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The motion of swimming micro-organisms that have a preferred direction of travel, such as single-celled
algae moving upwards (gravitaxis) or towards a light source (phototaxis), is modelled as the continuous
limit of a correlated and biased random walk as the time step tends to zero. This model leads to a
Fokker–Planck equation for the probability distribution function of the orientation of the cells, from
which macroscopic parameters such as the mean cell swimming direction and the diffusion coefficient
due to cell swimming can be calculated. The model is tested on experimental data for gravitaxis and
phototaxis and used to derive values for the macroscopic parameters for future use in theories of
bioconvection, for example.
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1. Introduction
It is well known that suspensions of swimming
micro-organisms, such as the alga Chlamydomonas
nivalis, form cooperative patterns on lengthscales of
the order of millimetres, which are much greater than
the size of the individual cells. In order to understand
the fluid dynamics of these macroscopic patterns, the
suspension has been modelled mathematically as a
continuum, see e.g. Childress et al. (1975), Pedley
et al. (1988) and Hill et al. (1989). An important
feature of such models is the prescription of both a
preferred direction of swimming, influenced for
example by gravity (positive or negative gravitaxis) or
by light (phototaxis), and at the same time a degree
of ‘‘randomness’’ in the behaviour of individuals and
across the whole population of micro-organisms. It is
of fundamental importance, therefore, that we
understand how the motion of individuals ultimately
contributes to the bulk flux of cells. Secondly, it is of
intrinsic interest to analyse and quantify the motion
of individual cells and thus to identify differences in
behaviour, which arise either as a result of
environmental changes or between different samples.

In this paper, we present a statistical theory in
which we model, in as general a way as possible, the
motion of the cells as the continuous limit of a
correlated and biased random walk as the time step
tends to zero. The walk is correlated because the cells
change direction gradually and biased because there
is a preferred direction of motion. We have carried
out experiments on C. nivalis and Peridinium
gatunense in which we have recorded the trajectories
of individual cells in a sample of the suspension, and
we are able to demonstrate that the theory is
self-consistent and to derive quantitative measure-
ments of the micro-organisms’ motion. A further
complication is that it has been necessary to collect
the data as projections onto vertical and horizontal
planes, and so we also show how to analyse the
projected trajectories.

Pedley & Kessler (1990) have derived a model for
the motion of individual micro-organisms subject to
gyrotaxis, which combines deterministic torque
balances on a cell with rotational diffusion. We are
able to measure the key parameters in their model
directly. The results of our theories should provide a
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basis for future analysis of more complicated systems,
e.g. when there are several competing external
influences.

In earlier work on Escherichia coli, Berg & Brown
(1972) were able to track single, isolated bacteria in
three dimensions and show that their motion consists
of a series of almost straight runs followed by a short
time spent tumbling before setting off in another
straight line in a different direction. This behaviour is
markedly different to that of the algae studied here,
whose direction varies continuously and smoothly.
Lovely & Dahlquist (1975) used a random walk
model to describe the motion of E. coli when the
motion is isotropic (i.e. in the absence of a preferred
direction) and they showed how to derive a diffusion
coefficient for the flux of bacteria. They also discussed
some bulk statistical measures when there is a
preferred direction, but they did not link this directly
to a random walk model for the individual cells. Thus,
our work extends both the theoretical and the
experimental work on E. coli.

The paper is organized as follows. In Section 2, we
describe our experimental techniques and introduce
typical cell trajectories as a motivation for theory
which follows in Sections 3 to 8. The behaviour of
cells which are oriented by gravitaxis and by
phototaxis is reviewed in Section 9. In Section 10 and
Section 11, we present our experimental results, and
end with a discussion in Section 12.

2. Experimental Methods

The unicelluar photosynthetic freshwater flagellate
Chlamydomonas nivalis (Willie CCAP 11/51) was
grown by inoculating 1 ml of a logarithmic phase
culture into 40 ml of Bold’s basal medium (Bold &
Wynne, 1978) contained in 100-ml Erlenmeyer flasks.
The cultures were kept for about 6 weeks under
continuous light of about 600 lux (=2.5 W m−2 from
mixed cool white and warm tone fluorescent lamps,
Osram 136 W/32) at 23°C. The experiments were
carried out with the cells in their original growth
medium. Cultures of the armoured, fresh water
dinoflagellate Peridinium gatunense were also grown
in a medium described by Lindström (1982) under the
same conditions.

