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Abstract. Given a noether algebra with a noncommutative resolution, a gen-

eral construction of new noncommutative resolutions is given. As an applica-
tion, it is proved that any finite length module over a regular local or polyno-

mial ring gives rise, via suitable syzygies, to a noncommutative resolution.

The focus of this article is on constructing endomorphism rings with finite global
dimension. This problem has arisen in various contexts, including Auslander’s the-
ory of representation dimension [1], Dlab and Ringel’s approach to quasi-hereditary
algebras in Lie theory [5, 8], Rouquier’s dimension of triangulated categories [12],
cluster tilting modules in Auslander–Reiten theory [10], and Van den Bergh’s non-
commutative crepant resolutions in birational geometry [14].

For a noetherian ring R which is not necessarily commutative, and a finitely
generated faithful R-module M , the ring EndR(M) is a noncommutative resolution
(abbreviated to NCR) if its global dimension is finite; see [7]. When this happens, M
is said to give an NCR of R. In the result below, we give a method for constructing
new NCRs from a given one. As usual ΩcX denotes a cth syzygy modue of X. We
defer introducing other terminology and notation to the next section.

Theorem 1. Let R be a noether algebra, and let M,X ∈ modR. If M is a d-
torsionfree generator giving an NCR, and gldim EndR(X) is finite, then for any
integer 0 ≤ c < min{d, gradeR X}, the following statements hold.

(1) The R-module M ⊕ ΩcX is a c-torsionfree generator.
(2) There is an inequality

gldim EndR(M ⊕ ΩcX) ≤ 2 gldim EndR(M) + gldim EndR(X) + 1.

In particular, M ⊕ ΩcX gives an NCR of R.

The statement of Theorem 1 is inspried by a recollement type inequality (1.1)
that yields that the finiteness of global dimensions of eAe and A/(e) implies that of
A, provided pdA(A/(e)) is finite. The hypotheses in Theorem 1 enable us to apply
this fact to A = EndR(M ⊕ ΩcX) and the idempotent e ∈ A corresponding to the
direct summand M .

A commutative ring is equicodimensional if every maximal ideal has the same
height. Typical examples are polynomial rings over a field, and regular local rings.
The following corollary generalises, and is inspired by, a result of Buchweitz and
Pham [4], who considered the case N = k; see also [6, Corollary 5.2].

Corollary 2. Let R be an equicodimensional regular ring, and N a finite length
R-module such that gldim EndR(N) is finite. Given non-negative integers c1, . . . , cn
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with ci < dimR for each i, the R-module M := R⊕ Ωc1N ⊕ . . .⊕ ΩcnN satisfies

gldim EndR(M) ≤ 2n dimR + (2n − 1)(gldim EndR(N) + 1).

In particular, M gives an NCR of R.

For any finite length R-module X, there exists a finite length R-module Y such
that EndR(X ⊕ Y ) has finite global dimension [9]. In the setting of the corollary,
it follows that an NCR can be constructed using any finite length R-module.

In the definition of noncommutative resolution, it is sometimes required that the
module be reflexive [13]. If dimR ≥ 3 in the setting of the corollary, then for any
finite length R-module, by taking all ci ≥ 2 it can be ensured that the module
giving the NCR is reflexive, but is not free.

Terminology and Proofs

Throughout, R will be a noether algebra, in the sense that it is finitely generated
as a module over its centre, and the latter is a noetherian ring. Thus R is a
noetherian ring, and for any M in modR, the category of finitely generated left
R-modules, the ring EndR(M) is also a noether algebra, and hence noetherian.

The grade of M ∈ modR is defined to be

gradeR M = inf{n | ExtnR(M,R) 6= 0}.

When R is commutative, this is the length of a longest regular sequence in the
annihilator of the R-module M ; see, for instance, [11, Theorem 16.7].

