
RECONSTRUCTION ALGEBRAS OF TYPE A

MICHAEL WEMYSS

Abstract. We introduce a new class of algebras, called reconstruction alge-
bras, and present some of their basic properties. These non-commutative rings
dictate in every way the process of resolving the Cohen-Macaulay singularitiesC2/G where G = 1

r
(1, a) ≤ GL(2,C).

1. Introduction

It is not a new idea that non-commutative algebra in many ways dictates the
process of desingularisation in algebraic geometry; this has been a theme in many
recent papers (eg [Van04a], [BKR01], [Bri06]) however almost all research in this
direction has taken place inside the relatively small sphere of Gorenstein singulari-
ties. For example when considering rings of invariants by small finite subgroups of
GL(n,C), the Gorenstein hypothesis forces the subgroups inside SL(n,C).

For G a finite subgroup of SL(2,C) it is well known that the preprojective
algebra of the corresponding extended Dynkin diagram encodes the process of re-
solving the Gorenstein Kleinian singularity C[x, y]G. From the viewpoint of this
paper, the preprojective algebra should be treated as an algebra that can be nat-
urally associated to the dual graph of the minimal commutative resolution, from
which we can gain all information about the process of desingularisation. Thus the
preprojective algebra is defined with prior knowledge of the dual graph of the min-
imal resolution, but since it is Morita equivalent to the skew group ring we could
alternatively use this purely algebraic ring. The question arises whether there are
similar non-commutative algebras for finite subgroups of GL(2,C).

The answer is yes [Wem08], and in this paper we prove it for the case of finite
cyclic subgroups G = 1

r
(1, a) ≤ GL(2,C) (for notation see Section 2).

For such a group G, we associate to the dual graph of the minimal commuta-
tive resolution (complete with self-intersection numbers) a non-commutative ring
Ar,a which we call the reconstruction algebra and prove that Ar,a is isomorphic
to the endomorphism ring of the special Cohen-Macaulay modules in the sense of
Wunram [Wun88]. This is important since it shows that for cyclic groups there is a
structural correspondence (via the underlying quiver) between the special CM mod-
ules and the dual graph complete with self-intersection numbers, thus generalizing
McKay’s observation for finite subgroups of SL(2,C) to finite cyclic subgroups of
GL(2,C).

The above is a correspondence purely on the level of the underlying quiver.
However if we also add in the information of the relations we get more: in this
paper we prove that the reconstruction algebra Ar,a
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• has centre C[x, y]
1
r
(1,a) and so contains all the information regarding the sin-

gularity. Furthermore it is finitely generated over its centre, so is ‘tractably’
non-commutative (Corollary 3.26).
• contains enough information to construct the minimal resolution via a mod-

uli space of finite dimensional representations (Theorem 4.5).
• contains exactly the same homological information as the minimal resolu-

tion through a derived equivalence (Theorem 5.8).

Although this paper studies cyclic subgroups of GL(2,C) and therefore both
the singularities C2/G and their minimal resolutions are toric, the main ideas in
this paper (for example the correspondence between the quiver and the dual graph)
are independent of toric geometry and as such provide the correct framework for
generalisation.

We also remark that in general the reconstruction algebra is not homologically
homogenous in the sense of Brown-Hajarnavis [BH84]. This should not be surpris-
ing, as there are many other examples of non-commutative resolutions of sensible
non-Gorenstein Cohen-Macaulay singularities which are not homologically homo-
geneous ([QS06] and [SdB06, 5.1(2)]). Non-commutative crepant resolutions have
yet to be defined for Cohen-Macaulay singularities, however when G � SL(2,C)
the minimal resolution of C2/G is not crepant yet is still important. Hence the
rings we produce should certainly be examples of (non-crepant) non-commutative
resolutions, whenever such a definition is conceived. The failure of the homo-
logically homogeneous property suggests we ought to again think hard about the
non-commutative analogue of smoothness.

In fact the reconstruction algebra Ar,a should be the minimal non-commutative
resolution in some rough sense; certainly there is the following picture of derived
categories:

Db(cohX̃) Db(modC[x, y]#G)

Db(modAr,a)
∼=

so we should still perhaps view the skew group ring as a non-commutative resolution,
just not the smallest one.

This paper is organized as follows - in Section 2 we define the reconstruction
algebra associated to a labelled Dynkin diagram of type A and describe some of its
basic structure. In Section 3 we prove that it is isomorphic to the endomorphism
ring of some Cohen-Macaulay modules. In Section 4 the minimal resolution of the
singularity C2/ 1

r
(1, a) is obtained via a certain moduli space of representations of

the associated reconstruction algebra Ar,a, and in Section 5 we produce a tilting
bundle which gives us our derived equivalence. In Section 6 we prove that Ar,a is
a prime ring and use this to show that the Azumaya locus of Ar,a coincides with

the smooth locus of its centre C[x, y]
1
r
(1,a). This then gives a precise value for the

global dimension of Ar,a, which shows that the reconstruction algebra need not be
homologically homogeneous.

In this paper we work mostly in the unbounded derived categories where ar-
bitrary coproducts exist. This allows us to use techniques such as Bousfield local-
isation and compactly generated categories to simplify some of the work needed
to obtain bounded derived equivalences, which in turn saves us from having to
prove at the beginning that the reconstruction algebra has finite global dimension.



RECONSTRUCTION ALGEBRAS OF TYPE A 3

Throughout we shall use D(A ) to denote the unbounded derived category and

Db(A ) to denote the bounded derived category. When working with quivers, we
shall write xy to mean x followed by y. We work over the ground field C but any
algebraically closed field of characteristic zero will suffice.

The moduli results in this paper have been independently discovered by Alas-
tair Craw [Cra07]. The benefits of his approach is that the minimal resolution
is produced by using global arguments (as opposed to my local arguments), how-
ever the technique here generalizes to the non-toric case [Wem08]. Also, here the
non-commutative ring can be explicitly written down. Both approaches have their
merits.

This paper formed part of the author’s PhD thesis at the University of Bris-
tol, funded by the EPSRC. Thanks to Aidan Schofield, Ken Brown, Iain Gordon,
Alastair Craw and Alastair King. Thanks also to the anonymous referee whose
suggestions greatly improved this paper’s readability.

2. The Reconstruction Algebra of Type A

Consider, for positive integers αi ≥ 2, the labelled Dynkin diagram of type An:

•
−αn

•
−αn−1 . . . •

−α2
•
−α1

We call the vertex corresponding to αi the ith vertex. To this picture we associate
the double quiver of the extended Dynkin quiver, with the extended vertex called
the 0th vertex:

• • . . . • •

•

Name this quiver Q′. For the sake of completeness note that for n = 1 by Q′ we
mean

• •

Now if any αi > 2, add an extra αi−2 arrows from the ith vertex to the 0th vertex.
Name this new quiver Q. Notice that when every αi = 2, Q = Q′ is exactly the

underlying quiver of the preprojective algebra of type Ãn.
We label the arrows in Q as follows:

if n = 1 label the 2 arrows from 0 to 1 in Q′ by a1, a2

label the 2 arrows from 1 to 0 in Q′ by c1, c2

label the extra arrows due to α1 by k1, . . . kα1−2

if n ≥ 2 label the clockwise arrows in Q′ from i to i− 1 by cii−1 (and c0n)
label the anticlockwise arrows in Q′ from i to i + 1 by aii+1 (and an0)
label the extra arrows by k1, . . . , kP

(αi−2) anticlockwise

Note for example that c12 should be read ‘clockwise from 1 to 2’. It is also convenient
to write Aij for the composition of anticlockwise paths a from vertex i to vertex j,
and similarly Cij as the composition of clockwise paths, where by Cii (resp. Aii)
we mean not the empty path at vertex i but the path from i to i round each of
the clockwise (resp. anticlockwise) arrows precisely once. For convenience we also
denote c10 := k0 and an0 := k1+

P

(αi−2).
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Example 2.1. For [α1, α2] = [4, 2] the quiver Q is

2

c21

k3=a20

0

c02

a01

1
k0=c10

k1

k2

a12

Example 2.2. For [α1, α2, α3] = [4, 3, 4] the quiver Q is

• c32

k4k5k6=a30

•

c21

a23

k3

•

c03

a01

•
k0=c10

k1

k2

a12

Denote by lr the number of the vertex associated to the tail of the arrow
kr and denote ui := max{j : lj = i} and vi := min{j : lj = i}. Because we
have defined k0 := c10 and k1+

P

(αi−2) := an0 it is always true that v1 = 0 and
un = 1 +

∑
(αi − 2). For 2 ≤ i ≤ n write Vi := max{j : lj < i} and set V1 := 0. In

Example 2.2 above u1 = 2, v3 = 4, Vl5 = V3 = 3 and Vl2 = V1 = 0.

Definition 2.3. For labels [α1, . . . , αn] with each αi ≥ 2, define the reconstruction
algebra of type A as the path algebra of the quiver Q subject to the following rela-
tions:

if n = 1 c2a1 = c1a2 and a1c2 = a2c1

k1a1 = c2a2 and a1k1 = a2c2

kta1 = kt−1a2 and a1kt = a2kt−1 ∀ 2 ≤ t ≤ α1 − 2.

if n ≥ 2 Step 1: If α1 = 2 c10a01 = a12c21

If α1 > 2 ksa01 = ks+1C01, a01ks = C01ks+1 ∀ 0 ≤ s < u1

ku1a01 = a12c21.
...

