Solution(s) to Week 2 Assignment

(a)(i) If AC F, then |A| < |F|.
Solution 1: Since A C F, every element in A is an element in F. This means that if

there are n elements in A, there are at least n elements in F. Hence |A| < |F|.

Solution 2: Since A C F, every element in A is an element in F. It may be true that
F has other elements in addition to the ones that are in A, so |A| < |F].

(other variations of the above two solutions are also possible)

(a)(ii) |A| < AU B.
Solution: Since A C AU B, this follows immediately from (a)(i) (with F := AU B).

(a)(iii) JAU B| < |A| + |B].

Solution: If AN B = () then the list of elements of AU B consists of the complete list
of the elements of A adjoined with the complete list of the elements of B. Hence in
this case |AU B| = |A| + |B|. On the other hand, if AN B # () (i.e. A and B have
elements in common) then elements in AN B are listed only once in AU B. However

in |A| 4+ |B|, the elements in AN B are counted twice, hence |AU B| < |A| + |B|.

(again, many other solutions are possible)

(a)(iv) [AU B| = max(|A[, [B]).

Solution: Since A C AU B, by (a)(i) |JAU B| > |A|. But also B C AU B, so again
by (a)(i) JAU B| > |B|. This shows that |AU B] is greater than or equal to both |A|
and |B], hence it follows that |AU B| > max(|A|,|B|).

(a)(v) |AN B| < min(|A[, B]).
Solution: Since ANB C A, by (a)(i) |JAN B| < |A|. But also AN B C B, so again by

(a)(i) JAN B| < |B|. This shows that |[AN B] is less than or equal to both |A| and
|B|, hence it follows that |AN B| < min(|A[,|B|).

(b)(ii) |JA|l=|AUB| <= B CA.

Solution 1: (=) Suppose that |[A| = |AU B|. Then since A C AU B, it follows that
A = AU B. In particular, there cannot be a member of B which does not belong to
A, so B C A

(<) Suppose that B C A, then certainly A= AU B. In particular their sizes are the
same, i.e. |A|=|AU B|.

Solution 2: (proves both directions at the same time) Since A C AU B, |A| =
|AUB| <= A= AU B. But this holds if and only if B C A.

(b)(iii) |JAUB| = |A|+ |B|] <= ANB=4.
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Solution 1: The proof of (c) shows that |[AU B| = |A| + |B| — |AN BJ. Hence
JAUB|=|A|+|B| < |ANB|=0 < AnB=4.

Solution 2: (direct, not using (c)) (<) Suppose that AN B = (), then the list of
elements of AU B consists of the complete list of the elements of A adjoined with the
complete list of elements of B. Hence |AU B| = |A| + |B|.

(=) Suppose that |[AU B| = |A|+|B|. If ANB # ) we can find an element a € ANB.
But this element is listed only once in AU B, whereas it is counted twice in |A| + |B].
This implies that |[AU B| < |A| + | B|, which is a contradiction. Hence AN B = ().

(b)(iv) |JAU B| = max(|A|,|B|) <= AC Bor BC A.

Solution: From the definition of maximum, we have that

|AU B| = max(|A|,|B]) <= |AUB|=|A| or |AUB|=B]|. (1)
But by (b)(ii) we have
JAUB|=|A| <= BCA (2)
and
|JAUB|=|B| <= ACB. (3)

Combining (1), (2) and (3) gives
|AU B| = max(|A|,|B|]) <= AC Bor BCA.

Remark: You might find it easier to first argue the (=) direction (i.e. suppose that
|AU B| = max(|A|, |B]|) and argue that either A C B or B C A), then second argue
the (<) direction (i.e. suppose that A C B or B C A, then argue that |[AUB| =
max(|A[, |Bl))

(b)(v) |AN B| =min(|A|,|B|]) < AC Bor BCA.
Solution: From the definition of minimum, we have that
|[AN B|=min(A|,|B|) < |ANB|=|A| or |ANB|=|B]|. (4)

Since AN B C A,

IJANB|=|Al <= A=ANB < ACB. (5)
Similarly since AN B C B,

|JANB|=|B| <= B=ANB < BCA. (6)
Combining (4), (5) and (6) gives

|JAN B| = min(|A|,|B|]) <= AC Bor BCA.

Remark: Again, you might find it easier to first argue the (=) direction (i.e. suppose
that |[AN B| = min(|A|,|B|) and argue that either A C B or B C A), then second
argue the (<) direction (i.e. suppose that A C B or B C A, then argue that |[AN B| =
min(|A[,[B]))-

(c) JAUB| =|A|+ |B| — |AN B|.
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(d) Proof: (similar to (a)(iii)) If AN B = () then the list of elements of AU B consists
of the complete list of the elements of A adjoined with the complete list of elements
of B. Hence in this case |AU B| = |A| + |B| = |A| + |B| —|AN B|. On the other
hand, if AN B # ) (i.e. A and B have elements in common) then elements in AN B
are listed only once in AU B. However in |A|+|B|, the elements in AN B are counted
twice, hence |[AUB| = |A| + |B| — |AN B|.

(There are many other possible proofs of this)

(e) JAUBUC|=|A|+|B|+|C|—|ANnB|—|ANC|—|BNC|+|ANnBNC|.
Even although the question did not ask for a proof, here is one:

JAUBUC| = [(AuB)UC(]|

= |AUB|+|C|—|(AuB)NC|

= |AUB|+I|C|—|(AnC)u (BN C)]

© JAUB|+|C|—(|JANnC|+|BNC|=|(AnC)N(BNC)))

= |AUB|+|C|-]ANC|—|BNC|+|ANnBNC|

© (JA|+|B]—=|ANB|)+|C|—|ANC|—|BNC|+|AnBNC|
= |Al+|B|+|C|-|AnB|-|ANC|—|BNC|+|AnBNC]|.

2.4. (i) Consider the function f : [0,1] — [0, 1] defined by f(x) := 1. Since f(0) =
f(1) with 0 # 1, f is not injective. Further, since 0 € [0, 1] and there does not exist
a € [0, 1] such that f(a) = 0, it follows that f is not surjective.

(i) Consider the function g : [0,1] — [0,1] defined by g(x) := 4(x — 3). Since
g(0) = g(1) with 0 # 1, g is not injective. However, for all y € [0, 1] there exists
x € [0, 1] such that g(x) = y (to see this just draw the graph of the function; | cannot
do this easily on the computer | am using), hence it follows that g is surjective.

(ii) Consider the function h : [0,1] — [0,1] defined by h(x) := 5. Suppose that
x1, X2 € [0,1] with h(x;) = h(x2). Then % = 2 and so x; = xa. This shows that his
injective. However, 1 € [0, 1] and there does not exist x € [0, 1] such that h(x) =1
(since if 3 = 1 then x = 2, which does not belong to the domain), hence it follows

that h is not surjective.

(iv) Consider the function j : [0,1] — [0, 1] defined by j(x) := 1 — x. Suppose that
x1,x2 € [0,1] with j(x1) = j(x2). Then 1 —x; = 1 — x; and so x; = xp. This
shows that j is injective. Also, if y € [0,1] then take x := 1 —y € [0,1]. Since
Jj(x)=1—(1—y) =y, it follows that j is surjective.
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