the autoequivalence group of Db(Λcon), are the identity. The proof is via
Fourier–Mukai techniques. Forgetting the ambient geometry is thus a bad idea: it seems
extremely difficult to establish the following result in a purely algebraic manner.

Theorem 4.3. Suppose that α ∈ EndG(C+) satisfies Fα(Λcon) ∼= Λcon. Then there is a
functorial isomorphism Fα ∼= Id.

Proof. By the assumption, the standard equivalence Fα is induced by the one-sided tilting
complex Λcon. By the usual lifting argument (see e.g. [RZ, 2.3]), the bimodule complex
defining Fα must be isomorphic to 1(Λcon)ζ as bimodules, for some algebra automorphism
ζ : Λcon → Λcon. Hence Fα is induced by this algebra automorphism.

Since Fα induces a Morita equivalence, it must take simples to simples. Furthermore, as
Fα is the identity on K-theory G0(Λcon) by Proposition 2.10, Fα must fix all simples.

Now consider the commutative diagram

Db(Λcon) Db(Λ) Db(cohX)

Db(Λcon) Db(Λ) Db(cohX)

res −⊗L
ΛV

∼

res −⊗L
ΛV

∼

Fα ∼ Φα ∼ Flopα ∼

where the left hand side is (2.E), and the right hand side can be obtained by iterating the
right hand side of Theorem 2.2. Since Fα fixes simples, the left hand commutative diagram
implies that Φα fixes the simples S1, . . . , Sn. By [VdB, 3.5.8], across the right hand com-
mutative diagram, this in turn implies that Flopα fixes the sheaves OC1(−1), . . . ,OCn(−1),
where each Ci

∼= P1. Since the flop functor and its inverse both map OX to OX [B1,
(4.4)] and commute with the pushdown to SpecR (see e.g. [DW1, 7.16]), by the standard
Fourier–Mukai argument (see [W, 4.3], which itself is based on [T]), Flopα

∼= h∗ for some
isomorphism h : X → X that commutes with the pushdown. But this isomorphism is the
identity on the dense open set obtained by removing the exceptional locus, and hence it
must be the identity.
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It follows that Flopα
∼= Id and hence Φα ∼= Id. Restricting the left hand commutative

diagram to mod Λcon, we obtain a commutative diagram

mod Λcon mod{1,...,n} Λ

mod Λcon mod{1,...,n} Λ

res

∼

res

∼

Fα Φα
∼=Id

where mod{1,...,n} Λ denotes those Λ-modules with a finite filtration by the simples S1, . . . , Sn.
In particular, Fα restricted to mod Λcon is functorially isomorphic to the identity. Hence ζ
is an inner automorphism (see e.g. [L, 2.8.16]), which in turn implies that Fα ∼= Id. �

Corollary 4.4. For each x ∈ Stab Db(Λcon) there is an open neighbourhood U of x such
that U ∩ Fβ(U) = ∅ for all 1 6= Fβ ∈ PBr.

Proof. Consider the open neighbourhood U of x defined by

U := {y ∈ Stab Db(Λcon) | d(x, y) < 1/4},

where d(−,−) is the metric on stability conditions introduced in [B2, Section 6]. Suppose
that U ∩ Fβ(U) 6= ∅ for some Fβ ∈ PBr. We will show that Fβ ∼= Id.

As the open balls intersect, every point y ∈ U must satisfy d
(
y, (Fβ)∗y

)
< 1. Furthermore,

the central charges of y and (Fβ)∗y are equal by Proposition 2.10(2) and the top commutative
diagram in Lemma 4.1. Using [B2, Lemma 6.4] it follows immediately that y = (Fβ)∗y, for
every y ∈ U.

In particular, by Corollary 3.4, say x = (Z,Aα) for some α ∈ HomG(CL, C+). Since
x ∈ U, the property (Fβ)∗(x) = x implies that Aβ◦α = Aα, and so Fβ restricts to an
equivalence Aα → Aα. In turn, this implies that the composition

Fα−1βα = F−1
α ◦ Fβ ◦ Fα : Db(Γcon)→ Db(Γcon),

where Γcon := EndR(L), restricts to an equivalence mod Γcon → mod Γcon. It follows that
Fα−1βα(Γcon) must then be a basic tilting module, given that Γcon is. Since Γcon is symmet-
ric, the only such module is Γcon, and so Fα−1βα(Γcon) ∼= Γcon. By Proposition 4.3 applied
to the contraction algebra Γcon, we conclude that Fα−1βα

∼= Id, and hence Fβ ∼= Id. �

Corollary 4.5. The map Stab Db(Λcon) → Stab Db(Λcon)/PBr is the universal covering
map, with Galois group PBr.