Step t: If αt = 2 ctt−1at−1t = att+1ct+1t

If αt > 2 ctt−1at−1t = kvt
C0t, C0tkvt

= A0lVt
kVt

ksA0t = ks+1C0t, A0tks = C0tks+1 ∀ vt ≤ s < ut

kut
A0t = att+1ct+1t

...
Step n: If αn = 2 cnn−1an−1n = an0c0n, c0nan0 = A0lVn

kVn

If αn > 2 cnn−1an−1n = kvn
c0n, c0nkvn

= A0lVn
kVn

ksA0n = ks+1c0n, A0nks = c0nks+1 ∀ vn ≤ s < un
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Example 2.4. The reconstruction algebra of type A associated to [4, 2] is

2

c21

a20

0

c02

a01

1
c10

k1

k2

a12

k2a01 = a12c21 c10a01 = k1c02c21 k1a01 = k2c02c21

c21a12 = a20c02 a01c10 = c02c21k1 a01k1 = c02c21k2

c02a20 = a01k2

Example 2.5. The reconstruction algebra of type A associated to [4, 3, 4] is the
path algebra of the quiver in Example 2.2 subject to the relations

c10a01 = k1c03c32c21 a01c10 = c03c32c21k1

k1a01 = k2c03c32c21 a01k1 = c03c32c21k2

k2a01 = a12c21 c21a12 = k3c03c32 c03c32k3 = a01k2

k3a01a12 = a23c32 c32a23 = k4c03 c03k4 = a01a12k3

k4a01a12a23 = k5c03 a01a12a23k4 = c03k5

k5a01a12a23 = a30c03 a01a12a23k5 = c03a30

Definition 2.6. For r, a ∈ N with hcf(r, a) = 1 and r > a define the group G =
1
r
(1, a) by

G =

〈
ζ :=

(
ε 0
0 εa

)〉
≤ GL(2,C),

where ε is a primitive rth root of unity.

Now consider the Jung-Hirzebruch continued fraction expansion of r
a
, namely

r

a
= α1 −

1

α2 −
1

α3−
1

(...)

:= [α1, . . . , αn]

with each αi ≥ 2. The labelled Dynkin diagram of type A associated to this data
is precisely the dual graph of the minimal resolution of C2/ 1

r
(1, a) [Rie77, Satz8].

Definition 2.7. Define the reconstruction algebra Ar,a associated to the group G =
1
r
(1, a) to be the reconstruction algebra of type A associated to the data of the Jung-

Hirzebruch continued fraction expansion of r
a
.

Note for the group 1
r
(1, r − 1), the reconstruction algebra Ar,r−1 is the recon-

struction algebra of type A for the data [2, . . . , 2︸ ︷︷ ︸
r−1

]. Since Vn = 0, kVn
= c10 and

lVn
= 1 this is precisely the preprojective algebra of type Ãr−1.

Example 2.8. Since 7
2 = [4, 2] the reconstruction algebra A7,2 associated to the

group 1
7 (1, 2) is precisely the algebra in Example 2.4.

Example 2.9. After noticing that 40
11 = [4, 3, 4] we see that the reconstruction

algebra A40,11 associated to the group 1
40 (1, 11) is precisely the algebra in Exam-

ple 2.5.

The following lemma is important later for certain duality arguments; geomet-
rically it says that the reconstruction algebra is independent of the direction we
view the dual graph of the minimal resolution:
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Lemma 2.10. The reconstruction algebra of type A associated to the data [α1, . . . , αn]
is the same as that associated to the data [αn, . . . , α1].

Proof. If n = 1 there is nothing to prove so assume n ≥ 2. To avoid confusion
write everything to do with the reconstruction algebra associated to [αn, . . . , α1] in
typeface fonts eg a0n, A03, c12 C0n−1, k1, un etc. Flip the quiver vertex numbers by
the operation ′ which takes 0 to itself (ie 0′ = 0), and reflects the other vertices in
the natural line of symmetry (ie 1′ = n, n′ = 1 etc), then the explicit isomorphism
between the reconstruction algebras is given by

cij 7→ ai′j′

aij 7→ ci′j′

ki 7→ kn−i

Under this map Aij 7→ Ci′j′ and Cij 7→ Ai′j′ , and furthermore the relations for the
reconstruction algebra associated to [α1, . . . , αn] read backwards are precisely the
relations for the reconstruction algebra associated to [αn, . . . , α1] read forwards. �

Now Ar,a is supposed to encode all information about the singularity C[x, y]
1
r
(1,a)

as well as the resolution, so since C[x, y]
1
r
(1,a) is determined by the continued frac-

tion expansion of r
r−a

(by [Rie77, Satz1], see Lemma 3.5 below) it should be possible
to read this directly from the quiver. Indeed this is true and to do it we must in-
troduce some more notation.

Define σ1 = 1 and inductively σs (s ≥ 1) to be the smallest vertex t with
t > σs−1 and αt > 2 (if it exists), else σs = n. Stop this process when we reach n.
Thus we have

1 = σ1 < . . . < σz = n.

Note if all αt = 2 this degenerates into 1 = σ1 < σ2 = n.

Lemma 2.11. For the group 1
r
(1, a) with notation as above

r

r − a
= [2, . . . , 2︸ ︷︷ ︸

uσ1−vσ1

, (σ2−σ1+2), 2, . . . , 2︸ ︷︷ ︸
uσ2−vσ2

, (σ3−σ2+2), 2, . . . , 2︸ ︷︷ ︸
uσ3−vσ3

, . . . , (σz−σz−1+2), 2, . . . , 2︸ ︷︷ ︸
uσz−vσz

]

Proof. This is just a reformulation of Riemenschneider duality, using the recon-
struction algebra to give a slightly different interpretation of the Riemenschneider
point diagram (see [Rie74, p223]). See also [Kid01, 1.2]. �

Example 2.12. By merely looking at the shape of A40,11 in Example 2.2, by the
above Lemma we can read off

40

40− 11
= [2, 2, 3, 3, 2, 2]

Thus the shape of the reconstruction algebra Ar,a determines the continued

fraction expansion of r
r−a

which in turn determines the singularity C[x, y]
1
r
(1,a)

(see Lemma 3.5). We will prove in Corollary 3.26 that Z(Ar,a) = C[x, y]
1
r
(1,a).

3. Special Cohen-Macaulay Modules

The reconstruction algebra is, by definition, constructed with prior knowledge
of the minimal resolution. The aim of this section is to show that we could have
defined it in a purely algebraic way by summing certain CM modules and looking
at their endomorphism ring. More precisely in this section we shall show that the
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reconstruction algebra is isomorphic as a ring to the endomorphism ring of the
sum of the special CM modules. In the process, we shall see that the relations for
the reconstruction algebra arise naturally through a notion which we call a web of
paths.

Keeping the notation from the last section, consider the group G = 1
r
(1, a) =

〈ζ〉.

Definition 3.1. For 0 ≤ t ≤ r − 1 define

St = {f ∈ C[x, y] : ζf = εtf}.

These are precisely the non-isomorphic indecomposable maximal CM modules
[Yos90, 10.10] over the CM singularity X = Spec C[x, y]G. Of these, only some are
important:

Definition 3.2. [Wun88] The module St is said to be special if St⊗ ωX/torsion is
CM, where ωX is the canonical module of X = Spec C[x, y]G.

Note that the ring S0 is always special. There are in fact many equivalent
characterisations of the special CM modules (see for example [Rie03, Thm 5]), some
which refer to the minimal resolution and some that do not. For cyclic groups the
combinatorics governing which CM modules are special is well understood.

Definition 3.3. For r
a

= [α1, . . . , αn] define the i-series and j-series as follows:

i0 = r i1 = a it = αt−1it−1 − it−2 for 2 ≤ t ≤ n + 1
j0 = 0 j1 = 1 jt = αt−1jt−1 − jt−2 for 2 ≤ t ≤ n + 1

It’s easy to see that

i0 = r > i1 = a > i2 > . . . > in = 1 > in+1 = 0
j0 = 0 < j1 = 1 < j2 = α1 < . . . < jn < jn+1 = r.

It is the i-series which gives an easy combinatorial characterisation of the specials:

Theorem 3.4. [Wun87] For G = 1
r
(1, a) with r

a
= [α1, . . . , αn], the special CM

modules are precisely those Sip
for 0 ≤ p ≤ n. Furthermore if 1 ≤ p ≤ n then Sip

is minimally generated by xip and yjp .

For r
a

= [α1, . . . , αn] we now sum the specials and look at the endomorphism
ring. Since Hom(Siq

, Sip
) ∼= Sip−iq

certainly there are the following maps between
the specials:

Si3

Si4Sin−2

Sin−1

S1

S0 Si1

Si2

xi3−i4x
in−2−in−1

x
in−1−in

x
in−in+1=x

xi2−i3

xi1−i2

xr−a

yj4−j3y
jn−1−jn−2

y
jn−jn−1

yr−jn

yj1−j0=y

yj2−j1

yj3−j2
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In general there will be more. If for any 1 ≤ p ≤ n it is true that αp > 2,
then for each t such that 1 ≤ t ≤ αp − 2, add an extra map from Sip

→ S0

labelled xip−1−(t+1)ipytjp−jp−1 . Call the diagram complete with these extra arrows
D. Define the natural map φ : CQ→ End(⊕n+1

p=1Sip
) by

c0n 7→ xin−in+1 = x
ctt−1 7→ xit−1−it

an0 7→ yjn+1−jn = yr−jn

att+1 7→ yjt+1−jt

ks 7→ xils−1−((s−Vls )+1)ils y(s−Vls )jls−jls−1

where recall V1 := 0. The remainder of this section is devoted to proving that φ is
surjective, with kernel generated by the reconstruction algebra relations.

We firstly show surjectivity by proving that D contains all the generators of
the maps between the specials, in that every other map between the specials is a
finite sum of compositions of those in D.

