
LECTURES ON RECONSTRUCTION ALGEBRAS II

MICHAEL WEMYSS

1. Introduction

Last lecture I introduced quivers with relations. Then after choosing a dimension vector
α and character θ such that

∑
i∈Q0

αiθi = 0 we constructed what we called a moduli space. I

again emphasize that, given kQ/R, we need to make two choices to define the moduli space.
This seminar is aiming to resolve singularities (in particular rational surfaces) so today

I’m going to start to go in that direction. First though I have one thing to finish from last
time, namely to prove that the spaces we introduced are actually moduli spaces in the strict
sense of the word. I’ll do this in the first section. I will then spend the rest of the lecture
giving the geometric motivation of a reconstruction algebra, and I will highlight many of the
subtleties and technicalities we will need to overcome in future.

2. Why its a Moduli Space

In the last lecture, given a dimension vector α and stability θ such that
∑

i∈Q0
αiθi = 0

we constructed a space M
ss
θ (A, α) = M

ss
θ and called it a moduli space. In this section we

justify the name: we are going to rigorously define what a ‘moduli space’ is and then apply it
to quivers. Proving that the ‘moduli spaces’ from the last lecture are actually moduli spaces
is important since (in some circumstances) it gives us the existence of a universal bundle on
the space.

First some motivation: in what follows, ‘moduli set’ means a set of things we would like
to parameterize by a geometric object. The natural question to ask is

Q1: Does there exist a scheme X whose closed points are the objects in the ‘moduli set’
A: Usually no.

Thus we ask

Q2: Does there exist a scheme X whose closed points are ‘some’ of the objects in the
‘moduli set’

A: More often

We clearly have to make this more precise. To do this, for any category C define [C, Set]
to be the category of contravariant functors from C to Set. For any object X in C define

HomC(−, X) : C → Set

C 7→ HomC(C, X)

in the obvious way, so HomC(−, X) ∈ [C, Set]. We call this the functor of points of X since in
many examples (but not all!) there exists an object Z of C with the property that HomC(Z, X)
is the set of points of X . For example in the category of groups Gp, Z is an object for which
HomGp(Z, G) = |G| as sets, for any group G. Another example would be Z[X ] in the category
of rings.

Now Yoneda’s Lemma tells us that

C → [C, Set]
C 7→ HomC(−, C)

is an embedding, so we can view C inside the category [C, Set]. This may look like we’ve
made things more difficult but in fact it may be the case that in the larger category [C, Set]
some constructions are much easier. Anyway,
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Definition 2.1. We call F ∈ [C, Set] representable if F is naturally isomorphic to HomC(−, A)
for some object A of C.

Denote the category of affine varieties by AfVar then by Yoneda affine varieties are
precisely those functors AfVar → Set which are representable. This is all very tautological.
Note that affine algebraic groups are (by definition) those representable functors AfVar→ Set

which take values in the category Gp (instead of Set).
Now a moduli problem for some class of objects in algebraic geometry consists of

• for every scheme X , a notion of a family parameterized by the scheme X .

We call this a family over X . Note at this stage this is inprecise, but the point is that we
specialize this general framework to a precise meaning of ‘family over X ’ whenever we want
to do anything. Now the moduli problem is considered solved if there exists a single scheme
Y such that the family over Y is universal, in the sense that given any other X , every member
of the family over X is uniquely induced by a morphism X → Y .

Denoting the category of schemes by Sch, more formally the moduli problem is a con-
travariant functor

F : Sch → Set

S 7→ the set {members of the family over S}

and the moduli problem is considered solved if F is representable. This is again tautological:
if F ∼= Hom(−, Y ) then

{members of the family over X} = FX ∼= Hom(X, Y ).

This leads to the following definition

Definition 2.2. If a contravariant functor F : Sch → Set is represented by a scheme Y , we
call Y the fine moduli space of F .

This is normally too strong since many moduli problems don’t have representable func-
tors. So we compromise:

Definition 2.3. Given F ∈ [Sch, Set], a scheme Y is said to be a best approximation to F
(or sometimes Y corepresents F ) is there is a natural transformation

α : F → Hom(−, Y )

which is universal amongst the natural transformations from F to schemes, i.e. given any
other β : F → Hom(−, Z), there exists a unique natural transformation

F
α

β

Hom(−, Y )

∃!

Hom(−, Z)

such that the diagram commutes. If F is a moduli functor, we cal (Y, α) the moduli space of
F . If further (Y, α) satisfies

αSpecC : F (SpecC) → Hom(SpecC, Y )

is bijective, we call (Y, α) a coarse moduli space.