Proof. Stab Db(Λcon) is contractible since contraction algebras are silting-discrete [A1, 4.12],
and silting-discrete algebras have contractible stability manifolds [PSZ]. In particular,
Stab Db(Λcon) is path connected and so the given map is a regular covering map by Corol-
lary 4.4 together with the standard [H, 1.40(a)(b)]. The covering is clearly universal, since
Stab Db(Λcon) is contractible and hence simply connected. �

4.2. The Regular Cover to the Complexified Complement. In this subsection we
will establish that p induces an isomorphism

Stab Db(Λcon)/PBr
∼−→ Cn\HC. (4.D)

Combining with Corollary 4.5 will then prove that (4.A) is the universal covering map onto
its image, with Galois group PBr. We will establish (4.D) in two steps: first by showing that
p has image Cn\HC, then second by establishing that (4.D) is well-defined and injective.

Our proof makes use of the following key combinatorial result, which is folklore when H

is an ADE root system. In our mildly more general setting here, the proof, which is basically
the same, can be found in [HW2, Appendix A].

Proposition 4.6. With notation as above, the following hold.

(1) If α and β terminate at C+, then

ϕs(α)(H+) ∩ϕs(β)(H+) 6= ∅ ⇐⇒ s(α) = s(β).
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(2) There is a disjoint union

Cn\HC =
⊔

L∈Mut0(N)

ϕL(H+).

The above combinatorics lead directly to the following. In the special case when H is an
ADE root system, the following result is already implicit in [B3] and [T].

Corollary 4.7. The image of p is Cn\HC.

Proof. By Proposition 4.6(2), all the sets ϕL(H+) avoid the complexified hyperplanes, so
by Corollary 4.2 the image of p lies in Cn\HC. Further, given any z ∈ Cn\HC, we may
write z = ϕL(h) for some L ∈ Mut0(N) and some h ∈ H+, again by Proposition 4.6(2).
Since the standard heart in Db(EndR(L)) has finite length, we can find a stability condition
σ ∈ Stab Db(EndR(L)) which maps to h via the left hand vertical composition in Lemma 4.1.
Then for any α ∈ HomG(CL, C+), the commutative diagram in Lemma 4.1 shows that
(Fα)∗(σ) ∈ Stab Db(Λcon) maps, under p, to z. �

The following shows that (4.D) is both well-defined, and injective.

Lemma 4.8. For σ1,σ2 ∈ Stab Db(Λcon), then

p(σ1) = p(σ2) ⇐⇒ σ1 = (Fγ)∗σ2 for some Fγ ∈ PBr .

Proof. Note that (⇐) is clear since, by Proposition 2.10(2), the action in (3.B) of a pure
braid does not effect the central charge of a stability condition.

For (⇒), recall that by Corollary 3.4 we can assume that σ1 = (Z1,Aα) and σ2 = (Z2,Aβ)
where α ∈ HomG(CL1

, C+) and β ∈ HomG(CL2
, C+). If p(σ1) = p(σ2), then certainly

Z1 = Z2 since p is simply the forgetful map followed by an isomorphism.
Furthermore, by Corollary 4.2, we see that ϕs(α)(H+) ∩ ϕs(β)(H+) 6= ∅, since the inter-

section contains p(σ1) = p(σ2). Hence by Proposition 4.6(1) it follows that s(α) = s(β) and
thus we can consider the composition γ = β ◦ α−1 ∈ EndG(C+). Then Fγ ∈ PBr and

(Fγ)∗(Z1,Aα) = (Z1,Aγ◦α) (by (3.B) since Fγ ∈ PBr)

= (Z1,Aβ◦α−1◦α) (using γ = β ◦ α−1)

= (Z2,Aβ), (since Z1 = Z2 and α−1 ◦ α = Id)

proving the statement. �

Corollary 4.9. The map p : Stab Db(Λcon)→ Cn\HC induces a homeomorphism

Stab Db(Λcon)/PBr→ Cn\HC.

Proof. The map p is surjective by Corollary 4.7, and by Lemma 4.8 it induces the bijection in
the statement. The induced map is itself a homeomorphism by the definition of the quotient
topology, and the fact that p is a local homeomorphism. �

The following is our main result.

Corollary 4.10. The map p : Stab Db(Λcon)→ Cn\HC is the universal cover, with Galois
group PBr. Furthermore, Stab Db(Λcon) is contractible.

Proof. The first statement is obtained by composing the universal cover from Corollary 4.5
with the homeomorphism from Corollary 4.9. As already stated, the second part follows
from [PSZ] and [A1, 4.12]. �

5. Corollaries

In this section we prove the five main corollaries stated in the introduction. For an ADE
root system, it is well-known [B4] that π1(hreg/W ) is isomorphic to the associated ADE
braid group. Recall that the K(π, 1)-conjecture for ADE braid groups, which is already a
theorem in this setting, asserts that the universal cover of hreg/W is contractible.