To do this we argue that for any 0 ≤ p ≤ n we can see every f ∈ Hom(Sip
, Sip

) ∼=C[x, y]G as a finite sum of compositions of arrows in D forming a cycle at ver-
tex p. We then argue that given any two specials Sip

, Siq
we can see every f ∈

Hom(Sip
, Siq

) ∼= Siq−ip
as a finite sum of compositions of arrows in D from vertex

p to vertex q.
We begin by putting the generators of the ring C[x, y]

1
r
(1,a) into a form suitable

for our needs:

Lemma 3.5. C[x, y]
1
r
(1,a) is generated as a ring by the following invariants:

xr

xr−ay

if α1 > 2





xi0−2i1y2j1−j0

...

xi0−(α1−1)i1y(α1−1)j1−j0

...

if αn > 2





xin−1−2iny2jn−jn−1

...

xin−1−(αn−1)iny(αn−1)jn−jn−1

yr

where i and j are the i and j-series for the continued fraction expansion of r
a
.

Proof. Denote by i and j the i and j-series for the continued fraction expansion of
r

r−a
then it is well known that the collection xityjt (0 ≤ t ≤ 2 +

∑n
p=1(αp − 2))

generate the invariant ring [Rie77, Satz1]. We must put i and j in terms of the i
and j. By definition xi0yj0 = xr and xi1yj1 = xr−ay = xi0−i1yj1−j0 and so the first
two terms in the above list are correct.

Case 1: α1 > 2. Then uσ1 − vσ1 = α1 − 2 > 0 and so by Lemma 2.11i2 = 2i1 − i0 = i0 − 2i1 and j2 = 2j1 − j0 = 2j1 − j0, verifying the next in the list.
Since the first α1− 2 entries in the continued fraction expansion of r

r−a
are 2’s, the

first ‘α1 > 2 block’ now follows easily.
Case 2: α1 = 2. Then the ‘α2 > 2 block’ is empty.



RECONSTRUCTION ALGEBRAS OF TYPE A 9

In either case the last term we know is correct is xi0−(α1−1)i1y(α1−1)j1−j0 and
the next block to check is the ‘ασ2 > 2 block’. To show that in this block the first
term is correct we must prove (by definition of i and j, using Lemma 2.11 to tell us
that the next term in the continued fraction expansion of r

r−a
is σ2 − σ1 + 2) that

(σ2 − σ1 + 2)(i0 − (α1 − 1)i1)− (i0 − (α1 − 2)i1) = iσ2−1 − 2iσ2

and

(σ2 − σ1 + 2)((α1 − 1)j1 − j0)− ((α1 − 2)j1 − j0) = 2jσ2 − jσ2−1.

We show the first; the second is very similar. By grouping terms, the left hand
side (LHS) equals σ2i0 − (σ2α1 − σ2 + 1)i1. But by definition of σ2 it is easy to
show that iσ2 = (σ2− 1)i2− (σ2− 2)i1 and so on substituting in i2 = α1i1− i0 and
grouping terms we obtain −iσ2 = LHS + (α1 − 1)i1 − i0. But (α1 − 1)i1 − i0 =
i2 − i1 = . . . = iσ2 − iσ2−1 gives iσ2−1 − 2iσ2 = LHS, as required.

From the above we know that the first term in the ‘ασ2 > 2 block’ is correct,
and by Lemma 2.11 that the next uσ2−vσ2 terms in the continued fraction expansion
of r

r−a
are all 2’s. Thus the proof continues exactly as in Case 1 above, from which

the induction step is clear. �

We now illustrate the correspondence between the generators of the invariant

ring C[x, y]
1
r
(1,a) and the cycles in D in an example.

Example 3.6. Consider the group 1
73 (1, 27). In this case the diagram D is

S8

S5S2

S1

R S27

x3

x3

x

x

x19y

x19

y8

y8

y27

y27

y

y2

xy8

x3y5

x11y2

x46

and we view the generators of the invariant ring C[x, y]
1
73 (1,27) as follows:

x73

x46y

x19y2
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x11y5

x3y8

xy27

y73

The proof of the following lemma follows the pattern in the above example:

Lemma 3.7. For any 0 ≤ p ≤ n we can view every f ∈ Hom(Sip
, Sip

) ∼= C[x, y]G

as a finite sum of compositions of arrows in D forming a cycle at vertex p.

Proof. For every vertex we just need to justify that we can see the generators
appearing in Lemma 3.5 as a cycle. To do this, we must introduce notation for the
arrows in D and in light of the map φ above we just label the arrows in D by their
notational counterpart in the reconstruction algebra. To simplify the exposition
we also consider cycles up to rotation - for example by ‘c10a01 at vertices 0 and 1’
we actually mean ‘c10a01 at vertex 1 and a01c10 at vertex 0’; similarly by ‘C00 at
vertex t’ we mean Ctt (i.e. we rotate suitably so that the cycle starts and finishes
at the vertex we want).

Now we can always see xr at every vertex as C00, and yr at every vertex as
A00. We can always see xr−ay at vertices 0 and 1 as c10a01; for the remaining
vertices how to view xr−ay depends on parameters. If α1 > 2 then we can see
xr−ay everywhere as C01k1. If α1 = 2 then at all vertices t with 1 ≤ t ≤ σ2 we can
see xr−ay as ctt−1at−1t, and for all σ2 ≤ t ≤ n as C0σ2k1. This takes care of xr−ay,
so we now move on to the remaining generators.

Case α1 > 2. If α1 = 3 then xi0−2i1y2j1−j0 can be seen at vertices 0 and 1
as k1a01, at all vertices t with 2 ≤ t ≤ σ2 as ctt−1at−1t and at all σ2 ≤ t ≤ n
as C0σ2kvσ2

. If α1 > 3 then for all s with 2 ≤ s ≤ α1 − 2, xi0−si1ysj1−j0 can be

seen at all vertices as C01ks. Furthermore xi0−(α1−1)i1y(α1−1)j1−j0 can be seen at
vertices 0 and 1 as ku1a01, at all vertices t with 2 ≤ t ≤ σ2 as ctt−1at−1t and at all
σ2 ≤ t ≤ n as C0σ2kvσ2

.

Case αq > 2 for 1 < q < n. Denote γq = min{T : q < T ≤ n with αT > 2},
or take γq = n is this set is empty. Now if αq = 3 then xiq−1−2iq y2jq−jq−1 can be
seen at all vertices t with 0 ≤ t ≤ q as A0qkuq

, at all vertices t with q + 1 ≤ t ≤ γ2

as ctt−1at−1t and at all γ2 ≤ t ≤ n as C0γq
kvγq

. If αq > 3 then for all s with
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2 ≤ s ≤ α1 − 2, xiq−1−siq ysjq−jq−1 can be seen at all vertices t with 0 ≤ t ≤ q
as A0qkvq+s−2 and at all vertices t with q ≤ t ≤ n as C0qkvq+s−1. Furthermore

xiq−1−(α1−1)iq y(α1−1)jq−jq−1 can be seen at all vertices t with 0 ≤ t ≤ q as A0qkuq
,

at all vertices t with q + 1 ≤ t ≤ γq as ctt−1at−1t and at all γ2 ≤ t ≤ n as C0γ2kvγ2
.

Case αn > 2. For all s with 2 ≤ s ≤ αn− 1, xin−1−sinysjn−jn−1 can be seen at
all vertices t as A0nkvn+(s−2). �

Lemma 3.8. For any 0 ≤ p ≤ n, every map S0 → Sip
can be seen in D.

Proof. The case p = 0 is Lemma 3.7 so assume p > 0. Then Hom(S0, Sip
) ∼= Sip

which by Theorem 3.4 is generated as a module by xip and yjp . Clearly both of
these generators are paths in D and so since cycles at vertex p are all of C[x, y]G

we are done. �

Thus it remains to prove the following 2 statements:

(i) for any 0 ≤ q < p ≤ n, every map Sip
→ Siq

can be seen in D.
(ii) for any 0 < p < q ≤ n, every map Sip

→ Siq
can be seen in D.

We shall see that we need only prove (i), then appealing to duality gives (ii) for
free. In what follows we refer to the vertex Sit

as the tth vertex.

Lemma 3.9. For 0 ≤ q < p ≤ n, if xz1yz2 ∈ Siq−ip
with 0 ≤ z1, z2 ≤ r − 1, then

xz1yz2 factors as either
(i) (xip−1−ip)A for some A ∈ Siq−ip−1

(ii) (xip−1−(t+1)ipytjp−jp−1)B for some B ∈ Siq
and some 1 ≤ t ≤ αp − 2

(iii) (yjp+1−jp)C for some C ∈ Siq−ip+1 .

Proof. The case p = n is trivial, so assume p < n. Clearly if z1 ≥ ip−1 − ip then
we’re in (i) so we can assume that 0 ≤ z1 < ip−1 − ip. Consider the invariant

xz1yz2+(jp−jq). Since we can see all invariants at every vertex, consider this as a
path in D at the pth vertex. It must leave the vertex, and the hypothesis on z1

means that it can’t leave through the xip−1−ip map.
Case 1: αp = 2 Then it must leave through the yjp+1−jp map to vertex p + 1,

i.e.

xz1yz2+(jp−jq) = yjp+1−jpM

for some path M from vertex p + 1 to q. Now from vertex p + 1 the path M has
to reach vertex p again. But this can only be reached in two ways, via the map
xip−1−ip = xip−ip+1 from vertex p + 1 to p, or via the map yjp−jp−1 from vertex
p−1 to p. The hypothesis on the x forces the later, so in particular the path factors
through the 0 vertex. It may be true that there are cycles in the path that occur
after the 0th vertex however since we have all cycles at all vertices we may move
these cycles to the 0th vertex and hence assume that the path M finishes as the
composition

yj1−j0yj2−j1 . . . yjp−jp−1 = yjp

Hence we may write

xz1yz2+(jp−jq) = yjp+1−jpAyjp

for some path A : Sip+1 → S0. But since jp ≥ jp − jq we can cancel yjp−jq from
both sides and write

xz1yz2 = yjp+1−jpA′
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for some monomial A′. Necessarily A′ ∈ Siq−ip+1 and so we have the desired
factorisation as in (iii).

