Solution to Week 9 Assignment

Q2(a). To compute A~1, we use Gaussian ellimination on (A | I):
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Q18.2. First, we investigate even n. When n = 2 we have
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a1 — 22 :(—1)3132
ar 0 0 al
since there is precisely one row swap. When n = 4 we see
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Continuing in this way, if n is even, we see that we require 5 row swaps to bring the

n
matrix into diagonal form. Hence, when n is even, the determinant is (—1)2aja; ... a,.
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We now investigate the case when n is odd. When n = 3 we have
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When n =5 we have
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>— row swaps to bring the

Continuing in this way, if nis odd, we see that we require
n—1
matrix into diagonal form. Hence, when nis odd, the determinantis (—1) 2 ajaz... a,.
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