We now apply this to quivers. To begin we define the notion of a family over X :

Definition 2.4. A family of kQ-modules with dimension vector α = (αi) over a scheme X
is an assignment, for each vertex i, of a vector bundle Vi of rank αi, and for every arrow in
Q a corresponding morphism of vector bundles.

If you like, you can think of this as specifying a map kQ/R → End(⊕i∈Q0Vi). Or you can
also view it as a representation in the category of vector bundles VbX . The above definition
really is a family of representations over X in the obvious way: for any point x ∈ X if we take
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the stalk of the bundles (=the fibre) at x then each vertex just becomes a finite dimensional
vector space and the morphisms become linear maps such that the relations still hold. This
isn’t saying anything other than a vector bundle is locally trivial. Thus for every point x ∈ X
we get an actual representation of kQ/R.

We now make our moduli problem precise by defining the families we would like to
classify:

Definition 2.5. A family of semistable kQ/R-modules with dimension vector α over a
scheme X is just a family of kQ-modules with dimension vector α = (αi) as above, in which
all members in the family are θ-semistable. We have the similar notion for θ-stability.

This just means that for every point x ∈ X , the associated stalk (i.e. actual representa-
tion) is θ-semistable.

Now every θ-semistable M has a Jordan-Hölder filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M

in which every subobject Mi is θ-semistable, and every factor Mi/Mi−1 is simple (in the
category of θ-semistable modules). This is just constructed in the standard way; since M is
finite dimensional the process must eventually finish.

It is clear that if M is θ-stable then the JH filtration is just 0 ⊂ M (since by definition
M has no θ-semistable subobjects). In more fancy language the θ-stable objects are precisely
the simple objects in the category of θ-semistable objects.

Definition 2.6. Two θ-semistable objects are called S-equivalent (with respect to θ) if their
Jordan-Hölder filtrations have isomorphic composition factors

By the above discussion this collapses in the case of stability: two θ-stable modules M
and N are S-equivalent if and only if they are isomorphic, since their JH filtrations are just
0 ⊂ M and 0 ⊂ N .

The quotient (=moduli space) defined last time M
ss
θ := R//χG parameterizes the θ-

semistable representations up to S-equivalence. I’m not going to explain why this is true, since
it involves more GIT than I want to get into. The open set of the quotient which corresponds
to the stable points thus parameterizes the θ-stable representations up to isomorphism. This
answers a question Osamu asked last time.

If θ is generic then stability and semistability coincide (by definition), thus in these cases
we are always classifying up to isomorphism. In practice we’re only going to be dealing with
generic stability conditions.

Now we have defined the moduli problem, so we get the moduli functors

Mss
kQ,α,θ : Sch → Set

X 7→ the set {families of θ-semistable kQ/R modules with dim α over X}/S-equiv
Ms

kQ,α,θ : Sch → Set

X 7→ the set {families of θ-stable kQ/R modules with dim α over X}/ ∼=

Theorem 2.7 (King 5.2). M
ss
θ is a coarse moduli space for the functor Mss

kQ,α,θ.

Denote the stable points in M
ss
θ by M

s
θ, then

Theorem 2.8 (King, 5.3). If α is indivisible, M
s
θ represents the functor Ms

kQ,α,θ, i.e. M
s
θ

is a fine moduli space.

Thus for generic θ and indivisible α, M
ss
θ is a fine moduli space. This is important as it

means we have a universal bundle1: since for generic θ and indivisible α

Ms
kQ,α,θ

∼= Hom(−, Mss
θ )

as functors from schemes to sets, apply both sides to the scheme M
ss
θ . Then

1 ∈ Hom(Mss
θ , Mss

θ ) ∼= Ms
kQ,α,θ(M

ss
θ )

1this is backwards: the theorem is proved by exhibiting such a bundle!
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so we have a family of θ-stable kQ/R modules with dimension vector α over M
ss
θ correspond-

ing to the identity map. This just means that for every point x ∈ M
ss
θ , the representation in

this family corresponding to x is just x. We call this family the universal family.

3. Geometric Motivation of Reconstruction Algebras

Before talking about the SL(2, C) McKay correspondence and its generalization to GL(2, C)
I’ll first give some motivation as to what we might regard as being the ‘best’ possible answer.

In this section consider a rational normal surface singularity X = SpecR with minimal

resolution X̃
π
→ X . From this we have the dual graph, which you should view as a simplified

picture of the resolution:

Definition 3.1. Denote by {Ei} the exceptional collection of P1s. Define the (labelled)
dual graph as follows: for every Ei draw a dot, and join two dots if the corresponding P1’s
intersect. Additionally, decorate each vertex with the self-intersection number corresponding
to the curve at that vertex.