Case 2: αp > 2. For notational ease denote the extra arrows leaving vertex

p by kt = xip−1−(t+1)ipytjp−jp−1 . Now xz1yz2+(jp−jq) must leave vertex p through
the yjp+1−jp map to vertex p + 1, or through one of the extra kt. We argue case by
case:

Suppose first that xz1yz2+(jp−jq) leaves through the yjp+1−jp map to vertex
p + 1, i.e.

xz1yz2+(jp−jq) = yjp+1−jpM

for some path M from vertex p + 1 to p. If M leaves vertex p + 1 through the
xip−ip+1 map we are done since then

xz1yz2+(jp−jq) = xip−ip+1yjp+1−jpM1 = kαp−2y
jpM1

for some monomial M1 and so since jp ≥ jp− jq we may cancel and write xz1yz2 =
kαp−2M

′
1 for some monomial M ′

1 which necessarily belongs to Siq
; this is a fac-

torisation as in (ii). Hence we can assume that M leaves vertex p + 1 via another
path. Since p + 1 ≤ n each of these paths has y component greater than or equal
to yjp+1−jp and so we may write

xz1yz2+(jp−jq) = y2(jp+1−jp)M2

for some monomial M2. But now jp+1 − jp > jp − jq so we may cancel and write
xz1yz2 = yjp+1−jpM ′

2 for some monomial M ′
2 which necessarily belongs to Siq−ip+1 ;

this is a factorisation as in (iii).
Now suppose that xz1yz2+(jp−jq) factors through one of the extra arrows kt

out of vertex p. Thus xz1yz2+(jp−jq) = ktB for some 1 ≤ t ≤ αp − 2 and some path
B from 0 to p. By Lemma 3.8 there are 2 possibilities for B: either B = xipB1 or
B = yjpB2 for some invariants B1 and B2. We split the remainder of the proof into
cases depending on the value of t:

If t = 1 then xz1yz2+(jp−jq) is either k1x
ipB1 = xip−1−ipyjp−jp−1B1 which is

impossible by the assumption on z1, or it’s equal to k1y
jpB2. But now jp− jq ≤ jp

and so after cancelling we may write xz1yz2 = k1B
′
2 for some monomial B′

2 which
necessarily belongs to Siq

; this gives a factorization as in (ii).
The above argument takes care of t = 1 and so we are done if αp = 3. Hence

the final case to consider is when αp > 3 and t is such that 1 < t ≤ αp − 2. Here

xz1yz2+(jp−jq) is either

ktx
ipB1 = kt−1y

jpB1 or kty
jpB2.

Again jp − jq ≤ jp and so after cancelling we may write xz1yz2 as either

kt−1B
′
1 or ktB

′
2

for some monomials B′
2, B

′
2 which necessarily belong to Siq

. This gives the required
factorizations as in (ii), and completes the proof. �

The next two results are simple inductive arguments based on the previous
lemma.

Corollary 3.10. For any 0 ≤ q < n, every map Sin
→ Siq

can be seen in D.
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Proof. Let xz1yz2 ∈ Siq−in
= Siq−1 then by Lemma 3.7 we can remove cycles and

so assume 0 ≤ z1, z2 ≤ r − 1. By Lemma 3.9 we know xz1yz2 either factors
(i) through vertex n− 1 as (xin−1−in)A for some map A : Sin−1 → Siq

(ii) through vertex 0 as (xin−1−(t+1)inytjn−jn−1)B for some B : S0 → Siq
and some

1 ≤ t ≤ αn − 2
(iii) through vertex 0 as (yjn+1−jn)C for some C ∈ Siq−ip+1 = Siq

= Hom(S0, Siq
).

If we are in cases (ii) or (iii) then we’re done by Lemma 3.8 since we can see both
B and C in the diagram D. Hence assume case (i). If q = n− 1 then we are done
since by Lemma 3.7 we can see A in the diagram D. Hence we can assume that we
are in case (i) with q < n− 1. But now by Lemma 3.9 A either factors
(i) through vertex n− 2 as (xin−2−in−1)A′ for some map A′ : Sin−2 → Siq

(ii) through vertex 0 as (xin−2−(t+1)in−1ytjn−1−jn−2)B′ for some B′ : S0 → Siq
and

some 1 ≤ t ≤ αn−1 − 2
(iii) through vertex n as (yjn−jn−1)C′ for some C′ : Sn → Sq.
Since we removed cycles from xz1yz2 at the beginning we can’t be in case (iii). If
in case (ii) then we’re again done by Lemma 3.8, so can again assume in case (i).
If q = n− 2 then we again we are done, so we can suppose we are in case (i) with
q < n− 2. Proceed inductively; since 0 ≤ q this process must stop. �

Corollary 3.11. For any 0 ≤ q < p ≤ n, every map Sip
→ Siq

can be seen in D.

Proof. Fix q. This is now just a simple induction argument: if p = n then the result
is true by Corollary 3.10, so let p < n and assume the result is true for larger p.

Let xz1yz2 ∈ Siq−ip
then by Lemma 3.7 we can remove cycles and so assume

0 ≤ z1, z2 ≤ r − 1. By Lemma 3.9 we know xz1yz2 either factors
(i) through vertex p− 1 as (xip−1−ip)A for some map A : Sip−1 → Siq

(ii) through vertex 0 as (xip−1−(t+1)ipytjp−jp−1)B for some B : S0 → Siq
and some

1 ≤ t ≤ αp − 2
(iii) through vertex p + 1 as (yjp+1−jp)C for some C : Sip+1 → Siq

.
If we are in case (iii) then by inductive hypothesis we can see C in the diagram D
and so we are done; if in case (ii) then by Lemma 3.8 we are also finished. Hence
we can assume we are in case (i). If q = p− 1 then we are done by Lemma 3.7 as
we can see A in the diagram D, hence we can assume q < p − 1. Thus the result
follows by an identical argument as in Corollary 3.10 above - we’ve removed cycles
and so A can’t factor through Sip

. �

To prove the corresponding statement in the opposite direction we appeal to
duality. More precisely the singularity defined by 1

r
(1, a) with r

a
= [α1, . . . , αn]

is isomorphic to the singularity 1
r
(1, b) with r

b
= [αn, . . . , α1] (note b = jn); the

isomorphism is given by swapping the x and y’s. To avoid confusion refer to every-
thing for the singularity 1

r
(1, b) in typeface font, eg CM modules St, i-series by i,

diagram D etc. The explicit isomorphism is given by

S0 → S0

x 7→ y

y 7→ x

As in Lemma 2.10 flip the quiver vertex numbers by the operation ′ which takes 0
to itself ( ie 0′ = 0), and reflects the other vertices in the natural line of symmetry
(ie 1′ = n, n′ = 1 etc). Now for all 1 ≤ p ≤ n we have ip = jp′ and jp = ip′ thus

Sip
= (xip , yjp)S0

∼= (yjp′ , xip′ )S0 = Sip′
.
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Corollary 3.12. For the singularity 1
r
(1, a), for any 0 ≤ p < q ≤ n, every map

Sip
→ Siq

can be seen in D.

Proof. Under the duality above xz1yz2 : Sip
→ Siq

corresponds to yz1xz2 : Sip′
→

Siq′
. But since q′ < p′ we can by Corollary 3.11 view this in the diagram D as the

composition of monomials whose powers are in terms of i’s, j’s and αt’s. Under
the duality isomorphisms we can view this as a path in the diagram D. �

Summarizing Lemma 3.7, Corollary 3.11 and Corollary 3.12 we have:

Proposition 3.13. For any 1
r
(1, a), for any 0 ≤ p, q ≤ n, we can see every map

Sip
→ Siq

in the diagram D. Consequently the natural map CQ→ EndR(⊕n+1
p=1Sip

)
is surjective.

This may seem abstract but in reality it is extremely useful if we actually want
to compute some examples. One way to compute the endomorphism ring of the
specials is to take the McKay quiver and corner (ie ignore a vertex and compose
maps that pass through that vertex) the non-special vertices. Of course the larger
the group the longer this computation; for the example 1

40 (1, 11) there are forty
vertices in the McKay quiver and we need to corner thirty-six of them. Given any
example 1

r
(1, a), Proposition 3.13 saves us this long computation since the algorithm

to produce the necessary diagram involves only the continued fraction expansion of
r
a

and the associated i and j series, all of which are extremely quick to calculate.

Example 3.14. For 1
40 (1, 11), 40

11 = [4, 3, 4] so the i and j-series are

i0 = 40 > i1 = 11 > i2 = 4 > i3 = 1 > i4 = 0
j0 = 0 < j1 = 1 < j2 = 4 < j3 = 11 < j4 = 40.

By Proposition 3.13 the endomorphism ring of the specials is

S1 x3

x2y7xy18y29

S4

x7

y7

x3y3

S0

x

y

S11
x29
x18y
x7y2

y3

Notice the correspondence with Example 2.2.

