
LECTURES ON RECONSTRUCTION ALGEBRAS IV

MICHAEL WEMYSS

1. Introduction

Last lecture Osamu introduced the notion of a special CM module and gave some of
their properties. Here I briefly recap some of his lecture and also add the geometric part of
the definition.

Let X = SpecR be an affine complete rational surface singularity, denote the minimal

resolution by f : X̃ → SpecR and the exceptional curves by {Ei}. Also, for a given CM

module M of R, denote by M := π∗M/torsion the corresponding vector bundle on X̃.

Definition-Proposition 1.1. A CM module M is called special if one of the following

equivalent conditions hold

1. H1(M∨) ∼= Ext1eX(M, O) = 0

2. M ⊗R ωR/torsion is CM

3. Ext1R(M, R) = 0
4. HomR(M, R) is the first syzygy of some CM module.

5. ΩM ∼= HomR(M, R).

How to interpret this: 1 ⇐⇒ 2 is due to Wunram, and links the geometric notion of
1 (which involves the minimal resolution) to the more algebraic notion of 2 (which does not
involve the minimal resolution). Condition 3 says that we can deduce the vanishing of the
ext group upstairs (i.e. 1) by deducing the vanishing of the ext group downstairs on the
singularity. This is very useful, but note that such a phenomenon is very rare! It is still not
clear from conditions 1,2 or 3 how to obtain special CM modules - it is 4 which now helps
since just taking the syzygy of your favorite CM module (and then taking the dual) gives
you a special CM module. Condition 5 is a refinement of condition 4 (for example when
G ≤ SL(2, C) is gives an alternative proof that Ω2 = id) and is useful in proving homological
statements.

We arrive at the definition:

Definition 1.2. The ring EndR(⊕M), where the sum is over all indecomposable special CM

modules, is called the reconstruction algebra.

A long time ago I said that instead of viewing the minimal resolution as G-Hilb (which
you can do), the new idea is to instead view the minimal resolution as being very similar to
a space we already understand. It is the reconstruction algebra which tells us which space to
compare to, and it is the reconstruction algebra which encodes the difference. This is related
to why I call EndR(⊕M) the reconstruction algebra, which I shall now explain in the next
section.

2. The Correspondence

Recall that given the data of a dual graph, simple combinatorics give us Artin’s fun-
damental cycle Zf . In the case of finite subgroups of SL(2, C) these numbers are what you
expect. I need one further piece of combinatorial data, since now the canonical sheaf need
not be trivial and so we need to encode this combinatorially. It is already known how to do
this: use the canonical cycle ZK . It is the rational cycle defined by the condition

ZK · Ei = −K eX
· Ei
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for all i. By adjunction this means that

ZK · Ei = E2
i + 2

for all i. Note that on the minimal resolution the self-intersection number of every curve is
≤ −2 and so consequently ZK · Ei ≤ 0 for all i.

The canonical cycle appears in the theorem below since at some point in the proof Serre
duality is envoked.

Theorem 2.1. Let X̃ → SpecR be the minimal resolution of some affine complete rational

surface singularity. Then EndR(⊕M) can be written as a quiver with relations as follows:

for every exceptional curve Ei associate a vertex labelled i, and also associate a vertex ⋆
corresponding to the free module. Then the number of arrows and relations between the

vertices is given as follows:

Number of arrows Number of relations
i → j (Ei · Ej)+ (−1 − Ei · Ej)+
⋆ → ⋆ 0 −ZK · Zf + 1 = −1 − Zf · Zf

i → ⋆ −Ei · Zf 0
⋆ → i ((ZK − Zf) · Ei)+ ((ZK − Zf ) · Ei)−

From this I should make some remarks

• We call EndR(⊕M) the reconstruction algebra since it can be reconstructed from
the dual graph of the minimal resolution. Although it looks quite complicated, the
combinatorics are actually very easy (see lemma below).

• If you already know the dual graph (e.g. through the Brieskorn classification for
quotient singularities) to obtain the quiver is very quick. If you don’t know the dual
graph then at least in the case of quotient singularities there is another way to build
the reconstruction algebra, using the AR quiver. If you like, you can view this AR
quiver method as another (but not so good) proof of the Brieskorn classification.