Corollary 5.1. The K(π, 1)-conjecture holds for all ADE braid groups.
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Proof. As in [T, §3] or [KM, §4.3], we may choose a flopping contraction for which the
hyperplane arrangement H is an ADE root system h. It is well known that the complexified
complement X = hreg. Write W for the Weyl group, which is finite, thus clearly the covering
map hreg → hreg/W has finite fibres. It follows that the composition

Stab Db(Λcon)→ X = hreg → hreg/W

is then also a covering map. As above, it is well-known that π1(hreg/W ) is the braid group.
By Corollary 4.10, the fact that Stab Db(Λcon) is contractible implies that it is simply
connected. Hence the composition is the universal cover, and furthermore the universal
cover is contractible. �

Corollary 5.2. The homomorphism π1(X)→ Auteq Db(Λcon) sending α 7→ Fα is injective.

Proof. As in Sections 3 and 4, by definition PBr is the image of this homomorphism. Since
p is a regular covering map, as is standard [H, 1.40(c)] there is a short exact sequence of
groups

1→ π1(Stab Db(Λcon))→ π1(X)→ PBr→ 1 (5.A)

where π1(X)→ PBr as before takes α 7→ Fα. However, since by Corollary 4.10 Stab Db(Λcon)
is contractible, its fundamental group is trivial. �

For α ∈ HomG(CL, C+), set Tα := Fα(EndR(L)), which is necessarily a tilting complex
for Λcon since equivalences map tilting complexes to tilting complexes.

Corollary 5.3. The map α 7→ Tα is a bijection from morphisms in the Deligne groupoid
ending at C+ to the set of basic one-sided tilting complexes of Λcon, up to isomorphism.

Proof. Surjectivity is already known. Indeed, since Λcon is silting-discrete, by [A1, 3.16(2)]
every standard derived equivalence from Db(Λcon) is, up to algebra automorphism, iso-
morphic to Fβ for some β ∈ HomG(C+, CL). In particular every one-sided tilting com-

plex for Λcon is isomorphic to F−1
β (EndR(L)) for some β ∈ HomG(C+, CL). Since β−1 ∈

HomG(CL, C+) and F−1
β = Fβ−1 , surjectivity of the map follows.

The content is that the map is also injective. Suppose that α ∈ HomG(CL, C+) and
β ∈ HomG(CM , C+) are such that Tα ∼= Tβ, where L,M ∈ Mut0(N). Then, by definition,

Fα(EndR(L)) ∼= Fβ(EndR(M)) (5.B)

and hence Aα = Aβ. In particular, choosing any central charge Z, we have (Z,Aα) =
(Z,Aβ) and hence p(Z,Aα) = p(Z,Aβ). But Corollary 4.2 then implies that ϕL(H+) and
ϕM (H+) intersect, which by Proposition 4.6 implies that L ∼= M .

Set Bcon := EndR(L). Applying F−1
β = Fβ−1 to (5.B) gives Fβ−1◦α(Bcon) ∼= Bcon. Thus

by applying Theorem 4.3 to the composition β−1 ◦ α ∈ EndG(CL) we deduce that there is
an isomorphism Fβ−1◦α ∼= Id. Corollary 5.2 applied to the contraction algebra Bcon then
shows that β−1 ◦ α must be the identity, and hence α = β in the Deligne groupoid. �

Remark 5.4. If we instead assign to a path α : C+ → CL the tilting complex F−1
α (EndR(L)),

we equivalently obtain a bijection between the paths in the Deligne groupoid that start at
C+ and basic one-sided tilting complexes of Λcon.

Corollary 5.5. The homomorphism π1(X) → Auteq Db(cohX) sending α 7→ Flopα is
injective.

Proof. Suppose that α belongs to the kernel, so Flopα = Id. Since Φα is functorially
isomorphic to Flopα after tilting by Theorem 2.2, necessarily Φα ∼= Id. The left-hand
part of the commutative digram in Theorem 2.2 then implies that Fα(Λcon) maps, under
restriction of scalars, to Λcon. It follows that Fα(Λcon) ∼= Λcon in Db(Λcon), see e.g. [A2,
6.6]. By Lemma 4.3, there is a functorial isomorphism Fα ∼= Id. By Corollary 5.2 we see
that α = 1, proving the statement. �

Corollary 5.6. With the notation as in the introduction, Stab◦C is contractible.
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Proof. By [HW2] there is a regular covering map Stab◦C → X with Galois group G equal
to the image of π1(X) → Auteq Db(cohX). But by Corollary 5.5, the map π1(X) → G is
an isomorphism. By the corresponding version of (5.A), π1(Stab◦C) is trivial and so the
cover is universal. Universal covers are unique, so by Corollary 4.10 it follows that Stab◦C
is contractible. �
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