Example 3.15. For the group 1
693 (1, 256), 693

256 = [3, 4, 2, 4, 2, 3, 3] so the i and j
series are

0 1 2 3 4 5 6 7 8
i 693 256 75 44 13 8 3 1 0
j 0 1 3 11 19 65 111 268 693.
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and further the endomorphism ring of the specials is

S44

S13S8

S3

S1

S0 S256

S75

x31

x5

x5

x2

x

x31

x181

x437

y8

y46

y46

y157

y425

y

y2

y8

x181y

x31y5

x106y2

x5y27

x18y8

x2y46

xy157

In Proposition 3.13 above we have shown that the natural map φ : CQ →
EndR(⊕n+1

p=1Sip
) is surjective and so we now show that the kernel is generated by

the reconstruction algebra relations. To achieve this double index the arrows in
Ar,a as follows:

arrow double index
c0n (1, 0)

ctt−1 (it−1 − it, 0)
an0 (0, r − jn)

att+1 (0, jt+1 − jt)
ks (ils−1 − ((s− Vls) + 1)ils , (s− Vls)jls − jls−1)

It is easy to see that the two terms in any relation for Ar,a have the same double
index and so the double index can be extended to all paths in Ar,a. We shall now
show that if there exists a path of double index (z1, z2) leaving a vertex t in Ar,a

then the path is necessarily unique.

Definition 3.16. For a given vertex t in Ar,a define the web of paths leaving t as
follows: place t in the (0, 0) position of a 2-dimensional grid, and for each arrow
leaving t draw a line from (0, 0) to the double index of that arrow. Mark the end
of this line by the head of the arrow. Continue in this way for all the heads of the
arrows.

This is best understood after consulting some examples. In the following two
examples the web should be extended forever in the obvious direction; for practical
purposes we draw only the start of the picture.
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Example 3.17. The web of paths from vertex 0 in A4,1 and A11,3 begins respec-
tively:

0 a2

a1

1

c1

c2

k1
k2

0

a1

1

c1

c2

k1

k2

0 a2

a1

1

0 a2

a1

1

0

a1

a2 1

0 a2 1

0a01
c02

1

c10

k1

k2

a12 2

k3c21

a20 0
c02

2
k3

c21

a20 0a01
c02

1 a12 2

0
c02

a01 1 a12 2

1

c10

k1

k2

a12 2

c21

0
c02

a01 1

2

c21

0
c02

a01 1

2

c21

0a01 1

We call the points in the web of paths that lie in the set {(w, 0) : 0 ≤ w < n}
the left rail and similarly those that lie in the set {(0, w) : 0 ≤ w < n} are called
the top rail.

Definition 3.18. Draw the left rail and the top rail in the web of paths leaving
vertex 0, and draw in every arrow leaving these vertices. Join the ends of these by
using only vertical and horizontal paths, and call the resulting diagram F .

The fact that this can always be done is due to the grading we put on Ar,a,
together with simple combinatorics with continued fractions. The examples above
show F for A4,1 and A11,3.

Now F generates the web of paths leaving 0 in the sense that all paths can be
obtained by gluing on extra copies of F to the existing copy, as in the following
picture

The copies of F glue together seamlessly due to the symmetry and repetition inside
F - the boundary of F consists entirely of straight lines and crucially F contains
(by definition) all paths from the rails so there can be no paths that leap over the
boundary to create new paths.
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Since F generates the web of paths leaving 0 it is clear (since F can) that the
web of paths can be subdivided into small ‘squares’; we call these basic squares.

Definition 3.19. A square is a pair of paths (p1 . . . ps, q1 . . . qt) with tail(p1) =
tail(q1) and head(ps) = head(qt). A square in F is called basic if pi /∈ {q1, . . . , qt}
for all 1 ≤ i ≤ s and qj /∈ {p1, . . . , ps} for all 1 ≤ j ≤ t.

By the definition and structure of F it is clear that if all basic squares in F
commute then all squares in F commute. Since F generates the web of paths this
means all squares commute (since they are made from squares in F ), giving us the
required uniqueness of path.

Because of the symmetry in F there are in fact repetitions of the basic squares
inside F - more precisely the basic squares starting at the 1 on the top rail are the
same as those starting at 1 on the left rail, etc. Thus by the symmetry in F it is
clear that all the basic squares leaving the left rail are all the basic squares in F .

Example 3.20. The 6 basic squares in the example A4,1 above are indicated by
the following solid lines:

0 1

1 0

0 1

0 1

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1 0

0 1

0 1

0 1

These are precisely the relations. Note that these prove the paths a2k1a1 and a1c1k2

coincide since that square can be subdivided into 2 basic squares, both of which
commute.

Example 3.21. The 9 basic squares in the example A11,3 above are

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

0 1 2
2

1

0 1

0
2

1

0
2

1

0
2

1
0
2

The first five diagrams are the five Step 1 relations, the last four the Step 2 relations.

Lemma 3.22. For any double index (z1, z2) either there is precisely one path out
of vertex 0 with that double index, or there are none.

Proof. By the above we just need to prove that all the basic squares in F out of
the left rail commute. This is just a bookkeeping exercise:
Case 1: n = 1. This is an easy extension of the A4,1 example above.
Case 2: n > 1. We work through the basic squares leaving 1 (which we’ll see,
together with some basic squares leaving 0, correspond to the Step 1 relations) and
then work upwards: if α1 = 2 then the only basic square leaving 1 is c10a01 = a12c21,
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so we may assume α1 > 2. Then, as in Example 3.21 we get ksa01 = ks+1C01 and
above it a01ks = C01ks+1 for all 0 ≤ s < u1, then end with ku1a01 = a12c21. Thus
all basic squares leaving 1 (and the corresponding ones leaving 0) on the left rail
commute.
Now for basic squares leaving t on the left rail with 1 < t < n (if such t exist):
if αt = 2 then the only basic square is ctt−1at−1t = att+1ct+1t so we may assume
that αt > 2. Certainly we have the basic square ctt−1at−1t = kvt

C0t and above it
C0tkvt

= A0lVt
kVt

. If αt > 3 we also have the basic squares ksA0t = ks+1C0t and
above it A0tks = C0tks+1 for all vt ≤ s < ut. The final basic square out of t is
kut

A0t = att+1ct+1t.
For the basic squares leaving n on the left rail: if αn = 2 then the only basic
square is cnn−1an−1n = an0c0n and above it c0nan0 = A0lVn

kVn
. Hence assume

αn > 2. Then cnn−1an−1n = kvn
c0n and above it c0nkvn

= A0lVn
kVn

. The only
basic squares remaining are ksA0n = ks+1c0n and above it A0nks = c0nks+1 for all
vn ≤ s < un (recall kun

= an0). �

Corollary 3.23. For any double index (z1, z2) and any vertex t, either there is
precisely one path out of vertex t with that double index, or there are none.

Proof. To obtain the web of paths of vertex n delete the top row in the web of paths
of vertex 0 and decrease the first index in every double index by 1. All squares in
this web of paths commute because they do in the web of paths for vertex 0. For
vertex n − 1 delete all the rows above the n − 1 on the left rail, and decrease the
double indices accordingly. Again all squares in this web of paths commute since
they do in the web of paths for vertex 0. Continue in this fashion. �

We now reach the main theorem which shows that the algebraically-constructed
ring (the endomorphism ring of the specials) is isomorphic to the geometrically-
constructed ring (the reconstruction algebra). For a third construction of the same
non-commutative ring, see Section 5.

Theorem 3.24. For G = 1
r
(1, a), let Tr,a = ⊕n+1

p=1Sip
. Then

Ar,a
∼= EndC[x,y]G(Tr,a).

Proof. We already have a map φ : CQ→ End(⊕n+1
p=1Sip

) which by Proposition 3.13
is surjective. It is straightforward to see that all the reconstruction relations are
sent to zero and so belong to the kernel, since the double index of any relation
corresponds to the double index (z1, z2) of the cycle xz1yz2 in the endomorphism
ring that it represents. The content in the theorem is that there are no more
relations. But this is just Corollary 3.23. �

Remark 3.25. If a = r − 1 then the group 1
r
(1, r − 1) is inside SL(2,C), all CM

modules are special and Tr,r−1 = C[x, y] so this theorem reduces to the well known

Ar,r−1 = pre-projective algebra ∼= EndC[x,y]G(C[x, y]) ∼= C[x, y]#G.

Corollary 3.26. The centre of Ar,a is C[x, y]
1
r
(1,a) and furthermore Ar,a is a

finitely generated module over its centre. Consequently Ar,a is a noetherian PI
ring.

Proof. Denote R = C[x, y]
1
r
(1,a) then since CM modules are torsion-free there is an

embedding of R into EndR(Tr,a) which clearly has image inside the centre. It is the
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whole of the centre since HomR(Sip
, Sip

) ∼= R for all p. The fact that Ar,a is finitely
generated as an R-module is immediate from its description as an endomorphism
ring. The rest is standard. �

4. Moduli Space of Representations and the Minimal Resolution

The minimal resolutions of cyclic quotient singularities are well understood by
a construction of Fujiki (see for example [Wun87, 2.7]); more recently there is an
easier algorithm using toric geometry techniques [Rei97] which coincides with the
G-Hilb description ([Kid01], [Ish02]).

In this section we prove that for any group G = 1
r
(1, a) we can obtain the min-

imal resolution of the singularity C2/G from the moduli space of the reconstruction
algebra Ar,a, thus giving yet another description of the minimal resolution. This
may not be entirely surprising (by construction!), but it is important since by
Theorem 3.24 we could have defined Ar,a without prior knowledge of the minimal
resolution.