In practice what this means is that if we have a collection of P1’s (which are one-
dimensional, so we draw as lines) intersecting as follows:

with all curves having self-intersection number (−2), then the dual graph is

•
-2

•
-2

•
-2

•
-2

The theory of rational normal surfaces is in many ways dictated by the following piece
of combinatorial data (the fundamental cycle Zf ) which we can associate to the dual graph:

Definition 3.2 (Artin). For the dual graph {Ei}, define the fundamental cycle Zf =
∑

i riEi

(with each ri ≥ 1) to be the unique smallest element such that Zf · Ei ≤ 0 for all vertices i.

What this means in practice: for the dual graph

•
E4

•
E1

•
E2

•
E3

E1 · E1 = −2
E2 · E2 = −2
E3 · E3 = −2
E4 · E4 = −2

first try the smallest element Zr = E1 + E2 + E3 + E4:

Zr · E1 = E1 · E1 + E2 · E1 + E3 · E1 + E4 · E1 = (−2) + 1 + 0 + 0 = −1 ≤ 0

Zr · E2 = E1 · E2 + E2 · E2 + E3 · E2 + E4 · E2 = 1 + (−2) + 1 + 1 = 1 � 0

Zr · E3 = E1 · E3 + E2 · E3 + E3 · E3 + E4 · E3 = 0 + 1 + (−2) + 0 = −1 ≤ 0

Zr · E4 = E1 · E4 + E2 · E4 + E3 · E4 + E4 · E4 = 0 + 1 + 0 + (−2) = −1 ≤ 0

Since it fails against E2, try Z2 = E1 + 2E2 + E3 + E4. A similar calculation shows that

Z2 · Ei ≤ 0 for all curves Ei. Consequently Zf = Z2, and we write this as Zf = 1

1 2 1
.

Observe that changing the middle curve in the above example changes the fundamental

cycle to be Zf = 1

1 1 1
, but keeping the middle curve the same and changing any other

curve results in the same Zf = 1

1 2 1
.

I emphasize that Zf is defined entirely in terms of the dual graph. Consequently given
a dual graph you can (if you wish) think of Zf as a purely combinatorial piece of data which
we can associate to it, but it is perhaps best to think a little more geometrically.
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Now in fact

•
-2

•
-2

•
-2

•
-2

in the above discussion is the dual graph of the minimal resolution of C2/BD4·2 where BD4·2

is the binary dihedral group of order 8 inside SL(2, C):

BD4.2 :=

fi„

ε4 0
0 ε3

4

«

,

„

0 ε4

ε4 0

«fl

This has been extensively studied by many people. Say we have an open cover of the minimal
resolution looking something like:

U
−

U+

U2

U1

U0

Now say we want to change the red curve in the minimal resolution into a (-3) curve, i.e. we
want the dual graph2 to become

•
-2

•
-2

•
-2

•
-3

.

How should we go about doing this? Note first that the fundamental cycle is still Zf =

1

1 2 1
. We want to change the original space as little as possible to achieve our goal, so

it would appear sensible to suggest that we only (at worst) change the equation of the open
set U0, and also change how U0 glues to U1. The change in glue will give the change in
self-intersection number. The rest of the open sets (and their glues) will remain the same,
and so we will have the desired configuration of P1s. I’m actually glossing over the fact that
our map down to the singularity also changes, but the quiver takes care of this too so we
shouldn’t worry.

Here comes the key point:

Remark 3.3. If we change the geometry to accommodate a different self-intesection number,
then provided Zf does not change the new geometry will be very similar to the old geometry.

This is a subtle change in approach, so I’ll emphasize it again. If you are given a group
G inside GL(2, C) then instead of trying to resolve it using the G-Hilbert scheme (which we
view as a ‘new’ space dependent on the group G), we should instead view the resolution as
being a very small modification of a space we already understand. It is the (yet to be defined)
reconstruction algebra which encodes the difference. Of course at this stage we don’t know
what space the resolution will be similar to, but the reconstruction algebra will tell us this.

The G-Hilbert scheme turns out to give the minimal resolution, but I do not know of
any conceptual reason why this should be true. The groups under consideration can become
very large and complicated, but the geometry stays quite simple.

