
LECTURES ON RECONSTRUCTION ALGEBRAS I

MICHAEL WEMYSS

1. Introduction

Noncommutative algebra (=quivers) can be used to solve both explicit and non-explicit
problems in algebraic geometry, and these lectures will try to explain some of the features of
both approaches. I want to use these notes to give a gentle (!) introduction to the subject,
and will try and make them as self-contained as possible. Since I want to eventually end
up doing non-toric geometry, throughout I shall never adopt the language of toric geometry,
even if the example I am considering is toric. First some motivation:

From a noncommutative perspective we would like to take a singularity X = Spec R
and produce a NC ring A from which we can extract resolution(s) of X . We can then ask
whether the NC ring has some geometrical meaning, and if so whether this gives information
about A. We can also ask what A says about X and its resolutions.

From a more geometric perspective we may already have some resolution Y of X and
would like produce other resolutions, for example by flopping certain curves. We may also
want to describe the derived category of Y . This can sometimes be done using noncommu-
tative algebra.

In practice however things are not quite as simple as this, since most of the time a
specific problem will be a mixture of the two above problems. Sometimes it is easier to solve
the problem using the geometry, sometimes it is easier using quivers. Thus geometry can
give us results in noncommutative algebra and noncommutative algebra can give us results in
geometry; it is the process of playing the two sides off each other which gives us the strongest
results.

Today I’m going to define quivers and tell you how to think of them, then following
King [King1] I’ll talk about their moduli space(s) of finite dimensional representations. Time
permitting I’ll then show how to calculate the moduli spaces in some easy examples.

2. Quivers and Representations

Any algebra with a finite number of generators and a finite number of relations (i.e.
almost all algebras you can think off) can be written as a quiver with relations1. You want
to do this since the quiver gives you a way to visualize the algebra, and more importantly it
gives you a way to visualize the finite dimensional modules (see later).

Definition 2.1. A quiver Q is just a finite directed graph.

At this stage loops, double arrows,... are all allowed, and the directed graph need not
be connected. For example

Q = • • • • •

is an example of a quiver. A small technical point: for every vertex i we actually also add
in a trivial loop at that vertex and denote it by ei, but we do not draw these loops. In the
above example, the loops drawn are the non-trivial loops.

Denoting the vertices of Q by Q0 and the arrows by Q1, you can view the directed graph
Q as simply a piece of combinatorial data (Q0, Q1, h, t) where h and t are maps Q1 → Q0.
The map h (the ‘head’) assigns to an arrow its head, and the map t (the ‘tail’) assigns to an
arrow its tail.

1This cannot be done in a unique way
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Definition 2.2. A non-trivial path of length n in Q is just a sequence of arrows a1 · · · an in
Q with h(ai) = t(ai+1) for all 1 ≤ i ≤ n− 1. We call this path a cycle if h(an) = t(a1).

We want to add more structure to the combinatorial data of a quiver by producing an
algebra:

Definition 2.3. For a given quiver Q, the path algebra kQ is defined to be the k-algebra with
basis given by the paths, with multiplication

pq :=

{

pq h(p) = t(q)
0 else

eip :=

{

p t(p) = i
0 else

pei :=

{

p h(p) = i
0 else

for any paths p and q.

This is an algebra, with identity 1kQ =
∑

i∈Q0
ei. Note we are using the convention

that pq means p then q; be aware that some savage barbarians2 use the opposite convention.
Note that by the definition of multiplication the path algebra is often noncommutative: for
example if

Q = •
a

•
b

•

then ab 6= ba since ba = 0. In fact in this example kQ is easy to describe: the basis of kQ is
e1, e2, e3, a, b, ab. Its not hard to convince yourself that

kQ ∼=





k k k
0 k k
0 0 k



 .

Exercise 2.4. Let Q be a quiver, then kQ is finite dimensional if and only if Q has no
non-trivial cycles.

For quivers Q without cycles, the resulting path algebras kQ have been used in geometry
although their use is generally limited to projective varieties; since in these talks we are going
to be resolving singularities we need to make one more definition:

Definition 2.5. For a given quiver Q, a relation is simply a k-linear combination of paths
in Q. Given a finite number of relations, we can form their two sided ideal R in the path
algebra, and we thus define the algebra kQ/R to be a quiver with relations.

We can assume (by removing arrows if necessary) that the length of every path in every
relation is greater than or equal to two. Note that with relations it is possible that kQ/R can
be finite dimensional even when Q has cycles, though in these lectures most of the examples
will involve infinite dimensional algebras.