A finitely generated R-module M is d-torsionfree, for some positive integer d, if

ExtiR(TrM,R) = 0 for 1 ≤ i ≤ d,

where TrM be the Auslander transpose of M ; see [2]. This is equivalent to the
condition that M is the d-th syzygy of an R-module N satisfying ExtiR(N,R) = 0
for 1 ≤ i ≤ d; see [2]. For example, if R is commutative and Gorenstein, any
(dimR)th syzygy module of a finitely generated module is d-torsion free, for any d.

Given R-modules X and Y we write HomR(X,Y ) for the quotient of HomR(X,Y )
by the abelian subgroup of morphisms factoring through projective R-modules.

Lemma 3. Let 0 → X → Y → Z → 0 be an exact sequence of R-modules. If an
R-module W satisfies HomR(W,Z) = 0, then the following sequence is exact.

0→ HomR(W,X)→ HomR(W,Y )→ HomR(W,Z)→ 0

Proof. By hypothesis any morphism f : W → Z factors as W → P
f ′

−→ Z, where P
is a projective R-module, and since f ′ lifts to Y , so does f . �

As usual, we write ΩX for a syzygy of X.

Lemma 4. Let X and Y be finitely generated R-modules.

(1) If Ext1R(X,R) = 0, then there is an isomorphism

Ω: HomR(X,Y )
∼=−−→ HomR(ΩX,ΩY ).

(2) If 0 ≤ c < gradeR X and n ≥ 1, then HomR(ΩcX,Ωc+nY ) = 0.
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Proof. Part (1) is clear and standard, for instance both sides are isomorphic to
Ext1R(X,ΩY ) using short exact sequences 0→ ΩX → F → X → 0 and 0→ ΩY →
G→ Y → 0. Part (2) follows for its hypotheses yield

HomR(ΩcX,Ωc+nY ) ∼= HomR(X,ΩnY )

and the right-hand module is zero as HomR(X,R) = 0 implies HomR(X,ΩnY ) = 0,
since ΩnY is a submodule of a projective R-module. �

Proof of Theorem 1. Part (1): since c < gradeR X, ΩcX is c-torsionfree, see [2].
For part (2), set A := EndR(M ⊕ ΩcX) and let e ∈ A be the idempotent corre-
sponding to the direct summand M . Then eAe = EndR(M), so given the inequality

gldimA ≤ gldim(eAe) + gldimA/(e) + pdA(A/(e)) + 1 (1.1)

proved in [3, Theorem 5.4], it remains to prove the two claims below.

Claim. There is an isomorphism of rings A/(e) ∼= EndR(X).

Indeed, first note that A/(e) = EndR(ΩcX)/[M ], where [M ] denotes the two-
sided ideal of morphisms factoring through addM . This does not rely on any
special properties of M or of X.

Since gradeR X ≥ 1, one has HomR(X,R) = 0 and this yields the equality below

EndR(X) = EndR(X) ∼= EndR(ΩcX),

while the isomorphism is obtained by repeated application of Lemma 4(1), not-
ing that c < gradeR X. Therefore, to verify the claim, it is enough to prove
EndR(ΩcX)/[M ] = EndR(ΩcX), that is, any endomorphism of ΩcX factoring
through addM factors through addR.

Given morphisms ΩcX
f−→ M

g−→ ΩcX, the morphism f factors through addR
by Lemma 4(2), since M is a d-th syzygy module and d > c. This completes the
proof of the claim.

Claim. There is an inequality pdA(A/(e)) ≤ gldim EndR(M).

Set n := gldim EndR(M). Then, the EndR(M)-module HomR(M,ΩcX) has a
finite projective resolution

0→ Pn → · · · → P0 → HomR(M,ΩcX)→ 0. (1.2)

As HomR(M,−) : addR M → proj EndR(M) is an equivalence, there is a sequence

0→Mn
fn−→ · · · f1−→M0

f0−→ ΩcX → 0 (1.3)

of R-modules, with Mj ∈ addM for all j, such that the induced sequence

0→ HomR(M,Mn)→ · · · → HomR(M,M0)→ HomR(M,ΩcX)→ 0

is isomorphic to (1.2). Since R ∈ addM , the sequence (1.3) is exact.
To justify the claim, it suffices to prove that the induced complex