Measurements on the cell suspensions were taken in
a flat cuvette of 40×8×0.17 mm3 inner dimensions
that was held on the stage of a conventional light
microscope (Zeiss Standard, Oberkochen, Germany).
For observations of cells swimming in a vertical
plane, the microscope was placed on its side so that
the optical axis was horizontal. During experiments,
an actinic white light beam was produced from a

250-W quartz halogen slide projector (Prado, Leitz,
Wetzlar, Germany), the beam of which was
collimated with a 200-mm focal-length lens and an
infrared cut-off filter. The irradiance was controlled
by inserting neutral density filters (Schott & Gen.,
Mainz, Germany) and measured at the position of the
cuvette using a luxmeter (Mavolux, Gossen, Erlan-
gen, Germany).

The motion of the organisms was tracked using a
real-time image analysis system as described by Häder
& Lebert (1985). The images of the swimming cells
were recorded with an infrared-sensitive video camera
(Sony AVC 3250). The video images were digitized in
real time with a resolution of 256×256 pixels with 64
gray levels and stored in RAM (random access
memory). The system grabs an initial frame and
searches it to identify one organism at random
according to preselected size and greyscale par-
ameters. Having found a cell, the software determines
the cell’s outline and calculates its centroid and the
time. After finding the cell’s position, the next image
is digitized and the new image of the cell is sought. If
successful, the new time and position of the centroid
are calculated and recorded, and the process is
repeated. If unsuccessful, a new cell is sought and the
whole process is repeated. Fixed time steps are not
used because the computational time between images
varies slightly, but the mean, t̄, and standard
deviation (..), st , of the time steps are 0.08 s and
0.01 s, respectively. The population of cells is
observed over 5 or 10 minutes so that several hundred
tracks can be recorded. In practice, the data consists
of relatively short trajectories from many cells and the

F. 1. A sample of swimming trajectories of C. nivalis cells,
recorded in a vertical plane. The origin of each trajectory has been
moved to the centre of the diagram so that they can be compared
with each other more easily. The trajectories are clustered around
the upper vertical axis showing that the cells are negatively
gravitactic. Note that they change direction gradually and do not
run-and-tumble like bacteria such as E. coli.



   - 505

effects of interactions are included in the data. Plots
of typical trajectories are shown in Fig. 1.

One serious difficulty in the sort of experiments
described here is the occurrence of drifts due to
thermal convection currents within the cuvette
containing the suspension. A thin cuvette of depth
0.17 mm was used but it is very difficult to eliminate
such fluid motion completely; even in a laboratory
with very good temperature control there are always
local sources of heat. In particular, the light sources
used to visualize the cells and to induce phototaxis
always produce radiation that is absorbed by the fluid
and the swimming cells, even after careful filtering.
Furthermore, flows in the suspension induce fluid
shear, which also contributes to the passive
orientation of cells and, in fact, plays a major role in
the orientation of cells by gyrotaxis, which leads
directly to the formation of plumes in bioconvection
(Kessler, 1986). Although the ideal is to eliminate
completely convection in these experiments, which
does not appear to be feasible, some experiments have
been carried out, in which easily identifiable, passively
advected particles were introduced into the suspen-
sion so that the drifts could be measured. It was found
that such thermal currents did not usually exceed
about 10 mm s−1.

3. Circular Statistics

In this section we briefly review the elements of
circular and spherical statistics that are needed for the
random walk model and data analysis. For further
details, the reader is referred to the books by Mardia
(1972) and Batschelet (1981). Given a set of angles
4ui5n

i=1, representing for example the orientation of
directed segments of lines (i.e. vectors) in a plane, the
circular sample mean f and mean length r are defined
by

r cos f= s
n

i=1

cos ui /n, r sin f= s
n

i=1

sin ui /n,

where −pEfQ p and clearly 0E rE 1. The mean
length provides a useful measure of how closely
distributed the set of angles is; when r is close to one
the distribution of angles is sharply peaked, and when
r is close to zero the distribution is almost uniform.
By analogy with the standard deviation in linear
statistics, we can define the angular deviation s to be

s=z2(1− r)

and then s2 is the circular variance. An alternative

definition of the angular deviation is

s0 =z−2 ln r, (1)

which arises from the analogy between a circular
distribution called the wrapped normal distribution
and the normal distribution of linear statistics, as we
shall show later. Both s and s0 tend to the same limit,
zero, as r tends to one but s0 becomes infinite as r
tends to zero.