• Some version of the above theorem holds for non-minimal resolutions too, but the
quiver and relations are sightly different.

Ideally we don’t want to compute all the combinatorics in all examples, so the next
lemma is useful since it reduces the calculation of the quiver to simply adding arrows to a
certain base quiver1. This also tells you which space to compare to!

Key Lemma 2.2. Suppose two curve systems E = {Ei} and F = {Fi} have the same dual

graph and fundamental cycle, such that −F 2
i ≤ −E2

i for all i. Then the quiver for the curve

system E is obtained from the quiver of the curve system F by adding −E2
i +F 2

i extra arrows

i → ⋆ for every curve Ei.

Thus if you have a dual graph and you want to compute the corresponding quiver, just
reduce the self-intersction numbers (i.e. make them closer to −2) in such a way that the
fundamental cycle does not change. Calculate this base quiver. Then just add extra arrows
as in the Lemma. This will make more sense after some examples.

3. Some examples

I’ll start with type A, i.e. cyclic groups. Since its hard to draw n vertices, consider only
the case of A3.

Example 3.1. Consider the group 1

4
(1, 3). For this example the dual graph is

•
−2

•
−2

•
−2

1If you were in my talk last week in Kyoto and were wondering why everything didn’t make sense after

some point, it is because I forgot to say the Key Lemma. Oops.
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After the i → j and ⋆ → ⋆ steps in the theorem, we have the following picture

• •

⋆ •

Now to calculate how to connect ⋆, we need to know the fundamental cycle. But here
Zf = 1 1 1 and so in matrix from (−Ei · Zf )i∈I = 1 0 1 . Thus after the i → ⋆ step:

• •

⋆ •

For the ⋆ → i step notice that since all curves are (−2)-curves the canonical cycle is trivial,
thus the number of arrows ⋆ → i is equal to the number of arrows i → ⋆. Consequently the
quiver of the reconstruction algebra is

• •

⋆ •

Example 3.2. Consider now the dual graph

•
−4

•
−3

•
−4

corresponding to the group 1

40
(1, 11). Now the Zf is the same as the previous example,

so by Lemma 2.2 we just have to add extra arrows to the above; we thus deduce that the
reconstruction algebra is

• •

⋆ •

All other cyclic group cases are identical, and follow easily. For example

Example 3.3. For the group 1

693
(1, 256), the reconstruction algebra is

• •

• •

• •

⋆ •

corresponding to the dual graph

•
−3

•
−3

•
−2

•
−4

•
−2

•
−4

•
−3
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We now venture into some non-abelian groups. Right at the end I’ll do some crazy
non-quotient singularities.

Example 3.4. Some dihedral groups. I restrict to only 3 examples; notice that we have
already seen the group D56,15 in Lecture 3.

Reconstruction Algebra dual graph Zf group
•

• • • •

⋆

•
−2

•
−2

•
−2

•
−2

•
−4

1

1 2 2 1
D10,7

•

• • • •

⋆

•
−2

•
−2

•
−2

•
−4

•
−4

1

1 2 1 1
D26,15

•

• • • •

⋆

•
−2

•
−2

•
−4

•
−4

•
−4

1

1 1 1 1
D56,15

Now for some examples of non-quotient singularities:

Example 3.5. Consider the dual graph

•
−2

•
−3

•
−2

•
−2

•
−2

•
−2

•
−2

This is one of Artin’s rational triple points; there are combinatorics which tell us that this
corresponds to some rational singularity. It is not a quotient singularity by Brieskorn’s
classification, but it does look quite similar to the dual graph corresponding to the group E7.

Now here the fundamental cycle Zf = 2

1 3 4 3 2 1
(compare to 2

2 3 4 3 2 1
for E7) which

makes the reconstruction algebra in this case

•

• • • • • •

⋆

Example 3.6. Consider the dual graph

•
−2

•
−2

•
−2

•
−3

•
−2

•
−3

•
−2
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The fundamental cycle is reduced, i.e. Zf = 1 1

1 1 1 1 1
Hence the reconstruction algebra is

⋆

• •

• • • • •