In practice you should think of the relation p − q as saying ‘going along path p is the
same as going along path q’, since p = q in the quotient kQ/R.

Now as is standard in ring theory (and geometry), we tend to study a ring by instead
studying its module category (=coherent sheaves), since this is an abelian category and so we
have the machinery of homological algebra at our disposal. Representation theorists would
tell us that we are we’re studying the ring’s representations - I’ll now make this more precise.

Definition 2.6. Let kQ/R be a quiver with relations. A finite dimensional representation
of kQ/R is the assignment to every vertex i of Q a finite dimensional vector space Vi, and
to every arrow a a linear map fa : Vt(a) → Vh(a), such that the relations R between the linear
maps hold. Denote αi = dimVi and let α = (αi) be the collection of all the αi. We call α the
dimension vector of the representation.

2you know who you are
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For example let kQ/R be •
a

•
b

•

c

subject to bc = 0. Denoting

M :=
C

4
C

( 1 0 )

C2

( 0
1 )

N :=
C

1
C

1
C

3

then M is a representation of dimension vector (1, 1, 2) whereas N is not a representation of
dimension vector (1, 1, 1).

We also have the obvious notion of a morphism between two representations:

Definition 2.7. Let V = (Vi, fa) and W = (Wi, ga) be finite dimensional representations of
kQ/R. A morphism ψ from V to W is given by specifying, for every vertex i, a linear map
ψi : Vi → Wi such that for every arrow a ∈ Q1,

Vt(a)
ψt(a)

fa

Wt(a)

ga

Vh(a)

ψh(a)
Wh(a)

commutes.

Note ψ is an isomorphism if and only if each ψi is a linear isomorphism. Also note we
have the obvious notion of a subrepresentation. It is fairly clear that in this way the finite
dimensional representations form a category, which we denote by fRep(kQ,R)

The whole point to all this is the following:

Lemma 2.8. Let A = kQ/R be a quiver with relations. Denote by fdmodA the finite dimen-
sional modules of A. Then there is a categorical equivalence

fRep(kQ,R) ≈ fdmodA

Proof. This is actually quite tautological. Given a representation (Vi, fa) then ⊕i∈Q0Vi is the
corresponding module. Conversely given any finite dimensional module W , setting Wi = eiW
(where ei is the trivial path at vertex i) gives us the corresponding representation. �

Thus we now see the benefit of writing an algebra A as a quiver with relations, as by
the above lemma we have a way to visualize the finite dimensional modules of A.

3. Moduli and GIT

In this section we consider a quiver with relations A = kQ/R and define various moduli
spaces of finite dimensional representations. In the process we have to take a very fast detour
through the world of geometric invariant theory (GIT).

For a fixed dimension vector α we may consider all representations of A = kQ/R with
dimension vector α:

R := Rep(A,α) = {representations of A of dimension α}

This is an affine variety, so denote the co-ordinate ring by k[R]. The variety (hence the
co-ordinate ring) carries a natural action of G :=

∏

i∈Q0
GL(αi) acting on an arrow a as

g · a = g−1
t(a)agh(a). Actually its really an action of PGL since the diagonal one-parameter

subgroup ∆ = {(λ1, · · · , λ1) : λ ∈ k∗} acts trivially, but this won’t concern us much. Anyway,
by linear algebra the isomorphism classes of representations of A = kQ/R are in natural one-
to-one correspondence with the orbits of this action.

To understand this space is normally an impossible problem (e.g. wild quiver type), so
we want to throw away some representations and take what is known as a GIT quotient.
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To make a GIT quotient we need to add the extra data of a character χ of G. Now the
characters χ of G =

∏

i∈Q0
GL(αi) are given by powers of the determinants

χ(g) =
∏

i∈Q0

det(gi)
θi

for some collection of integers θi ∈ ZQ0 . Since such a χ determines and is determined by the
θi, we usually denote χ by χθ. Now consider the map

θ : fdmodA → Z

M 7→
∑

i∈Q0
θi dimMi

This is additive on short exact sequences, so really its a map K0(fdmodA) → Z.
Now assume that our character satisfies χθ(∆) = {1} (this is need to use Mumford’s

numerical criterion [King, 2.5]). It not too hard to see that this condition translates into
∑

i∈Q0
θiαi = 0. Hence for these χθ, θ(M) = 0 if M has dimension vector α.