Probability distribution functions f(u) on a circle
(and their equivalents on a sphere) satisfy

f(u)e 0 [ − pE uQ p (2)

and the normalization condition that the total
probability is one i.e.

g
p

−p

f(u) du=1. (3)

Corresponding to the moments of a linear probability
distribution function (p.d.f.), the angular or trigono-
metric moments are defined as the Fourier coefficients

an =g
p

−p

cos(nu)f(u) du, bn =g
p

−p

sin(nu)f(u) du

[ n=1, 2, 3 , . . . (4)

The polar forms of these moments are written as rn

and fn where

rn exp(ifn )= an + ibn . (5)

r1 and f1 are simply interpreted as the mean length
and mean angle of the distribution. The following
three distributions are particularly useful.

()   

When the distribution is uniform, points are
distributed with equal probability over the circle and

f(u)=U(u)0 1/2p.

For the uniform distribution, r1 =0, f is undefined
and s=z2.

()    

The von Mises distribution is a unimodal
distribution defined by

f(u)=M(u; m, k)0
1

2pI0(k)
exp[k cos(u− m)], (6)

where the parameter m is the mean angle and the k is
the concentration parameter. ke 0. I0 is a modified
Bessel’s function of the first kind and zeroth order.
The von Mises distribution equals the uniform
distribution when k=0, and becomes sharply peaked
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as k : a. For the von Mises distribution, f1 = m and
r=A(k), where

A(k)= I1(k)/I0(k) (7)

which is readily calculated numerically and tabulated
(Batschelet, 1981; Mardia, 1972).

()    

As its name implies, the wrapped normal
distribution is the linear normal distribution wrapped
around the unit circle. It too is unimodal and defined
by

f(u)=W(u; m, s)

0
1

sz2p

s
k=a

k=−a

exp[−(u− m+2pk)2/2s2], (8)

where m and sq 0 are parameters. For the wrapped
normal distribution, r1 = exp(−s2/2) and f1 = m.
For this distribution,

s=z−2 ln r1 (9)

which motivates the alternative definition (1) of the
angular deviation. It is helpful to note that when s is
related to k by

A(k)= exp(−s2/2), (10)

the von Mises and wrapped normal distributions
differ by only a few percent so that in applications it
is convenient to treat their properties as being
indistinguishable because the trigonometric moments
of the wrapped normal distribution are simpler to
calculate than those of the von Mises distribution,
whereas the maximum likelihood estimators of the
von Mises distribution are much simpler to compute
than those of the wrapped normal distribution.

()   

The sample mean f is an unbiased, maximum
likelihood estimator for the mean angle f1 for all the
distributions. The mean length r is a maximum
likelihood estimator for r1 only for the von Mises
distribution but it is heavily biased and over-estimates
k. If n is the number of data points, an approximate
rule to correct this (Batschelet, 1981) is given by

rE 1/zn c k=0, (11)

rq 1/zn c k is the root of A(k)= rA(nrk). (12)

()   

When circular or angular statistics are analysed, the
data are often grouped into a number, k say, of bins

of a width, l=2p/k. Let ni be the number of points
in the i-th bin and let f(i) be the midpoint of the i-th
bin. The sample mean angle and length are then given
by

r cos f= s
k

i=1

ni cos f(i)> s
k

i=1

ni , (13)

r sin f= s
k

i=1

ni sin f(i)> s
k

i=1

ni . (14)

No correction is needed for the sample mean but the
mean length is biased and tends to be a little too
small. The corrected mean length rc is given by

rc = rl/2 sin(l/2). (15)

In this paper, only one width, p/6, of bins is used for
which rc =1.0115r. The corrected value of the
angular deviation is

sc =z2(1− rc ). (16)

4. The Random Walk on a Circle

Suppose that the motion of a cell moving in a plane
is such that the probability distribution function
(p.d.f.) for the speed is independent of the p.d.f. for
the direction of travel. Suppose also that the motion
can be modelled as a random walk in which a cell
changes its velocity at certain instants in time, ti . The
random walk or trajectory is specified by the set of
points 4(xi , ti )5n

i =0, where xi =(xi , yi ) is the position
vector with respect to the fixed laboratory frame of
reference. A segment of the trajectory is defined as the
straight line joining any two consecutive points and
the absolute directions 4ui5n

i=1 of the segments are
given by

cos ui = k.(xi − xi−1)/=xi − xi−1= [ i=1, 2, . . . , n,

where k is a unit vector parallel to a reference
direction in the plane (upwards if the plane is vertical)
and −pE ui Q p. If we consider only the direction of
travel because the speed is an independent random
variable, then the points 4ui , ti5n

i =1 can be thought
of as a random walk on the unit circle and we seek
to derive the p.d.f. for u, f(u), and the circular
moments of u. If there is a preferred direction,
denoted by u0, then the walk is said to be biased.

