
A VERY ELEMENTARY PROOF THAT THE SOMOS 5 SEQUENCE IS

INTEGER VALUED

Abstract. We give a short and elementary proof that every term in the Somos 5
sequence is integer valued, and is coprime to the proceeding two terms.

1. Introduction

Definition 1.1. The Somos 5 sequence is the sequence (an)n∈N defined by the rule

anan+5 = an+1an+4 + an+2an+3

with a0 = a1 = a2 = a3 = a4 = 1.

The sequence starts 1, 1, 1, 1, 1, 2, 3, 5, 11, . . .. There are various proofs of the fact
that it is integer valued. One is via elliptic curves [2], another as a consequence of the
Laurent phenomenon in cluster algebras [1]; presumably there are also many others that
are unpublished or elsewhere in the literature. The purpose of this short note is to give
a very elementary proof that furthermore establishes a stronger result, namely that each
term in the Somos 5 sequence is integer valued, and coprime to the proceeding two terms.
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2. Proof

We require the following two well-known and easy lemmas. The first follows by
inspection of the relevant prime decompositions.

Lemma 2.1. For a, b, x, y ∈ N, (a, x) = (a, y) = (b, x) = (b, y) = 1 ⇐⇒ (ab, xy) = 1.

Lemma 2.2. For x, y ∈ N, (x, y) = 1 ⇐⇒ (x+ y, y) = 1.

Proof. (⇒) By the assumption there exists p, q ∈ Z such that px + qy = 1. Then p(x +
y)− py + qy = 1 so that p(x+ y) + (q − p)y = 1. Therefore (x+ y, y) = 1.
(⇐) By the assumption there exists m,n ∈ Z such that m(x + y) + ny = 1. Then
mx+ (m+ n)y = 1, so (x, y) = 1. �

Recall that the Somos 5 sequence is denoted (an)n∈N.

Notation 2.3. For n ≥ 2, we define sn := a2
n
+ an−2an+2.

The following two results are elementary.

Lemma 2.4. For n ≥ 4, an−3sn = an+1sn−2.

Proof. We compute

an−3sn = an−3(a
2
n
+ an−2an+2)

= an−3a
2
n
+ an−2an−3an+2

= an−3a
2
n
+ an−2(an+1an−2 + anan−1)

= a2
n−2an+1 + an(anan−3 + an−1an−2)

= a2
n−2an+1 + anan+1an−4

= an+1(a
2
n−2 + anan−4)

= an+1sn−2.
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Corollary 2.5. For all n ≥ 2 we have

sn =

{

2an+1an−1 for n even

3an+1an−1 for n odd.

Proof. We will show that this is true for n even. Certainly s2 = 12+1 = 2 so the statement
is true for n = 2. Now let n ≥ 4 be even and suppose that the statement is true for all
smaller even numbers. Then an−3sn = an+1sn−2 by Lemma 2.4, and so by inductive
hypothesis an−3sn = an+1(2an−1an−3). Cancelling terms, sn = 2an+1an−1, proving the
inductive step. The proof for n odd is identical. �

This leads to the main result.

Theorem 2.6. In the Somos 5 sequence, each an ∈ Z, and further we have (an, an−1) =
(an, an−2) = 1.

Proof. We prove the statement by induction, the statement being obvious by inspection
for n ≤ 6. Hence we consider n ≥ 7, and suppose that the statement is true for smaller n.

We first show that an ∈ Z. By Corollary 2.5 sn−2 = kan−1an−3, where either k = 2
or k = 3, depending on whether n is even or odd. Regardless, k ∈ Z. Equating this
expression with the definition of sn−2, rearranging we obtain

an−4an = kan−1an−3 − a2
n−2.

By the inductive hypothesis an−1, an−3, an−2 and k are all integers, so it follows that
an−4an ∈ Z. Further, by the definition of the Somos-5 sequence,

anan−5 = an−1an−4 + an−2an−3

and so since by inductive hypothesis an−1, an−4, an−2 and an−3 are all integers, we also see
that an−5an ∈ Z. But (an−5, an−4) = 1 by inductive hypothesis, so there exists p, q ∈ Z

such that pan−5 + qan−4 = 1. Simply multiplying this equation by an gives

an = pan−5an + qan−4an,

which shows that an ∈ Z.
We next verify that (an, an−1) = (an, an−2) = 1. Certainly by inductive hypothesis

we have
(an−1, an−2) = (an−1, an−3) = (an−4, an−2) = (an−4, an−3) = 1.

Hence, using Lemma 2.1,
(an−1an−4, an−2an−3) = 1.

Now using Lemma 2.2 with x := an−1an−4 and y := an−2an−3, we see that

(an−1an−4 + an−2an−3, an−2an−3) = 1,

thus (anan−5, an−2an−3) = 1 and so (an, an−2) = 1 by Lemma 2.1. By a very sim-
ilar argument, using Lemma 2.2 with y := an−1an−4 and x := an−2an−3 we obtain
(anan−5, an−1an−4) = 1 and so again by Lemma 2.1 (an, an−1) = 1, as required. �
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