0→ HomR(ΩcX,Mn)→ · · · → HomR(ΩcX,M0)
g−→ HomR(ΩcX,ΩcX) (1.4)

obtained from (1.3) is exact, and Cok(g) is isomorphic to EndR(ΩcX)/[M ] ∼= A/(e).
For, then there is a projective resolution

0→ HomR(M ⊕ ΩcX,Mn)→ · · · → HomR(M ⊕ ΩcX,M0)

→ HomR(M ⊕ ΩcX,ΩcX)→ A/(e)→ 0

of the A-module A/(e), as desired.



4 DAO, IYAMA, IYENGAR, TAKAHASHI, WEMYSS, YOSHINO

By construction, one obtains the exact sequence

HomR(ΩcX,M0)
g−−→ HomR(ΩcX,ΩcX)→ EndR(ΩcX)/[M ]→ 0.

This justifies the assertion about Cok(g). As to the exactness, for each 0 ≤ i ≤ n
set Ki := Im(fi), where fi are the maps in (1.3). Then there are exact sequences

0→ Ki+1 →Mi → Ki → 0.

For each i ≥ 1, using the fact that Mi is d-torsionfree, and K0 = ΩcX, it fol-
lows by induction that Ki is a (c + i)-th syzygy. Lemma 4(2) then yields that
HomR(ΩcX,Ki) = 0 for i ≥ 1. By Lemma 3, one then obtains an exact sequence

0→ HomR(ΩcX,Ki+1)→ HomR(ΩcX,Mi)→ HomR(ΩcX,Ki)→ 0.

Thus the sequence (1.4) is exact, as desired. �

Recall that a commutative ring R is regular if it is noetherian and every local-
ization at a prime ideal has finite global dimension. When R is further equicodi-
mensional, the global dimension of R is finite, since it equals dimR.

Proof of Corollary 2. Up to Morita equivalence, we can assume that

c1 > c2 > · · · > cn−1 > cn.

Set M0 = R and for each integer 1 ≤ j ≤ n, set

Mj := R⊕ Ωc1N ⊕ · · · ⊕ ΩcjN.

We prove, by an induction on j, that Mj is cj-torsionfree and that

gldim EndR(Mj) ≤ 2j dimR + (2j − 1)(gldim EndR(N) + 1).

The base case j = 0 is a tautology, for R is regular and hence its global dimension
equals dimR. Assume the inequality holds for j − 1 for some integer j ≥ 1.

For the induction step, set M = Mj−1, so that

Mj = Mj−1 ⊕ ΩcjN.

Since R is equicodimensional, gradeR N = dimR and Mj−1 is cj−1-torsionfree,
Theorem 1 applies to yield that Mj is cj-torsionfree, and further that

gldim EndR(Mj) ≤ 2 gldim EndR(Mj−1) + gldim EndR(N) + 1.

Applying the induction hypothesis gives the desired upper bound for the global
dimension of EndR(Mj). �

The following examples illustrate that, without additional inequality on c in
Theorem 1, M ⊕ ΩcX need not give an NCR.

Example 5. Let Q be the cycle of length two and R the quotient of CQ by
all paths of length three. Let M = R ⊕ S1 and X = S2, where S1 and S2 are
simple R-modules. Then by a direct calculation one gets gldim EndR(M) = 3 and
gldim EndR(X) = 0, whilst gldim EndR(M ⊕X) =∞.

Here is an example from commutative algebra: Let R = C[x, y]/(x2n − y2) with
x, y commuting indeterminates, and n ≥ 2 a positive integer. Then R is a curve
singularity of type A2n−1. For M = R ⊕ (R/(xn − y)) and X = R/(xn + y), one
gets gldim EndR(M) = 3 (in fact M is 2-cluster tilting) and gldim EndR(X) = 1,
whilst gldim EndR(M ⊕X) =∞.
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