A second important random variable is the set of
turning angles 4di5n

i=2 defined by

di = ui − ui−1,− pE di Q p [ i=2 , . . . , n. (17)
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This too describes a random walk on the unit circle.
If the original random walk in the plane is biased then
d is a function of u. A random walk is said to be
correlated if a1, the mean cosine defined in eqn (4), is
strictly positive i.e. at each time step there is a
tendency to continue to travel in the same direction.

These definitions and concepts are easily extended
to motion in a volume of space, in which
xi =(xi , yi , zi ) and u and d are replaced by pairs of
Euler angles leading to random walks on the unit
sphere.

5. The Fokker–Planck Equation

In order to derive the p.d.f. for u, we consider the
continuous limit of the random walk on a circle. Here
we present a heuristic argument for the derivation.
For further details see Cox & Miller (1965) and
Risken (1989). Suppose that there is a small, fixed
time step t between changes in direction and that at
time t the direction equals u(t). At time t+ t, the
direction either changes by a small angle 2d or is
unchanged with probabilities given by

P(d)= p(u), P(−d)= q(u),

P(0)=1− p(u)− q(u), (18)

where p(u) and q(u) are small, continuous functions
of u. Then, drawing the proper distinction between
the random variable U and its value u, we define the
p.d.f. f(u, t) of U by

f(u, t)d=P[uEU(t)Q u+ d]. (19)

On considering the previous time step, we see that

f(u, t)= f(u− d, t− t)p(u− d)

+ f(u, t− t)[1− p(u)− q(u)]

+ f(u+ d, t− t)q(u+ d). (20)

We expand the last equation in a Taylor series and
take the limit as t and d tend to zero, retaining terms
O(t), O(d) and O(d2). To do this, we require that

E[U(t+ t)−U(t)]0E[D(u, t)]0 md (u, t)= m0(u)t

(21)

and

Var[U(t+ t)−U(t)]0 Var[D(u, t)]

0 s2
d (u, t)= s2

0 (u)t (22)

asymptotically as t : 0, where

D(u, t)=U(t+ t)−U(t) (23)

is the random variable corresponding to the turning
angle. Note that for convenience we shall use the
notation md and sd to denote the expectation and
angular deviation of D(u, t) henceforth. These
conditions on the mean and variance of D(u, t) can be
satisfied if

p(u)= [s2
0 (u)+ m0(u)d]/2A,

q(u)= [s2
0 (u)− m0(u)d]/2A

and

d2 =At as t : 0,

where A is a positive constant such that s2
0 (u)QA.

Taking this limit yields the Forward Kolmogorov or
Fokker–Planck equation for f(u, t)

1

1t
f(u, t)=−

1

1u
[m0(u)f(u, t)

+
1
2

12

1u2 [s2
0 (u)f(u, t)]. (24)

Thus, when we are approximating a swimming
cell’s trajectory by the continuous limit of a random
walk, we need to demonstrate that the distribution of
the turning angle, D, tends to the correct limits (21)
and (22) as the time step is decreased, in which case
we have direct measurements of the coefficients in the
Fokker–Planck equation (24), which are needed to
calculate f(u, t) and hence the macroscopic mean cell
velocity and cell diffusivity used in continuum models
of suspensions of motile micro-organisms. We refer to
m0(u) as the orientation (or drift) coefficient for the
Fokker–Planck equation and

D= s2
0 /2 (25)

as the effective rotational diffusivity for the cells.
The Fokker–Planck equation (24) is solved subject

to the conditions that f(u, t) and the probability flux

j(u, t)0 m0(u)f(u, t)−
1
2

1

1u
[s2

0 (u)f(u, t)] (26)

are both periodic, specifically that

f(−p, t)= f(p, t) and j(−p, t)= j(p, t) (27)

for all tq 0. In addition, f(u, t) must be non-negative
(2) and normalized (3) and, for the time-dependent
problem, satisfies a suitable initial condition. All the
solutions of (24) ultimately decay to a steady-state
independent of the initial conditions, which is the
state that we expect to observe in the experiments
described further on.
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6. Models for Reorientation

In this section, motivated by observations on
swimming cells, we consider two possible models for
the orientation or drift coefficient m0(u) [see eqn (21)]
and calculate the steady solutions of the Fokker–
Planck equation (24). In both cases, we take s0(u),
which is difficult to measure in practice, to be a
constant and determine the relationship between it
and the angular, deviation, su , of the steady solution
of (24), which is more easily measured. These results
are needed below in the analysis of the data.