We arrive at the key definition [King,1.1]

Definition 3.1. Let A be an abelian category, and θ : K0(A ) → Z an additive function.
We call θ a character of A . An object M ∈ A is called θ-semistable if θ(M) = 0 and
every subobject M ′ ⊆ M satisfies θ(M ′) ≥ 0. Such an object M is called θ-stable if the
only subobjects M ′ with θ(M ′) = 0 are M and 0. We call θ generic if every M which is θ-
semistable is actually θ-stable.

For A = kQ/R as before, we are interested in the above definition for the case A =
fdmodA. We shall see how this works in practice in the next section. The reason King gave
the above definition is that it is equivalent to the other notion of stability from GIT, which
we now describe:

R is an affine variety with an action of a linearly reductive group G =
∏

i∈Q0
GL(αi).

Since G is reductive, we have a quotient

R → R//G = Speck[R]G

which is dual to the inclusion k[R]G → k[R]. Its the reductiveness of the group which ensures
that k[R]G is a finitely generated k-algebra, and so Speck[R]G is really a variety, not just a
scheme. Virtually by definition the above is a categorical quotient (quite a weak condition);
further its actually a good quotient (if you don’t know what this means, don’t worry)

To make a GIT quotient we have to add to this picture the extra data of χ, some
character of G.

Definition 3.2. f ∈ k[R] is a semi-invariant of weight χ if f(g ·x) = χ(g)f(x) for all g ∈ G
and all x ∈ R. We write the set of such f as RG,χ. We define

R//χG := Proj





⊕

n≥0

k[R]G,χ
n





Definition 3.3. x ∈ R is called χ-semistable (in the sense of GIT) if there exists some
semi-invariant f of weight χn with n > 0 such that f(x) 6= 0, otherwise x ∈ R is called
unstable.

The set of semistable points R
ss forms an open subset of R; in fact we have a morphism

q : R
ss → R//χG

which is a good quotient. One more definition:

Definition 3.4. x ∈ R is called χ-stable (in the sense of GIT) if it is χ-semistable, the G
orbit containing x is closed in Rss and further the stabilizer of x is finite.
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In fact q is a geometric quotient on the stable locus Rs, meaning that Rs//χG really is
an orbit space.

The point in the above discussion is the following result [King1, 3.1], which says the two
notions are the same

Proposition 3.5. Let M ∈ Rep(A,α) = R, choose θ as in Definition 3.1. Then M is
θ-semistable (in the sense of Definition 3.1) if and only if M is χθ-semistable (in the sense
of GIT). The same holds replacing semistability with stability.

Thus we use the machinery from the GIT side to define for quivers the following:

Definition 3.6. For A = kQ/R choose dimension vector α and character θ satisfying
∑

i∈Q0
αiθi = 0. Denote Rep(A,α) = R and G = GL(α). We define

M
ss
θ (A,α) := R//χθ

G := Proj





⊕

n≥0

k[R]G,χ
n





and call it the moduli space of θ-semistable representations of dimension vector α.

This is by definition projective over the ordinary quotient R//G = Speck[R]G. We make
some remarks

(i) If k[R]G = k then M
ss
θ (A,α) is a projective variety.

(ii) In the resolution of singularities we ideally would like the zeroth piece Speck[R]G to
be the singularity since then the moduli space is projective over it! However, even
in cases where we use NC rings to resolve singularities, Speck[R]G might not be the
thing we want; see Example 4.6 later.

(iii) Note that M
ss
θ (A,α) may be empty.

(iv) One way to compute this space is to compute semi-invariants, but this in general is
quite hard.

One small point before we continue: we can’t just call M
ss
θ (A,α) a moduli space, we really

have to justify that it is a moduli space, i.e. why it parameterizes certain objects. We shall
describe this more precisely in a future section. For now though we shall concern ourselves
with showing how to calculate the moduli space in some examples:

4. Examples

The last section was quite abstract, here we show how it works in practice. For A =
kQ/R, we may want to construct a space X from A as a moduli space of θ-stable A-modules.
What this means [King2]:

“To specify such a moduli space we must give a dimension vector α and a
weight vector (or ‘character’) θ satisfying

∑

i∈Q0
θiαi = 0. The moduli space

of θ-stable A-modules of dimension vector α is then the parameter space
for those A-modules which have no proper submodules with any dimension
vector β for which

∑

i∈Q0
θiβi ≤ 0.”