For a summary of moduli space techniques we refer the reader to [Kin94],
[Kin97]. For G = 1

r
(1, 1) (ie the reconstruction algebra with the n = 1 relations)

everything is trivial so we assume n ≥ 2. With respect to the ordering of the vertices
as in Section 2, fix for the rest of this paper the dimension vector α = (1, 1, . . . , 1)
and fix the generic stability condition θ = (−n, 1, . . . , 1). The point is that when
considering representations of this dimension vector the maps are just scalars so
the relations reduce in complexity. As we shall see the stability condition is chosen
to be ‘blind’ to the arrows k1, . . . kP

(α1−2) and so we have a open covering of the
moduli space by the same number of open sets as in the preprojective case (ie n+1
open sets). It is the relations that ensure each of the opens is still C2, and standard
geometric arguments give minimality.

Definition 4.1. For 0 ≤ t ≤ n define the open set Wt in Rep(Ar,a, α)//θGL as

follows: W0 is defined by the condition C01 6= 0, Wn by the condition A0n 6= 0 and
for 1 ≤ t ≤ n− 1 Wt is defined by the conditions C0t+1 6= 0 and A0t 6= 0.

Remark 4.2. For toric geometers, below is the dictionary between the above open
sets and the standard toric charts on the minimal resolution. We also state for
reference the result of Lemma 4.4, which gives the position of where (if we change
basis so that the specified non-zero arrows in the definition of the open sets are
actually the identity) the co-ordinates can be read off the quiver.

W0 ←→ Spec C [
xr, y

xa

]
(c10, a01)

...
Wt

for 1 ≤ t ≤ n− 1
←→ Spec C [

xit

yjt
, yjt+1

x
it+1

]
(ct+1t, att+1)

...

Wn ←→ Spec C [
x

yjn
, yr

]
(c0n, an0)

Lemma 4.3. For the group G = 1
r
(1, a), with notation as above {Wt : 0 ≤ t ≤ n}

forms an open cover of the moduli space Rep(Ar,a, α)//θGL .

Proof. Suppose M ∈ Rep(Ar,a, α) is θ-stable. It is clear from the stability condition
that we need, for every vertex i 6= 0, a non-zero path from vertex 0 to vertex i.
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Now if a01 = 0 then to get to vertex 1 clearly we need C01 6= 0 and so M is in
W0. Otherwise we can assume a01 6= 0. If a12 = 0 then to get to vertex 2 we
need C02 6= 0 and so M is in W1. Continuing in this fashion it is obvious that
{Wt : 0 ≤ t ≤ n} forms an open cover of the moduli space. �

Lemma 4.4. (i) Each representation in W0 is determined by (c10, a01) ∈ C2.
(ii) For every 1 ≤ t ≤ n−1, each representation in Wt is determined by (ct+1t, att+1) ∈C2.
(iii) Each representation in Wn is determined by (an0, c0n) ∈ C2.
Thus every open set in the cover is just C2.

Proof. (i) We can set c0n = cnn−1 = . . . = c21 = 1. We proceed anticlockwise
round the vertices of the quiver (starting at the 0th vertex), showing at each stage
that all arrows leaving the vertex are determined by c10 and a01.
Vertex 0: trivial as the only arrows leaving are c0n = 1 and a01.
Vertex 1: If α1 = 2 then the only two arrows leaving are a12 and c10. The Step
1 relations give a12 = c10a01. Thus we may assume that α1 > 2 so we have
c10 = k0, k1, . . . , ku1 , a12 leaving the vertex. But now the Step 1 relations give

c10a01 = k1

k1a01 = k2

...

ku1−1a01 = ku1

kui
a01 = a12

so it is clear that k1, . . . , ku1 , a12 can be expressed in terms of c10 and a01.
Vertex s for 1 < s < n: If αs = 2 then only arrows leaving are css−1 = 1 and ass+1.
The Step s relations give ass+1 = as−1s and by work at previous vertices we know
that as−1s is determined by c10 and a01; hence so is as+1s. Thus we may assume
αs > 2 and so the arrows leaving vertex s are kvs

, . . . , kus
, css−1 = 1, ass+1. But by

the Step s relations we know

kvs
= as−1s

kvs+1 = kvs
A0s

...

kus
= kus−1A0s

ass+1 = kus
A0s

which, by work at the previous vertices, can all be expressed in terms of c10 and
a01.
Vertex n: If αn = 2 then again everything is trivial and so we may assume αn > 2
in which case the arrows kvn

, . . . , kun
= an0, cnn−1 = 1 leave vertex n. The step n

relations give

kvn
= an−1n

kvn+1 = kvn
A0n

...

kun
= kus−1A0s
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which again by work at the other vertices can be expressed in terms of c10 and a01.
(iii) Follows immediately by Lemma 2.10.
(ii) We can set c0n = . . . = ct+2 t+1 = 1 = a01 = . . . = at−1t. As above we show
that the arrows leaving every vertex are determined by ct+1t and att+1, but we now
work anticlockwise from vertex t + 1 to vertex 0, then work clockwise from vertex
t to vertex 1:
Vertex t + 1: If αt+1 = 2 then the only arrows leaving are ct+1t and at+1t+2.
The relations give at+1t+2 = ct+1tatt+1. Hence we may assume αt+1 > 2 and so
the arrows leaving vertex t + 1 are kvt+1 , . . . , kut+1 , ct+1t, at+1t+2. The Step t + 1
relations give

kvt+1 = ct+1tatt+1

kvt+1+1 = kvt+1A0t+1 = kvt+1att+1

...

kut+1 = kut+1−1A0t+1 = kut+1−1att+1

at+1t+2 = kut+1A0t+1 = kut+1att+1

which therefore can all be expressed in terms of ct+1t and att+1.
Vertex s for n < s < t + 1: If αs = 2 then the only arrows leaving are css−1 = 1
and ass+1. The relation gives ass+1 = as−1s and by work at previous vertices we
know that as−1s is determined by ct+1t and att+1; hence so is ass+1. Hence assume
αs > 2 and so the arrows leaving are kvs

, . . . , kus
, css−1, ass+1. The Step s relations

give

kvs
= as−1s

kvs+1 = kvs
A0s = kvs

Ats

...

kus
= kus−1A0s = kus−1Ats

ass+1 = kus
A0s = kus

Ats

which by work at the previous vertices can all be expressed in terms of ct+1t and
att+1.
Vertex n: Similar to the above case.
Vertex 0: Only arrows leaving are c0n and a01, both of which are 1.
We now start at vertex t and work clockwise:
Vertex t: If αt = 2 then the only arrows leaving are ctt−1 and att+1; the relations
give ctt−1 = att+1ct+1t. Hence assume αt > 2 and so the arrows leaving are
kvt

, . . . , kut
, ctt−1, att+1. The Step t relations (read backwards) give

kut
= att+1ct+1t

kut−1 = kut
C0t = kut

ct+1t

...

kvt
= kvt+1C0t = kvt+1ct+1t

ctt−1 = kvt
C0t = kvt

ctt−1

which therefore can all be expressed in terms of ct+1t and att+1.
Vertex s for 1 ≤ s < t: Similar to the above; read the Step s relations backwards
and use work at the previous vertices. �
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Theorem 4.5. Keeping α and θ fixed from before,

Rep(Ar,a, α)//θGL C2/ 1
r
(1, a)

is the minimal resolution of singularities.

Proof. Firstly note that Wt−1 and Wt glue together to give OP1(−αt) for each
1 ≤ t ≤ n. To see this let (a, b) ∈ Wt−1 with b 6= 0, then simply changing basis at
vertex t by dividing all arrows into vertex t by b and multiplying all arrows out by
b gives us

•

••

•

a

1

1

1

b

abαt−1

1

1

abαt−2
···

ab
•

••

•

ab

b−1

1

1

1

abαt

1

1

abαt−1
···

ab2

(a, b) ∈Wt−1 (b−1, abαt) ∈Wt

Consequently above the singularity there is a string of P1’s each with self-intersection
number ≤ −2. None of these can be contracted to give a smaller resolution. �

Remark 4.6. For finite subgroups of SL(2,C) the above theorem remains true if
we replace the fixed θ by an arbitrary generic stability condition [CS98]. However
in the GL(2,C) case if we choose a different stability condition it is not true in
the general that the above theorem holds, since the moduli may have components.
A concrete example is 1

3 (1, 1). Thus in the non-Gorenstein case the question of
stability is much more subtle.

5. Tilting Bundles

We want to show that the minimal resolution X̃ of the singularity C2/ 1
r
(1, a)

is derived equivalent to the reconstruction algebra Ar,a. To do this, we search
for a tilting bundle. During the production of this paper this result has been
independently proved by Craw [Cra07], who points out that it actually follows
immediately from a result of Van den Bergh [Van04b, Thm B]. The proof here uses
a simple trick involving an ample line bundle.

Definition 5.1. Suppose T is a triangulated category with small direct sums. An
object C ∈ T is called compact if for any set of objects Xi, the natural map

∐
Hom(C, Xi)→ Hom

(
C,

∐
Xi

)

is an isomorphism.

Denote by 〈X〉⊕ the smallest full triangulated subcategory of T closed under
infinite sums containing X. Note this is necessarily closed under direct summands.

Definition 5.2. Let T be a triangulated category with small direct sums. We say T

is compactly generated if there exists a set of compact objects X such that 〈X〉⊕ = T.
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Definition 5.3. A vector bundle E of finite rank is called a tilting bundle if
(1) Exti(E , E ) = 0 for all i > 0
(2) 〈E 〉⊕ = D(QcohX).