6.1.  

Suppose that the orientation coefficient takes the
form

m0(u)=−d0 sin(u− u0) (−pE u, u0 Q p), (28)

where u0 is a constant corresponding to the preferred
direction and d0 is the amplitude of the drift coefficient
and is taken to be a positive constant. When s0 is also
a constant, the normalized solution of the steady
Fokker–Planck equation (24) plus boundary con-
ditions is easily shown to be the von Mises
distribution

f(u)=M(u; u0, 2d0/s2
0 ) (29)

[see eqn (6)]. From (1) and (7), it follows that the
angular deviation of this von Mises distribution (29)
is

su =z−2 ln[A(2d0/s2
0 )]. (30)

Thus given independent measurements of d0 and su ,
(30) can be inverted to give

s0 =z2d0/A−1[exp(−s2
u /2)], (31)

which is readily calculated using for example a
Newton–Raphson numerical scheme to evaluate the
inverse function A−1 or from tables of A−1. In fact, the
quickest method is to read off values of A−1(k) from
a graph of A(k) as this is sufficiently accurate for the
data in this paper.

6.2.  

A second model for the orientation coefficient is

m0(u)=6−d0u,
0,

−pQ uQ p,
u=2p,

(32)

where again the amplitude, d0, of the orientation
coefficient is a positive constant. On taking s0 to be
a positive constant, the normalized solution of the
steady Fokker–Planck equation (24) plus boundary

conditions is readily shown to be

f(u)=B(l) exp(−lu2), l= d0/s2
0, (33)

where B(l) is the normalization function defined by

B(l)=1> g
p

−p

exp(−lu2) du=zl/0zp erf(pzl)1.
(34)

Note that f(u) and the probability flux j(u) are
required to be continuous at u=2p, as specified in
(27), but 1f/1u is not because m(u) is discontinuous
there. The mean length and angle of this distribution
are

r=B(l)g
p

−p

cos(u)e−lu2 du,

f=B(l)g
p

−p

sin (u)e−lu2 du=0, (35)

respectively [see eqns (4) and (5)]. The angular
deviation is

su (l)=z−2 ln r (36)

from definition (1). As for (30) above, this
relationship is straightforward to invert to find s0

given values of su and d0, and for this paper was most
easily evaluated graphically by plotting su (l) using
numerical values for r.

7. Discretization of the Cells’ Trajectories

7.1.    

The image processor used in the experiments
reported here has a resolution of 256×256
rectangular pixels which are 1.70 mm wide by 1.23 mm
high on the real image. When the image is digitized,
a random error in the cells’ positions due to the finite
resolution of the pixels is introduced. A particular
analytical example of such discretization errors was
discussed by Scharstein in Alt & Hoffmann (1990). In
addition, the algorithm used to determine an
individual cell’s trajectory, first attempts to identify
the edge of the cell and thence the position of the
geometric centre, or centroid. Inaccuracies in the
determination of the cell’s boundary also contribute
to the error in its position. In these experiments, as is
shown below, a swimming cell moves about five pixels
on average between data points so that the finite
resolution is a significant source of error in the
trajectory analysis. For the purposes of this paper, we
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F. 2. A diagram to illustrate rediscretization of trajectories.
The original trajectory (solid line) consists of data points (xi , yi )
recorded at times ti . This trajectory is rediscretized (dashed line)
using linear interpolation to obtain a new set of data points
(Xi , Yi , Ti ) with a uniform time step t.

the p.d.f.’s of both the absolute angle, fU(u), and the
turning angle, fD(d), become uniform so that all
information about the correlation in the random walk
is lost and the angular deviation of the turning angle,
sd , tends to a as t tends to 0. Bovet & Benhamou
(1988) have shown in practice that if the angular
deviation sd e 1.2 radians then it is not possible to
reconstruct the random walk.

Secondly, if the random walk is biased, then when
t : a the smoothing of the trajectories results in
each segment of the trajectory being oriented towards
the preferred direction, u= m, and the turning angles
being zero so that

fU(u) : dD (m) and fD(d) : dD (0),

where dD is Dirac’s delta function, so that

sd : 1 as t : a.

Again, however, all information on fD(d) is lost when
the time step is very large.

