ACCELERATED ALGEBRA AND CALCULUS

Solution to Week 7 Assignment

Q4(i), (ii)

We use the Euclidean algorithm to compute gcd(51,36):

$$51 = 1 \cdot 36 + 15$$

$$36 = 2 \cdot 15 + 6$$

$$15 = 2 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0.$$

This shows that gcd(51,36) = 3. Now using these equations,

$$3 = 15 - 2 \cdot 6$$

$$= (51 - 36) - 2(36 - 2 \cdot 15)$$

$$= 51 - 36 - 2 \cdot 36 + 4(51 - 36)$$

$$= 5 \cdot 51 - 7 \cdot 36,$$

so we have 51x + 36y = 3 with x = 5, y = -7.

Multiplying this equation by 2 gives $6 = 51 \cdot 10 + 36 \cdot (-14)$, so we have 51m - 36n = 6 with m = 10, n = 14.

Lemma 3.2.1

Let A, B be finite sets with n, N elements respectively. There exists an injective map $f: A \to B$ if and only if $n \le N$.

Proof. Let us write $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_N\}$.

- If $n \le N$ then define $f: A \to B$ by $f(a_i) = b_i$ for each i = 1, ..., n. Since $b_1, ..., b_n$ are all different, it follows that if $f(x_1) = f(x_2)$ they must both equal the same b_i , hence $x_1 = x_2 = a_i$.
- Suppose $f: A \to B$ is injective. This means that $f(a_i) \neq f(a_j)$ when $i \neq j$, so the set $\{f(a_i) \mid i = 1, ..., n\}$ is a subset of B with n distinct elements. Hence $n \leq N$.