It is standard that if X̃ has a tilting bundle E then X̃ and End
eX
(E ) are derived

equivalent (see Theorem 5.8 below). In our situation the bundle to consider comes
from Wunram’s geometric description of the special CM modules as full sheaves:

Definition 5.4. [Esn85] A sheaf F on X̃ is called full if
(1) F is locally free
(2) F is generated by global sections

(3) H1(X̃, F∨ ⊗ ω
eX
) = 0 where ω

eX
is the canonical module.

Denoting the minimal resolution by X̃
π
−→ C2/G then given any CM module

M it is true that

M̃ := π∗M/torsion

is a full sheaf. In fact full sheaves are in 1-1 correspondence with indecomposable
CM modules by work of Esnault [Esn85]; the inverse map is global sections. Denote
the functor Hom(−, R) by ∗ and note that if M is any CM module then M∗ =

π∗((M̃)∨).
The definition of special CM module was originally stated in terms of the

corresponding full sheaf:

Lemma 5.5. [Wun88] St is a special CM module ⇐⇒ H1(S̃t

∨

) = 0.

To obtain a derived equivalence between the minimal resolution X̃ and the

reconstruction algebra Ar,a we shall show that E = ⊕n+1
p=1 S̃ip

is a tilting bundle,
with endomorphism ring Ar,a. Firstly we prove the statement on the endomorphism
ring: note that the following lemma shows that the three ways to produce a non-
commutative ring all give the same answer.

Lemma 5.6. End
eX

(E ) = End
eX

(
⊕n+1

p=1 S̃ip

)
∼= EndC[x,y]G

(
⊕n+1

p=1Sip

)
∼= Ar,a.

Proof. The last isomorphism is Theorem 3.24. The first isomorphism follows from
the statement

Hom
eX

(
S̃ip

, S̃iq

)
∼= HomC[x,y]G(Sip

, Siq
)

which is true since both are reflexive and isomorphic away from the singular point
(see e.g. [Wem08, 3.1]). �

Now for every pair p, q with 1 ≤ p, q ≤ n by choosing a generic section of

S̃iq
⊕ S̃ip

we have a short exact sequence

0 O S̃iq
⊕ S̃ip

S̃iq
⊗ S̃ip

0 .

(This can also be constructed locally, using the open cover in Theorem 4.5). Ten-

soring the above by S̃ip

∨

gives the exact sequence

(Bp,q) 0 S̃ip

∨
(
S̃ip

∨

⊗ S̃iq

)
⊕ O S̃iq

0 .

Lemma 5.7. Extr(E , E ) = 0 for all r > 0.
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Proof. Since the singularity is rational Hr(O) = 0 for all r > 0. Further S̃ip
is

generated by global sections so H1(S̃ip
) = 0, thus using the short exact sequence

Bp,p

0 S̃ip

∨

O2 S̃ip
0

and Lemma 5.5 it is true that Hr(S̃ip
) = Hr(S̃ip

∨

) = 0 for all r > 0.

But using the Bp,q together with these facts shows that Hr(S̃ip

∨

⊗ S̃iq
) = 0

for all r > 0 and 1 ≤ p, q ≤ n. Hence

Extr(E , E ) =

n+1⊕

p,q=1

Hr(S̃ip

∨

⊗ S̃iq
) = 0 for all r > 0.

�

Theorem 5.8. Let X̃ be the minimal resolution of the singularity C2/ 1
r
(1, a), let

Ar,a be the corresponding reconstruction algebra and let E = ⊕n+1
p=1 S̃ip

. Then

(1) RHom(E ,−) induces an equivalence between D(QcohX̃) and D(ModAr,a)

(2) This equivalence restricts to an equivalence between Db(QcohX̃) and Db(ModAr,a)

(3) This equivalence restricts to an equivalence between Db(cohX̃) and Db(modAr,a)

(4) Since X̃ is smooth, Ar,a has finite global dimension.

Proof. By Lemma 5.6 and Lemma 5.7 we need only prove that 〈E 〉⊕ = D(QcohX̃).

Since the first chern class of L := S̃i1 ⊗ . . . ⊗ S̃in
consists entirely of ones, L is

ample and so it is true by [Nee96, 1.10] that D(QcohX) = 〈L −⊗n : n ∈ N〉⊕.
Hence it suffices to prove that 〈E 〉⊕ contains all negative tensors of the ample line
bundle L . But using the short exact sequences Bp,q together with suitable tensors
of them, (which give triangles) this is indeed true: by the sequence Bp,p it follows

that 〈E 〉⊕ contains S̃ip

∨

. Now after tensoring Bp,p by S̃ip

∨

it follows that 〈E 〉⊕

contains S̃ip

⊗−2
. Continuing in this fashion 〈E 〉⊕ contains S̃ip

⊗−t
for all t ≥ 0 and

all ip. Now by considering the sequence Bp,q tensored by S̃iq

∨

it follows that 〈E 〉⊕

contains S̃ip

∨

⊗S̃iq

∨

. Continuing in this manner a simple inductive argument shows

that 〈E 〉⊕ contains (S̃i1 ⊗ . . . ⊗ S̃in
)⊗−t for all t ≥ 0. The result is now standard

(see e.g. [HdB, 7.6]). �

Denoting by 〈E 〉 the smallest thick full triangulated subcategory containing E ,
it is true by Neeman-Ravenel [Nee92] that 〈E 〉 coincides with the compact objects of

D(QcohX̃). By [Nee96, 2.3] these are precisely the perfect complexes, which since

X̃ is smooth are the whole of Db(cohX̃). Thus it is also true that 〈E 〉 = Db(cohX̃).

6. Homological Considerations

It is well known that the preprojective algebra of an extended Dynkin diagram
is a homologically homogeneous ring of global dimension 2. We observed in The-
orem 5.8 that for general labels [α1, . . . , αn] the reconstruction algebra of type A
also has finite global dimension, thus it is natural to ask its value and whether it
is homologically homogeneous (i.e. all its simple modules have the same projective
dimension).
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We shall prove in this section that

gldimAr,a =

{
2 if a = r − 1
3 else

and so Ar,a is homologically homogeneous only when r = a − 1, ie when G =
1
r
(1, a) ≤ SL(2,C). Furthermore we show that the projective resolutions of the

simples in the non-Azumaya locus are determined by the intersection theory.
We firstly show that the Azumaya locus of Ar,a coincides with the smooth locus

of its centre R = C[x, y]G. Such a problem has been considered in [Mac09] in a
slightly more general setting, although here we give a direct argument. The reason
we desire such a result is that we can then ‘ignore’ the simples in the Azumaya locus
(i.e. those simple A-modules whose R-annihilator lies in the Azumaya locus defined
below) as they correspond to smooth points and so their projective dimensions are
easily controlled.

Definition 6.1. A = Ar,a is a noetherian ring module finite over its centre R =C[x, y]
1
r
(1,a). Define

AA = {m ∈ maxR : Am is Azumaya over Rm}

where maxR is the set of maximal ideals of R. The set AA is called the Azumaya
locus of A.

Lemma 6.2. A = Ar,a is a prime ring of PI degree n + 1.

Proof. Since R is a domain 0 is a prime ideal, so denote F = R0 (R localized at
the zero ideal) to be the quotient field of R. Since CM modules are torsion-free and
A ∼= EndR(⊕n+1

p=1Sip
), non-zero elements in R are not zero-divisors in A and so

A ⊆ A⊗ F = A0
∼= EndR0

(⊕n+1
p=1Sip0

) = EndR0
(⊕n+1

p=1R0) = EndF (Fn+1),

since the CM modules Sip
are free of rank 1 away from the singular locus of R. Thus

A ⊆ A ⊗ F = A0 with A0 a classical right quotient ring of A. Since A0 is simple,
necessarily A is prime [GW04, 6.17]. Now A is a prime PI ring, so by definition its
PI-degree is equal to dimF (F ⊗ (⊕n+1

p=1Sip
)) = dimF (Fn+1) = n + 1. �

Throughout this section we denote by m0 the unique singular point of R.

Lemma 6.3. AA = maxR\{m0}.

Proof. By Theorem 3.24, Am
∼= EndRm

(⊕n+1
p=1Sipm

) for all m ∈ maxR. But CM
modules are free on the smooth locus, so if m 6= m0 then Sip m

∼= Rm for all p.
Consequently Am

∼= Mn+1(Rm) for any m 6= m0, where Mn+1(Rm) is the ring of
(n + 1)-square matrices over Rm and thus Am is Azumaya over Rm. This proves
that maxR\{m0} ⊆ AA. Equality holds since A is a prime affine C-algebra, finitely
generated over its centre with finite global dimension. For such rings it is well-
known that the Azumaya locus and the singular locus are disjoint (see e.g. [BG02,
III.1.8]). Alternatively just observe that the one-dimensional simple corresponding
to vertex 0 is a simple A-module annihilated by m0 and this does not have maximal
dimension n + 1 (equal to the PI degree). �

Corollary 6.4. For all m ∈ AA, gldimAm = 2.

Proof. By the above lemma m 6= m0 with Am
∼= Mn+1(Rm). Since global dimension

passes over morita equivalence we have gldimAm = gldimRm = 2 where the last
equality holds since R is equi-codimensional [Eis95, 13.4]. �
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The hard work in the global dimension proof comes in computing the projective
resolutions of the 1-dimensional simples corresponding to the vertices of Ar,a.