7.4.   t̄

Consideration of the cases when t is large shows
that a restriction on the data is that t̄ should be
sufficiently small that it is possible to extrapolate back
to t=0 in the original walk, i.e. t̄ should be smaller
than some critical value tc . Using numerical
simulations, Bovet & Benham (1988) showed that, for
an unbiased random walk, tc is such that the angular
deviation of the turning angle sd should be less than
1.2 radians. Values of tc for biased correlated random
walks await detailed numerical simulations which
include pixel noise. Ideally, for the purposes of this
paper, it should be shown that the criterion for the
derivation of the Fokker–Planck equation, namely
that s2

d A t, is met, but the quality of the data is not
good enough to confirm this.

7.5.  

Most swimming cells rotate as they swim and
asymmetries in their body shapes tend to cause them
to travel along helical trajectories. Plots of trajec-
tories, such as those in Fig. 1 for C. nivalis, suggest
that the pitch and radius vary greatly across the
populations that are analysed herein. The apparent
helicity is smoothed out when the data are
rediscretized over long time steps but this effect is
difficult to quantify because of the variation across
the population of cells. We are primarily interested in
their velocity along the axis of the helices in the
applications of our analysis and so, in calculating
swimming speeds, we shall attempt to extrapolate
back from the longer time-step discretizations. In
calculating turning angles, we average over many

shall refer to the cumulative effects of all these errors
as ‘pixel noise’.

7.2. 

The software algorithm for discretizing the cells’
trajectories, records sets of positions and times as
described in Section 2 above. The set of positions and
times for any one cell, 4xi , yi , ti5n

i=0 say, is
rediscretized into a trajectory with uniform time steps
t by linear interpolation into the new set of points
4Xi , Yi , Ti5N

i=0 using the following algorithm:

(1) Tj = t0 + jt [ j=0, 1, 2 ,. . .;

(2) (X0, Y0, T0)= (x0, y0, t0);

(3) given (Xj , Yj , Tj ), find k such that

Tj +1=(1− q)tk + qtk+1,

where 0E qQ 1, and then

(Xj+1, Yj+1)= (1− q)(xk , yk )+ q(xk+1, yk+1).

(See Fig. 2.) When rediscretizing, the new time step t

should be greater than half of the experimental mean
time step t̄/2 to avoid spurious correlations in the
data.

For values of tq t̄/2, one effect of rediscretization
is to smooth the apparent trajectory. Although there
is no detailed theory available, we find that in practice
for our data, when 6t̄Q tQ 20t̄, the mean and
standard deviation of the cell swimming speed
decrease linearly as t increases. This suggests that by
fitting a straight line and extrapolating back to t=0
it is possible to estimate the true values. For smaller
values of t between t̄/2 and 6t̄, the actual data are
influenced by pixel noise and take higher values than
would otherwise be expected.

7.3. t�t̄

Consider first the case in which a cell has no
preferred direction of travel and follows a correlated
random walk with no bias. As t : a, the
rediscretized walk becomes wholly uncorrelated and
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trajectories so that helicity will not affect the mean
turning angles but will increase estimates of the
angular deviation, sd , making this a difficult quantity
to measure.

8. Projection

The trajectories that are recorded by the image
processor are projections, on to a two-dimensional
plane, of individual cells swimming in three
dimensions. However, since the suspension is viewed
through a conventional microscope of small focal
depth, cells moving outside the focal layer are not
seen at all. In addition the cuvette is thin, being only
0.17 mm deep, which is of the order of 10 cell body
lengths, so that the cells’ motion is somewhat
constrained to be planar. This raises the question of
whether the recorded data should be analysed as
being from a thin cross-section with little or no
projection, or whether some allowance should be
made for projection. This can be answered by testing
the statistics of the apparent speed for data that is
unimodal and axisymmetric, as follows.

Imagine as an extreme case that the microscope has
infinite focal depth and that all the data from the
swimming cells are full projections onto a vertical
plane of their unconstrained three-dimensional
trajectories. Suppose too that the cells’ motion is
symmetric about the vertical axis, and that the
swimming speed, U say, is constant and thus
independent of the direction. We want to know what
the effect of the projection is on the statistics of the
two-dimensional data that are recorded. Define fixed
rectangular Cartesian axes Oxyz with the z-axis
vertically up and the x-axis lying in the plane of
projection Oxz. The cells’ direction in three
dimensions is specified by spherical polar angles a and
f, where the colatitude a (0Q aQ p) is measured
from the negative y-axis (which is the axis of
projection) and the meridional angle f (−pEfQ p)
is measured from the z-axis. This is a convenient
choice of coordinates for analysis of the statistics of
the projection. The Fisher distribution is a typical
unimodal axisymmetric distribution on a sphere,
analogous to the von Mises distribution on a circle,
and has a p.d.f. given by

fF (a, f; k) da df

=
k

4p sinh k
exp(k sin a cos f)sin a da df

where k is the concentration parameter. This
distribution is concentrated along the positive z-axis
and is axisymmetric about Oz (Mardia, 1972; Fisher
et al., 1987).