For computational ease I will only compute moduli with dimension vector (1, . . . , 1) in
this section; I will return and do a computation of some other dimension vectors in a future
section. There are many different (and better) ways to view the following example, but here
I give the easiest:

Example 4.1. Consider the quiver
• •

with no relations. Choose α = (1, 1) and θ = (−1, 1). With these choices, since
∑

θiαi = 0
we can form the moduli space. Now a representation of dimension vector α = (1, 1) is θ-
semistable by definition if θ(M ′) ≥ 0 for all subobjects M ′. But the only possible subobjects
in this example are of dimension vector (0, 0), (0, 1) and (1, 0), and θ is ≥ 0 on all but the last
(in fact its easy to see that θ is generic in this example). Thus a representation of dimension
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vector (1, 1) is θ-semistable if and only if it has no submodules of dimension vector (1, 0).
Now take an arbitrary representation M of dimension vector (1, 1)

M = C b
a

C .

Notice that M has a submodule of dimension vector (1, 0) if and only if a = b = 0, since the
diagram

C
∼=

0 0

C

b a

0
0

C

must commute. Thus by our choice of stability θ,

M is θ-semistable ⇐⇒ M has no submodule of dim vector (1, 0) ⇐⇒ a 6= 0 or b 6= 0.

and so we see that the semistable objects parametrize P1 via the ratio (a : b), so the moduli
space is just P1. Another way to see this: we have two open sets, one corresponding to a 6= 0
and the other to b 6= 0. After changing basis we can set them to be the identity, and so we
have

U0 = { C b
1

C : b ∈ C} U1 = { C 1
a

C : a ∈ C}

Now the gluing is given by, whenever U0 3 b 6= 0

U0 3 b = C b
1

C = C 1
b−1

C = b−1 ∈ U1

which is evidently just P1.

This lecture series is devoted to resolving singularities, so we warm up by blowing up
the origin in C2:

Example 4.2. Consider the quiver with relations

•
a
b •
t

atb = bta

and again choose dimension vector (1, 1) and stability θ0 = (−1, 1). Exactly as above if

M = C
a
b Ct

then

M is θ-semistable ⇐⇒ M has no submodule of dim vector (1, 0) ⇐⇒ a 6= 0 or b 6= 0.

For the first open set in the moduli U0 (when a 6= 0): after changing basis so that a = 1
we see that the open set is parameterized by the two scalars b and t subject to the single
relation (substituting a = 1 into the quiver relations) tb = bt. But this always holds so it
isn’t really a relation, thus the open set U0 is just C2 with co-ordinates b, t. We write this as
C2
b,t. Similarly for the other open set:

C
1
b Ct

C
a
1 Ct

U0 = C2
b,t U1 = C2

a,t.

Now the gluing is given by, whenever b 6= 0

U0 3 (b, t) = C
1
b Ct

= C
b−1

1 C
bt

= (b−1, bt) ∈ U1

and so we see that this is just the blowup of the origin of C2.

Exercise 4.3. What does the stability θ1 = (1,−1) give us in the above example?

Example 4.4. Consider the group 1
3 (1, 1) := 〈

(

ε3 0
0 ε3

)

〉 where ε3 is a primitive third root of

unity. This acts on C2 giving us a quotient singularity C[x, y]
1
3 (1,1). Consider the quiver with

relations (the reconstruction algebra)

•
c1
c2 •a1
a2
k1

c1a2 = c2a1 a2c1 = a1c2
c1k1 = c2a2 k1c1 = a2c2
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Choose dimension vector (1,1). We are going to calculate the moduli space for stability
θ0 = (−1, 1), then calculate the moduli space for stability θ1 = (1,−1).
(i) Take θ0 = (−1, 1). As in the examples above, for a module

M = C

c1
c2

Ca1
a2
k1

to be semistable requires c1 6= 0 or c2 6= 0 and so we have two open sets U0 = (c1 6= 0) and
U1 = (c2 6= 0). Changing basis so that these are 1, by the relations we have

C

1
c2

Ca1
c2a1

c22a1

C

c1
1

Cc21k1
c1k1
k1

U0 = C2
c2,a1

U1 = C2
c1,k1

.

