
Solution(s) to Week 2 Assignment

(a)(i) If A ⊆ F , then |A| ≤ |F |.

Solution 1: Since A ⊆ F , every element in A is an element in F . This means that if

there are n elements in A, there are at least n elements in F . Hence |A| ≤ |F |.

Solution 2: Since A ⊆ F , every element in A is an element in F . It may be true that

F has other elements in addition to the ones that are in A, so |A| ≤ |F |.

(other variations of the above two solutions are also possible)

(a)(ii) |A| ≤ |A ∪ B |.

Solution: Since A ⊆ A ∪ B , this follows immediately from (a)(i) (with F := A ∪ B).

(a)(iii) |A ∪ B | ≤ |A|+ |B |.

Solution: If A∩B = ∅ then the list of elements of A∪B consists of the complete list

of the elements of A adjoined with the complete list of the elements of B . Hence in

this case |A ∪ B | = |A| + |B |. On the other hand, if A ∩ B 6= ∅ (i.e. A and B have

elements in common) then elements in A ∩ B are listed only once in A ∪ B . However

in |A|+ |B |, the elements in A ∩ B are counted twice, hence |A ∪ B | < |A|+ |B |.

(again, many other solutions are possible)

(a)(iv) |A ∪ B | ≥ max(|A| , |B |).

Solution: Since A ⊆ A ∪ B , by (a)(i) |A ∪ B | ≥ |A|. But also B ⊆ A ∪ B , so again

by (a)(i) |A ∪ B | ≥ |B |. This shows that |A ∪ B | is greater than or equal to both |A|

and |B |, hence it follows that |A ∪ B | ≥ max(|A| , |B |).

(a)(v) |A ∩ B | ≤ min(|A| , |B |).

Solution: Since A∩B ⊆ A, by (a)(i) |A ∩ B | ≤ |A|. But also A∩B ⊆ B , so again by

(a)(i) |A ∩ B | ≤ |B |. This shows that |A ∩ B | is less than or equal to both |A| and

|B |, hence it follows that |A ∩ B | ≤ min(|A| , |B |).

(b)(ii) |A| = |A ∪ B | ⇐⇒ B ⊆ A.

Solution 1: (⇒) Suppose that |A| = |A ∪ B |. Then since A ⊆ A ∪ B , it follows that

A = A ∪ B . In particular, there cannot be a member of B which does not belong to

A, so B ⊆ A.

(⇐) Suppose that B ⊆ A, then certainly A = A ∪ B . In particular their sizes are the

same, i.e. |A| = |A ∪ B |.

Solution 2: (proves both directions at the same time) Since A ⊆ A ∪ B , |A| =

|A ∪ B | ⇐⇒ A = A ∪ B . But this holds if and only if B ⊆ A.

(b)(iii) |A ∪ B | = |A|+ |B | ⇐⇒ A ∩ B = ∅.
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Solution 1: The proof of (c) shows that |A ∪ B | = |A|+ |B | − |A ∩ B |. Hence

|A ∪ B | = |A|+ |B | ⇐⇒ |A ∩ B | = 0 ⇐⇒ A ∩ B = ∅.

Solution 2: (direct, not using (c)) (⇐) Suppose that A ∩ B = ∅, then the list of

elements of A∪B consists of the complete list of the elements of A adjoined with the

complete list of elements of B . Hence |A ∪ B | = |A|+ |B |.

(⇒) Suppose that |A ∪ B | = |A|+ |B |. If A∩B 6= ∅ we can find an element a ∈ A∩B .

But this element is listed only once in A∪B , whereas it is counted twice in |A|+ |B |.

This implies that |A ∪ B | < |A|+ |B |, which is a contradiction. Hence A ∩ B = ∅.

(b)(iv) |A ∪ B | = max(|A| , |B |) ⇐⇒ A ⊆ B or B ⊆ A.

Solution: From the definition of maximum, we have that

|A ∪ B | = max(|A| , |B |) ⇐⇒ |A ∪ B | = |A| or |A ∪ B | = |B | . (1)

But by (b)(ii) we have

|A ∪ B | = |A| ⇐⇒ B ⊆ A (2)

and

|A ∪ B | = |B | ⇐⇒ A ⊆ B . (3)

Combining (1), (2) and (3) gives

|A ∪ B | = max(|A| , |B |) ⇐⇒ A ⊆ B or B ⊆ A.