In the plane of projection, we define polar
coordinates (r, u) (re 0,− pE uQ p) by

r=sin a, u=f

so that u=0 is the Oz-axis. The mapping from (a, f)
to (r, u) is 1:1 for each hemisphere on either side of
the plane of projection, Oxz. It follows that the p.d.f.
of the Fisher distribution projected on to the plane,
fP (r, u; k), is given by

fP (r, u; k) dr du

=
k

2p sinh k
exp(kr cos u)

r

z1− r2

dr du,

from which it is straight forward to compute the
conditional expectation of r, given a value of u, to be

E(r =u; k)=g
1

0

exp(kr cos u)
r2

z1− r2

dr

>g
1

0

exp(kr cos u)
r

z1− r2

dr.

In this example, the cells’ swimming speed in three
dimensions is a vector of length U so that the mean
speed in the plane of projection is v̄(u)=UE(r =u; k).
E(r =u; k) is plotted in Fig. 3 for two values of the
concentration parameter, k=0.5, 2.0. This shows
clearly that when the swimming speed is independent
of direction and when there is a bias towards
swimming in the positive z-direction, then the average
projected speed is greatest in the positive z-direction
and least in the negative z-direction. Thus (as we shall

F. 3. Effect of projection on the mean value of the apparent
speed, E(r =u; k), in the plane of projection, showing the dependence
on u for k=0.5 (dashed line) and 2.0 (solid line), when the true
speed is one.
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show) the absence of the same behaviour in our
experimental data indicates that the effects of
projection are not significant. Indeed, k=0.5 is a
typical value for trajectories in these experiments, so
that the difference between the minimum and
maximum values of v̄(u) is only 6%, which is small
compared with the scatter in the data.

9. Gravitaxis and Phototaxis

The motile algal cells that are mainly studied in this
paper are Chlamydomonas nivalis. They are unicellu-
lar with a slightly prolate, spheroidal body about
10 mm in diameter and they swim using a pair of
flagella approximately 10 mm in length, which they
beat in a breast-stroke-like fashion, albeit at low
Reynolds numbers, with a frequency of about 60 Hz.
As is shown below, they swim at speeds of about four
body lengths per second. The other alga studied is the
dinoflagellate Peridinium gatunense. It is almost
spherical in shape with a diameter of about 30 mm and
is covered by rigid armoured plates. It swims using
two heterodynamic flagella. One flagellum projects
backwards from a longitudinal groove. A wave is
passed along this flagellum in order to propel the cell
forward. The second flagellum is ribbon-like and is
located in a transverse groove. Waves are also passed
along this flagellum, which appears to control the
rotation of the cell about its longitudinal axis. Like
most dinoflagellates, P. gatunense is a very active
swimmer. Both of these species of cells are known to
have at least two mechanisms for orientation,
gravitaxis and phototaxis.

The first mechanism, strictly negative gravitaxis,
orients the cells so that they swim upwards on average
and is believed to be caused by a passive, mechanical
torque due to the cells being bottom-heavy (Kessler,
1986). This is not the case for another common alga,
Euglena gracilis. which has been shown to have an
active gravitational orientation mechanism (Lebert &
Häder, 1996) that depends on small strains in the cell
membrane, which are due to the cell contents being
about 4% denser than the fluid in which they swim,
activating ion channels. Unlike Euglena, which can
also move along surfaces by actively deforming its
membrane, Chlamydomonas appears to have a
relatively rigid cell wall and an asymmetric distri-
bution of mass.

Kessler was the first to discover this mechanism’s
role in the spontaneous generation of macroscopic
bioconvection patterns and to study the phenomenon
in detail. He shows that the rate of reorientation of
a spherical cell, when it is not swimming vertically, is
determined by the balance between the gravitational

torque, due to its offset centre of mass, and the
viscous torque as it rotates in the fluid, giving

v=du/dt=−B−1 sin u, (37)

where B is a constant that represents the typical
reorientation time. The orientation due to the balance
between viscous and gravitational torques is known
as gyrotaxis. In contrast, phototaxis is an active
internal mechanism by which the cells either swim
towards the light, presumably to increase their rate of
photosynthesis, or away from the light if it is too
bright. Hill & Vincent (1993) and the references cited
therein discuss possible strategies that the cells
employ in phototaxis. When a light source above
them is sufficiently bright, phototaxis dominates
gravitaxis and cells will swim vertically downwards
away from the source.

