Candidates must answer *four* questions in total, and must answer *at least one* question from *each* section.

SECTION 1.

(1) (a) Let $z, w \in \mathbb{C}$. Determine whether the following are TRUE or FALSE. If they are true, give a short proof. If they are false, give a counterexample.

(i)	$\overline{z+w} = \overline{z} + \overline{w}.$	[1 mark]
(ii)	$\overline{z}\overline{w} = \overline{z}\overline{w}.$	[1 mark]
(iii)	$\overline{(z/w)} = \overline{z}/\overline{w}.$	[1 mark]
(iv)	z+w = z + w .	[1 mark]
(v)	$ z^2 = z ^2.$	[1 mark]

(b) Give examples of non-empty sets X and Y such that

(i) $X \cap Y = X \cup Y$.[2 marks](ii) $X \setminus Y = X$.[2 marks](iii) Every function $X \to Y$ is injective.[3 marks]

In each case, justify your answer.

- (c) Let $f: X \to Y$ be a function. Prove that f is injective if and only if there exists a function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$, where id_X is the identity function on X.
- (2) (a) Find integers a and b such that 51a + 36b = 3. [4 marks]
 - (b) How many different integers divide $2^2 \times 3^2 \times 11^4$? Justify your answer.

|3 marks|

- (c) Recall that a relation R on a set X is called an equivalence relation if R is reflexive (i.e. xRx for all $x \in X$), R is symmetric (i.e. xRy implies yRx for all $x, y \in X$) and R is transitive (i.e. xRy and yRz implies xRz for all $x, y, z \in X$). Describe briefly how we can define the integers mod n by using equivalence relations. Define also addition and multiplication mod n. [4 marks]
- (d) Find all solutions to the congruence $x^2 \equiv 4 \mod 6$. [4 marks]

SECTION 2.

- (3) (a) Define what we mean by a *sequence*, and what it means for a sequence to *converge to a limit*. [2 marks]
 - (b) Determine the limits, if they exist, of the following sequences. If the limit exists, give a proof. If the limit does not exist, justify why the sequence does not converge.
 - (i) $a_n := \frac{1}{n}$ for all $n \in \mathbb{N}$. [2 marks]

[Please turn over]

- (ii) $a_n := \frac{n^3 n^2}{n}$ for all $n \in \mathbb{N}$. [2 marks]
- (iii) $a_n := \frac{1}{n} + (0.7)^n$ for all $n \in \mathbb{N}$. [3 marks]
- (iv) $a_n := \frac{\sqrt{n^2-1}}{n}$ for all $n \in \mathbb{N}$. [2 marks]
- (c) Give an example of
 - (i) a sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_n\to 0$ as $n\to\infty$, but $\sum_{n=1}^\infty a_n$ is not finite. Justify your answer.
 - (ii) a sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_n\to 0$ as $n\to\infty$, but $\sum_{n=1}^\infty a_n$ is finite. Justify your answer.
- (a) Define what we mean by a series, and what it means for a series to converge to a limit. [2 marks]
 - (b) Determine whether the following series converge. If they converge, find their limit and give a proof. If they do not converge, justify why.
 - [1 mark]
 - [2 marks]
 - (i) $\sum_{i=1}^{\infty} 1$. (ii) $\sum_{i=1}^{\infty} a$, where $a \in \mathbb{R}$. (iii) $\sum_{i=1}^{\infty} i$. (iv) $\sum_{i=1}^{\infty} \frac{1}{i}$. [1 mark]
 - [2 marks]
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function, and let $a \in \mathbb{R}$. Define the Taylor expansion of f around a. [2 marks]
 - (d) Find the Taylor expansion of $\ln(1+x)$ around a when
 - (i) a = 0. [2 marks]
 - (ii) a = 1. [3 marks]

SECTION 3.

- (5) (a) Let A and B be $n \times n$ matrices. Determine whether the following are TRUE or FALSE. If they are true, give a (short) proof. If they are false, provide a counterexample.
 - (i) If the trace of A is zero, then A is invertible.
 - (ii) If the determinant of A is zero, then A is invertible.
 - (iii) If AB = BA, then $(AB)^{-1} = A^{-1}B^{-1}$.
 - (iv) If $A^5 = 0$, then A = 0.
 - (v) If $A^5 = \mathbb{I}$, then A is invertible.

[5 marks]

- (b) Let A be a 2×2 matrix.
 - (i) Define the *characteristic polynomial* of A, and define what we mean by the eigenvalues and the eigenvectors of A. [3 marks]

[Please turn over]

(ii) Show that the characteristic polynomial of A can be written as

$$t^2 - \operatorname{Tr}(A)t + \det(A)$$
,

where Tr(A) denotes the trace of A, and det(A) denotes the determinant of A. [3 marks]

(c) Determine the eigenvalues and the eigenvectors of the matrix

$$\left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 3 & 4 \end{array}\right).$$

[4 marks]

- (6) (a) Let A be an $n \times n$ matrix, and let P be a $n \times n$ invertible matrix.
 - (i) Show that A and $P^{-1}AP$ have the same determinant. You can use any theorems from lectures, provided that they are clearly stated. [3 marks]
 - (ii) Show that A is invertible if and only if $P^{-1}AP$ is invertible. [3 marks]
 - (b) Consider the matrix

$$A := \left(\begin{array}{cccc} 0 & 3 & 6 & 9 & 33 \\ 1 & 2 & 7 & 0 & 11 \\ -2 & -2 & -10 & 7 & 2 \end{array}\right).$$

(i) Find the echelon form of A.

[3 marks]

(ii) Find the reduced echelon form of A.

[3 marks]

(iii) Hence or otherwise describe the solution set of the linear equations

$$3x_2 + 6x_3 + 9x_4 = 33$$
$$x_1 + 2x_2 + 7x_3 = 11$$
$$-2x_1 - 2x_2 - 10x_3 + 7x_4 = 2.$$

[3 marks]