Let Q be the quiver of the reconstruction algebra, denote its vertices by Q0

and its arrows by Q1. Denote the relations by R = {Rt} and note that they are all
admissible (i.e. contain no path of length ≤ 1) and basic (i.e. each Rt is a linear
combination of paths, each with common head and tail). Denote by Dj the one-
dimensional simple corresponding to vertex j ∈ Q0. As is standard, for any paths
p we denote t(p) to be the tail of p, h(p) to be the head. Consider the following
complex

⊕

t(Ri)=j

eh(Ri)A
d2−→

⊕

t(a)=j

eh(a)A
d1−→ ejA→ Dj → 0.

where the left hand sum is over all relations with tail j and the right hand sum is
over all arrows with tail j. The maps d1 and d2 are given as

d2 : (gi) 7→ (
∑

i ∂aRigi)a d1 : (fa) 7→
∑

a afa

respectively, where for any arrow a and any path p we define

∂ap =

{
q if p = aq
0 else

and extend by linearity. It is easy to see that the above is a complex which is
exact at ejA. Moreover it is also exact at ⊕t(a)=jeh(a)A: to see this denote by
I the ideal of relations and note first that we may write I =

∑
RiCQ + Q1I.

Now if (fa) ∈ kerd1 then
∑

a:t(a)=j afa ∈ I and so we may find gi such that∑
a:t(a)=j afa −

∑
Ri∈R

Rigi ∈ Q1I. For any a ∈ Q1 such that t(a) = j we apply

∂a to this expression to obtain fa ≡
∑

Ri∈R
∂aRigi mod I. Thus (fa) is the image

of (gi) under d2, as required.

Lemma 6.5. If αt = 2 for some 1 ≤ t ≤ n then the simple Dt at vertex t has
projective resolution

0 etA et−1A⊕ et+1A etA Dt 0

where if t = n take t + 1 = 0. Hence pd(Dt) = 2.

Proof. We just need to show that d2 is injective. But here d2 is the map

etA → et−1A⊕ et+1A
g 7→ (at−1tg,−ct+1tg)

and if g ∈ kerd2 then at−1tg = 0 from which (viewing as polynomials via Theo-
rem 3.24) we deduce that g = 0. Since the first syzygy is not projective (else on
localizing it would contradict the depth lemma), it follows that pd(Dt) = 2. �

Corollary 6.6. If α1 = . . . = αn = 2 then the simple D0 at vertex 0 has projective
resolution

0 e0A enA⊕ e1A e0A D0 0

and so pd(D0) = 2.

Proof. By hypothesis the quiver is symmetric and so the 0th vertex is indistinguish-
able from the other vertices. The result now follows from Corollary 6.5 above. �
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Lemma 6.7. If αt > 2 then the simple Dt at vertex t has projective resolution

0 (etA)αt−1 (et−1A)⊕ (e0A)αt−2 ⊕ (et+1A) etA Dt 0

and so pd(Dt) = 2.

Proof. Again we just need to show that d2 is injective. Here d2 is the map sending
(gi) ∈ (etA)αt−1 to

(at−1t,−C0t, 0, . . . , 0)g1 +

αt−3∑

i=1

(0, . . . , 0︸ ︷︷ ︸
i

, A0t,−C0t, 0, . . . , 0︸ ︷︷ ︸
αt−i−2

)gi+1

+ (0, . . . , 0, A0t,−ct+1t)gαt−1

where the convention is that the sum is empty if αt = 3. Now if (gi) ∈ kerd2 then
by inspecting the first summand we see that at−1tg1 = 0 and so g1 = 0. Now by
inspecting the second summand (and using the fact g1 = 0) we see that A0tg2 = 0
and so g2 = 0. Proceeding inductively gives g1 = . . . = gαt−1 = 0 and so d2 is
injective, as required. �

Lemma 6.8. If some αt > 2 then the simple D0 at vertex 0 has projective resolution

0
⊕n

i=1(eiA)αi−2 (e0A)1+
P

(αt−2) enA⊕ e1A e0A D0 0

and so pd(D0) = 3.

Proof. Denote γ =
∑n

t=1(αt − 2) then by assumption γ ≥ 1. Here d2 is the map

(e0A)1+γ → enA⊕ e1A

(gi) 7→
∑1+γ

t=1 (Ĉnltkt,−Â1lt−1kt−1)gi

where

Ĉij =

{
Cij i 6= j
ei i = j

and Âij =

{
Aij i 6= j
ei i = j

and recall k0 = c10 and kγ+1 = an0. We firstly claim that the kernel of d2 is

K3 :=

γ∑

i=1

(0, . . . , 0︸ ︷︷ ︸
i−1

, A0li ,−C0li , 0, . . . , 0︸ ︷︷ ︸
γ−i

)eliA.

To prove this claim we proceed by induction. Take (hi) = (h1, . . . , hγ+1) belonging
to the kernel of d2. If h1 = . . . = hγ−1 = 0 then

Ĉnlγ kγhγ = −Ĉnlγ+1kγ+1hγ+1 = −an0hγ+1

and so viewing everything as polynomials in the web of paths we have

n

Ĉnlγ

kγ+1=an0

0

C0lγ

hγ+1

lγ

kγ

0 A0lγ

hγ

lγ

r
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We deduce that hγ = A0lγ r and hγ+1 = −C0lγ r for some r ∈ elγ A by viewing
everything as polynomials and examining the x and y components. Thus

(hi) = (0, . . . , 0, hγ , hγ+1) = (0, . . . , 0, A0lγ ,−C0lγ )r ∈ K3

and so the claim is true when h1 = . . . = hγ−1 = 0. Thus assume that the claim is
true for any (0, . . . , 0︸ ︷︷ ︸

i

, hi+1, . . . , hγ+1) belonging to the kernel with 1 ≤ i ≤ γ − 1;

we shall now show that the claim is true for any (0, . . . , 0︸ ︷︷ ︸
i−1

, hi, . . . , hγ+1) belonging

to the kernel: certainly

Ĉnlikihi = −

γ+1∑

t=i+1

Ĉnltktht(1)

and so by viewing everything as polynomials and examining the y components we
see that

y component of hi ≥ (y component of ki+1)− (y component of ki) = jli

Thus
0

hi

A0li li

and so by viewing everything as polynomials we get that hi = A0lir for some
r ∈ eliA. Hence

Ĉnlikihi = ĈnlikiA0lir = Ĉnli+1ki+1C0lir

and so (1) becomes

Ĉnli+1ki+1(C0lir + hi+1) +

γ+1∑

t=i+2

Ĉnltktht = 0.

But also
−Â1li−1ki−1hi = −Â1li−1ki−1A0lir = −Â1likiC0lir

and so by the inductive hypothesis

(0, . . . , 0︸ ︷︷ ︸
i

, C0lir + hi+1, hi+2, . . . , hγ+1) ∈ K3.

But now

(0, . . . , 0︸ ︷︷ ︸
i−1

, hi, . . . , hγ+1) = (0, . . . , 0︸ ︷︷ ︸
i−1

, A0li ,−C0li , 0, . . . , 0)r

+ (0, . . . , 0︸ ︷︷ ︸
i

, C0lir + hi+1, hi+2, . . . , hγ+1)

and so (0, . . . , 0︸ ︷︷ ︸
i−1

, hi, . . . , hγ+1) ∈ K3. Thus by induction the claim is established, so

the kernel is K3.
We have an obvious surjection

γ⊕

i=1

eliA =

n⊕

i=1

(eiA)αi−2 → Ω3K3 =

γ∑

i=1

(0, . . . , 0︸ ︷︷ ︸
i−1

, A0li ,−C0li , 0, . . . , 0︸ ︷︷ ︸
γ−i

)eliA
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which, by using a similar argument as in Lemma 6.7 is also injective. This proves
that pd(D0) ≤ 3. Since the first and second syzygies are not projective equality
holds. �

Summarizing what we have proved

Theorem 6.9. Consider G = 1
r
(1, a) and A = Ar,a. Then for 1 ≤ t ≤ n the simple

Dt at vertex t has projective resolution

0 (etA)αt−1 (et−1A)⊕ (e0A)αt−2 ⊕ (et+1A) etA Dt 0

(where if t = n take t +1 = 0) and so pd(Dt) = 2. Further the simple D0 at vertex
0 has projective resolution

0
⊕n

i=1(eiA)αi−2 (e0A)1+
P

(αt−2) enA⊕ e1A e0A D0 0

and so
(i) If G ≤ SL(2,C) (i.e. all αt = 2) then pd(D0) = 2.
(ii) If G � SL(2,C) (i.e. some αt > 2) then pd(D0) = 3.

Proof. For 1 ≤ t ≤ n if αt = 2 use Lemma 6.5; if αt > 2 then use Lemma 6.7. For
the 0th vertex use either Corollary 6.6 or Lemma 6.8. �

All the hard work in the global dimension statement has now been done - to
finish the proof we use standard ring theoretic methods involving the Azumaya
locus.

Theorem 6.10.

gldimAr,a =

{
2 if a = r − 1
3 else

Proof. It is well-known by [Rai87] that

gldimA = sup{pdAS : S simple right R module}.

Let S be such a simple and consider annRS; it is a maximal ideal of R (see e.g.
[BG02, III.1.1(3)]). There are two possibilities
(i) annRS lies in the Azumaya locus. Then

pdAS = sup{pdAm

Sm : m ∈ maxR} = pdAannRS
SannRS ≤ gldimAannRS = 2.

by Corollary 6.4.
(ii) annRS does not lie in the Azumaya locus, so by Lemma 6.3 annRS = m0. Now
the maximal number of non-isomorphic simple A-modules V with annRV = m0 is
equal to the PI degree of A ([BG02, III.1.1(3)]) which we already know is n+1. But
it is clear that D0, . . . , Dn are all annihilated by m0 and so consequently these must
be all the simple A-modules annihilated by m0. Thus S must be one of D0, . . . , Dn,
and so by Theorem 6.9 we know that the projective dimension is either 2 or 3.
Combining (i) and (ii) gives the desired result. �
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