Another point: in the above example if we had changed the middle curve instead of the
red curve, you might think it would be more complicated as lots of things would have to

2In fact this new dual graph corresponds to the non-abelian group D5,3 of order 24
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change. However I contest that this is actually the easiest case, since the fundamental cycle
has decreased. Since Zf can only decrease (i.e. improve) or remain the same under changing
a self-intersection number, you should view this as saying that the difficulty in the geometry
either

(A) remains the same (when Zf stays the same)
(B) becomes easier (when Zf changes, i.e. decreases)

As we shall see this is very important, since in many cases for non-abelian subgroups of
GL(2, C) to extract the geometry explicitly from the reconstruction algebra is precisely the
same level of difficultly as the toric case. The slogan is

Slogan 3.4. Take any non-abelian subgroup of GL(2, C). Then if the fundamental cycle Zf

is reduced (i.e. consists only of 1’s), the geometry is not toric, but it may as well be.

In practice Zf is reduced almost all of the time. I’ll show how the above slogan works
in my next lecture, but for now I’ll illustrate case (A) with an example.

4. A computation

Earlier I promised to give an example of explicitly resolving a singularity which would be
very difficult to do without quivers, and also I promised to give an example of a computation
of a non-abelian group action. I’ll now do this, and in the process I’ll be able to illustrate
some of the points I raised in the previous section. At the moment you should view the NC
rings that I use in this section as being constructed by magic, but I’ll explain in my next
lecture where I get them from.

Example 4.1. Consider the group BD4·2 of order 8. This is classical McKay Correspondence
territory, so the algebra to consider is the preprojective algebra

•

c

• b •

A

C

B

D •
d

?

a

aA = bB = cC = dD = 0
Aa + Bb + Cc + Dd = 0

This is Morita equivalent to the skew group ring, if you know about these things. We choose
dimension vector and stability

α =
1

1 2 1

1

θ =
1

1 1 1

-5

Notice that
∑

i∈Q0
αiθi = 0 so we can form the moduli space. With these choices the

computation becomes more complicated than the ones we did before, but not massively so;
to now specify an open set we must

• specify, for each one-dimensional irreducible representation ρ, a non-zero path (which
we can change basis to assume to be the identity) from the trivial representation to
the vertex ρ.

• specify paths (0 1) and (1 0) from the trivial representation to the 2-dimensional
representation.

Different choices in the above lead to different open sets. Note that we must be able to make
such choices for any θ-stable module M since by definition M is ?-generated and so paths
leaving the trivial vertex must generate the vector spaces at all other vertices. For a stable
M , it must be true that a 6= 0 and so after changing basis we can (and will) always assume
that a = (1 0).

Define the open sets U0, U1, U2, U+ and U− by the following conditions:

U0 aB = 1 aC = 1 aBbD = 1 a = (1 0) b = (0 1)
U1 aB = 1 aC = 1 aD = 1 a = (1 0) b = (0 1)
U2 aB = 1 aC = 1 aD = 1 a = (1 0) d = (0 1)
U+ aB = 1 aDdC = 1 aD = 1 a = (1 0) d = (0 1)
U
−

aDdB = 1 aC = 1 aD = 1 a = (1 0) d = (0 1)
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Pictorially we draw this as follows:

•

• • •

•

•

• • •

•

•

• • •

•

•

• • •

•

•

• • •

•

U0 U1 U2 U+ U
−

where the solid black lines correspond to the identity, and the dotted arrow corresponds to
the choice of vector (0 1). These actually cover the moduli, but the proof is a bit messy.
Note that there are lots of other open covers we could take.

We do the U0 calculation in full, and just summarize the others. Any stable module in
U0 looks like

C

( c1 c2 )

C
( 0 1 )

C2

“

A1
A2

”

( 1
C2

)

( 1
B2

)
( D1

1 )
C

( d1 d2 )

C

( 1 0 )

where the variables are scalars, subject only to the quiver relations. Now

• aA = 0 implies A1 = 0
• bB = 0 implies B2 = 0
• cC = 0 implies c1 = −c2C2

• dD = 0 implies d2 = −d1D1

and so plugging this in our module becomes

C

( -c2C2 c2 )

C
( 0 1 )

C2

( 0
A2

)

( 1
C2

)

( 1
0 )

( D1
1 )

C
( d1 -d1D1 )

C

( 1 0 )

But now there is only one relation left, namely Aa + Bb + Cc + Dd = 0. This gives

„

0 0
A2 0

«

+

„

0 1
0 0

«

+

„

-c2C2 c2

-c2C2
2 c2C2

«

+

„

d1D1 -d1D2
1

d1 -d1D1

«

=

„

0 0
0 0

«

which yields the four conditions

c2C2 = d1D1

c2 = d1D2
1 − 1

A2 = c2C2
2 − d1

c2C2 = d1D1

The second and third conditions eliminate the variables c2 and A2, whereas the first and
last conditions are the same. Substituting the second condition into the first we see that
this open set is completely parameterized by d1, D1 and C2 subject to the one relation
d1D1 = (d1D