Remark: You might find it easier to first argue the (⇒) direction (i.e. suppose that

|A ∪ B | = max(|A| , |B |) and argue that either A ⊆ B or B ⊆ A), then second argue

the (⇐) direction (i.e. suppose that A ⊆ B or B ⊆ A, then argue that |A ∪ B | =

max(|A| , |B |))

(b)(v) |A ∩ B | = min(|A| , |B |) ⇐⇒ A ⊆ B or B ⊆ A.

Solution: From the definition of minimum, we have that

|A ∩ B | = min(|A| , |B |) ⇐⇒ |A ∩ B | = |A| or |A ∩ B | = |B | . (4)

Since A ∩ B ⊆ A,

|A ∩ B | = |A| ⇐⇒ A = A ∩ B ⇐⇒ A ⊆ B . (5)

Similarly since A ∩ B ⊆ B ,

|A ∩ B | = |B | ⇐⇒ B = A ∩ B ⇐⇒ B ⊆ A. (6)

Combining (4), (5) and (6) gives

|A ∩ B | = min(|A| , |B |) ⇐⇒ A ⊆ B or B ⊆ A.

Remark: Again, you might find it easier to first argue the (⇒) direction (i.e. suppose

that |A ∩ B | = min(|A| , |B |) and argue that either A ⊆ B or B ⊆ A), then second

argue the (⇐) direction (i.e. suppose that A ⊆ B or B ⊆ A, then argue that |A ∩ B | =

min(|A| , |B |)).

(c) |A ∪ B | = |A|+ |B | − |A ∩ B |.
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(d) Proof: (similar to (a)(iii)) If A∩B = ∅ then the list of elements of A∪B consists

of the complete list of the elements of A adjoined with the complete list of elements

of B . Hence in this case |A ∪ B | = |A| + |B | = |A| + |B | − |A ∩ B |. On the other

hand, if A ∩ B 6= ∅ (i.e. A and B have elements in common) then elements in A ∩ B

are listed only once in A∪B . However in |A|+ |B |, the elements in A∩B are counted

twice, hence |A ∪ B | = |A|+ |B | − |A ∩ B |.

(There are many other possible proofs of this)

(e) |A ∪ B ∪ C | = |A|+ |B |+ |C | − |A ∩ B | − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |.

Even although the question did not ask for a proof, here is one:

|A ∪ B ∪ C | = |(A ∪ B) ∪ C |

(c)
= |A ∪ B |+ |C | − |(A ∪ B) ∩ C |

= |A ∪ B |+ |C | − |(A ∩ C ) ∪ (B ∩ C )|

(c)
= |A ∪ B |+ |C | − (|A ∩ C |+ |B ∩ C | − |(A ∩ C ) ∩ (B ∩ C )|)

= |A ∪ B |+ |C | − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |

(c)
= (|A|+ |B | − |A ∩ B |) + |C | − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |

= |A|+ |B |+ |C | − |A ∩ B | − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C | .

2.4. (i) Consider the function f : [0, 1] → [0, 1] defined by f (x) := 1. Since f (0) =

f (1) with 0 6= 1, f is not injective. Further, since 0 ∈ [0, 1] and there does not exist

a ∈ [0, 1] such that f (a) = 0, it follows that f is not surjective.

(ii) Consider the function g : [0, 1] → [0, 1] defined by g(x) := 4(x − 1
2)

2. Since

g(0) = g(1) with 0 6= 1, g is not injective. However, for all y ∈ [0, 1] there exists

x ∈ [0, 1] such that g(x) = y (to see this just draw the graph of the function; I cannot

do this easily on the computer I am using), hence it follows that g is surjective.

(iii) Consider the function h : [0, 1] → [0, 1] defined by h(x) := x

2 . Suppose that

x1, x2 ∈ [0, 1] with h(x1) = h(x2). Then
x1
2 = x2

2 and so x1 = x2. This shows that h is

injective. However, 1 ∈ [0, 1] and there does not exist x ∈ [0, 1] such that h(x) = 1

(since if x

2 = 1 then x = 2, which does not belong to the domain), hence it follows

that h is not surjective.

(iv) Consider the function j : [0, 1] → [0, 1] defined by j(x) := 1 − x . Suppose that

x1, x2 ∈ [0, 1] with j(x1) = j(x2). Then 1 − x1 = 1 − x2 and so x1 = x2. This

shows that j is injective. Also, if y ∈ [0, 1] then take x := 1 − y ∈ [0, 1]. Since

j(x) = 1− (1− y) = y , it follows that j is surjective.
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