Now the gluing is given by, whenever c2 6= 0

U0 3 (c2, a1) = C

1
c2

Ca1
c2a1

c22a1

= C

c
−1
2
1

Cc2a1

c22a1

c32a1

= (c−1
2 , c32a1) ∈ U1

since we read off the co-ordinates in U1 in the c1 and k1 positions. Thus by inspection we
see that our space is OP1(−3), the minimal resolution.
(ii) Take θ1 = (1,−1). Its clear that we now have 3 open sets U0 = (a1 6= 0), U1 = (a2 6= 0),
U2 = (k1 6= 0). Consider first U0: after changing basis so that a1 = 1, we have

C

c1
c2

C1
a2

k1

c1a2 = c2 a2c1 = c2
c1k1 = c2a2 k1c1 = a2c2

which is parameterized by the three variables c1, a2, k1 subject to the one relation c1k1 = c1a
2
2

i.e. c1(k1 − a2
2) = 0. This is singular in dimension 1! If we draw U0, it looks something like

It has two components, namely the c1 = 0 component and the k1 = a2
2 component. The

k1 = a2
2 component is the one that we want, since it ends up giving us (part of) the minimal

resolution.

From the above example we see that a moduli space may not be smooth and might have
components. Note that in the above example there is one component which is particularly
nice, however the next example shows that a moduli space may be both irreducible and
singular.
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Example 4.5. Consider the group 1
5 (1, 2, 3) :=

〈(

ε 0 0
0 ε2 0
0 0 ε3

)

: ε5 = 1

〉

giving a three dimen-

sional quotient singularity. The algebra to consider is

•

y3
x3

z3

• y2

z2

x2

•

y4

z4

x4

•

y1

z1

x1

•x5

y5

z5 x1y2 = y1x3 x1z2 = z1x4 y1z3 = z1y4
x2y3 = y2x4 x2z3 = z2x5 y2z4 = z2y5
x3y4 = y3x5 x3z4 = z3x1 y3z5 = z3y1
x4y5 = y4x1 x4z5 = z4x2 y4z1 = z4y2
x5y1 = y5x2 x5z1 = z5x3 y5z2 = z5y3

Consider α = (1, 1, 1, 1, 1) with stability θ = (−4, 1, 1, 1, 1). Consider the open set given by
x1 6= 0, y1 6= 0, y3 6= 0 and z1 6= 0. After changing basis so that these are the identity we
have

C

1
x3

z3

C y2

z2

x2

C

y4

z4

x4

C

1

1

1

Cx5

y5

z5 y2 = x3 z2 = x4 z3 = y4
x2 = y2x4 x2z3 = z2x5 y2z4 = z2y5
x3y4 = x5 x3z4 = z3 z5 = z3
x4y5 = y4 x4z5 = z4x2 y4 = z4y2
x5 = y5x2 x5 = z5x3 y5z2 = z5

from which elimination of variables gives that this open set is parameterized by a = y5,
b = x3, c = z4 and d = x4 subject to the one relation ad = bc. This is singular at the origin
and so consequently the moduli space is singular. In fact in this example it is also irreducible.

Example 4.6. Consider the group 1
3 (1, 1, 0) giving the three dimensional singularity

C[x, y, z]
1
3 (1,1,0) = C[x, y]

1
3 (1,1) ⊗C C[z]

i.e. really just a surface crossed with C. In this case the algebra to consider is the higher-
dimensional reconstruction algebra

•z1

c1
c2 • z2a1
a2
k1

c1a2 = c2a1 a2c1 = a1c2 z1c1 = c1z2 z2a1 = a1z1
c1k1 = c2a2 k1c1 = a2c2 z1c2 = c2z2 z2a2 = a2z1

z2k1 = k1z1

An easy calculation shows that for α = (1, 1) and θ0 = (−1, 1) we resolve the singularity;
unsurprisingly its just the minimal resolution crossed with C. Again the same is true for
θ1 = (1,−1) but again we have to pass to components. The point in this example is that

although for θ0 = (−1, 1) the moduli space is projective over C[x, y, z]
1
3 (1,1,0), the zeroth part

of the graded ring which we take the Proj of (i.e. the invariants k[R]G) is not C[x, y, z]
1
3 (1,1,0),

so a little care should be taken. The reason for this is that both z1 and z2 belong to k[R]G,
and there is no relation which tells us they are the same (they are however the same as soon
as c1 6= 0 or c2 6= 0). Thus k[R]G has an ‘extra’ z.

One of the advantages of quivers is that they allow you to resolve singularities explictly
in examples you wouldn’t be able to do otherwise, especially in the case of quotients by a
non-abelian group: we will illustrate this principle in more complicated examples in a future
lecture.