2
1 − 1)C2, so U0 is a smooth hypersurface in C3.
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Similarly we have

U1

C

( -c2C2 c2 )

C
( 0 1 )

C2

“

0
A2

”

“

1
C2

”

“

1
0

”

“

1
D2

”

C
( -d2D2 d2 )

C

( 1 0 )

c2C2 = -d2D2

1 + c2 + d2 = 0
A2 = c2C2

2 + d2D2
2

c2C2 = -d1D1

C3
d2,D2,C2

/(1 + d2)C2 = d2D2

U2

C

( -c2C2 c2 )

C
( -b2B2 b2 )

C2

“

0
A2

”

“

1
C2

”

“

1
B2

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b2B2 = -c2C2

1 + b2 + c2 = 0
A2 = b2B2

2 + c2C2
2

b2B2 = -c2C2

C3
b2,B2,C2

/(1 + b2)C2 = b2B2

U+

C

( c1 -c1C1 )

C
( -b2B2 b2 )

C2

“

0
A2

”

“

C1
1

”

“

1
B2

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b2B2 = c1C1

b2 = c1C2
1 − 1

A2 = b2B2
2 − c1

b2B2 = c1C1

C3
c1,B2,C1

/(c1C2
1 − 1)B2 = c1C1

U
−

C

( -c2C2 c2 )

C
( b1 -b1B1 )

C2

“

0
A2

”

“

1
C2

”

“

B1
1

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b1B1 = c2C2

c2 = b1B2
1 − 1

A2 = c2C2
2 − b1

b1B1 = c2C2

C3
b1,B1,C2

/(b1B2
1 − 1)C2 = b1B1

Note in U2 above the equation 1+b2+c2 = 0 really means that we have a choice of co-ordinate
between b2 and c2; thus we could equally well parameterize U2 as C

3
c2,B2,C2

/c2C2 = (1+c2)B2.

Hence we see that the space is covered by 5 open sets, each a smooth hypersurface in C3.
It is also quite easy to write down the glues (I don’t have time), and just see the configuration
of P1’s: for example the gluing between U0 and U1 is

U0 3 (d1, D1, C2)
D1 6=0

(-d1D
2
1, D

−1
1 , C2) ∈ U1

The picture of the glues should (roughly) coincide with the picture I drew earlier.

The next example explains how to change the red P1 in the previous picture into a
(−3)-curve.

Example 4.2. Consider the reconstruction algebra

•

c

• b •

A

C

B

D •
d

k1

?

a

aA = bB = cC = dD = 0
Aa + Bb + Cc + Dd = 0

k1aD = dBbD
aDk1 = aCcA
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Choose dimension vector and stability as in the previous example. Now notice that the same
conditions that defined an open cover in the previous example give an open cover here (since
the stability cannot ‘see’ the extra arrows).

Now our old calculation tells us almost everything, except now we have a new variable
k1 inside every open set. The point is that the only open set which changes is U0. The reason
for this is quite simple: in the relations k1aD = dBbD and notice that aD = 1 in every open
set except U0. Thus k1 = dBbD in every open set except U0 and consequently we can put k1

in terms of the other variables. Hence k1 isn’t really an extra variable in these open sets, so
they do not change.

What happens to U0? Well by the previous calculation we have

C

( -c2C2 c2 )

C
( 0 1 )

C2

“

0
A2

”

“

1
C2

”

“

1
0

”

“

D1
1

”

C
( d1 -d1D1 )

k1

C

( 1 0 )

c2C2 = d1D1

c2 = d1D2
1 − 1

A2 = c2C2
2 − d1

c2C2 = d1D1

k1D1 = d1

D1k1 = c2A2

Since d1 = k1D1, instead of being given by d1, D1, C2 subject to d1D1 = (d1D
2
1 − 1)C2,

the open set is now given by k1, D1, C2 subject to k1D
2
1 = (k1D

3
1 − 1)C2 . Also, the gluing

between U0 and U1 has changed to

U0 3 (k1, D1, C2)
D1 6=0

(-(k1D1)D
2
1, D

−1
1 , C2) = (-k1D

3
1, D

−1
1 , C2) ∈ U1

Thus we see that the red curve has changed into a (−3)-curve, nothing else in the open cover
has changed and so the dual graph is now

•
-2

•
-2

•
-2

•
-3