Casual observation through a microscope, how-
ever, reveals that the cells’ motion is not deterministic.
Variations in the direction and speed of motion are of
several types: (i) the population of cells is not cloned
so there are intrinsic differences in shape and
behaviour between individual cells; (ii) the internal
biochemistry of individual cells is such that they
capriciously change their velocity and occasionally do
not swim at all; and (iii) cells collide with one another
and with the walls of the container, which introduces
further randomness into cell trajectories (Kessler
et al., 1992). Experiments have shown that this last
effect becomes significant at cell concentrations
greater than about 5×106 cells cm−3, which is higher
than the cell concentrations used here. The stochastic
nature of the cells’ swimming means that eqn (37)
describes the mean rate of reorientation in gravitaxis
(without phototaxis) i.e.

E[du/dt]=−B−1 sin u, (38)

which implies that the mean turning angle defined in
(21) is given by

E[d]0 md =−B−1t sin u as t : 0. (39)

This is consistent with the derivation of the
Fokker–Planck equation. Equation (39), of course,
motivated the analysis of the sinusoidal reorientation
model in Section 6.

The cell trajectories that we measure for gravitaxis
are viewed in a vertical plane and we assume that the
distributions are symmetric about the vertical axis.
We seek to show that (39) is satisfied, to derive values
for B and also for the angular deviation for the
turning angle s2

d (u). On the other hand, for
phototaxis, data are collected from cells viewed in a
horizontal plane and illuminated from the side but we
have no prior model to suggest what form md (u) and
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T 1
Table of data sets

Data set Description

C. nivalis recorded in a vertical plane guided by negativeC1
gravitaxis. The swimming behaviour is axisymmetric
about the vertical axis.
C. nivalis recorded in a horizontal plane. There is noC2
preferred direction so the motion is axisymmetric.
C. nivalis recorded in a horizontal plane subject toC3
illumination of 80 klux from the side, resulting in positive
phototaxis.

C4 C. nivalis recorded in a horizontal plane subject to
illumination of 200 klux from the side, resulting in
positive phototaxis.
P. gatunense recorded in a horizontal plane. There is noP1
preferred direction so the motion is axisymmetric.
P. gatunense recorded in a vertical plane guided byP2
negative gravitaxis. The swimming behaviour is axisym-
metric about the vertical axis.

Interpretation

Closer inspection reveals that both quantities
decrease rapidly as t increases for values of t less than
0.6 s, and then decrease almost linearly for values of
t between 0.6 s and 3.0 s. As discussed in Section 7,
the initial nonlinear decrease in v̄ and vsd is believed
to be mainly due to smoothing of the artificial pixel
noise introduced by the discretization of the video
images, superimposed on the smoothing of the true
trajectories over time steps greater than the
correlation time. The subsequent linear decrease is
seen for all the data sets whether or not there is a
preferred direction of motion and probably arises
from further smoothing of helical trajectories, as
discussed in Section 7.5. For values of tq 3.0 s, the
number of segments of trajectories becomes so few
that the statistics are noisy and no general trend is
discernable. In the absence of any more-detailed
theory for the effects of smoothing and because data
on the axial component of the motion of the cells
along their helical trajectories is required in
applications, the dashed straight lines in Fig. 4(b) and
(c) have been fitted by linear regression to the data
points for values of t between 0.6 s and 3.0 s.
Extrapolating back to t=0 gives estimates of
55 mm s−1 and 31 mm s−1 for the true mean speed and
its standard deviation, respectively.

To examine the possible effects of projection (see
Section 8), the speed is plotted as a function of the
angle u to the vertical in Fig. 4(d). (u=0° is upwards.)
The data are divided into 12 bins of 30° width and the
mean value of the speed in each bin is plotted against
the mid-point of the bin. Results are shown for a
typical value of the timestep, 1.6 s, corresponding to
the linear region of Fig. 4(b), and show little
dependence on u given the obvious noise in the data.
There is no correspondence with the effects of
projection suggested by Fig. 3, and so we conclude
that projection is unimportant to within experimental
errors because of the small focal depth of the
microscope and because the cuvette is very thin.

10.2.   2 C. nivalis: 

C2 is a small data set consisting of about 70
trajectories of C. nivalis cells from a different culture to
those in C1 above and experimented on on a different
day. The cells were viewed in a horizontal plane
swimming under the influence of negative gravitaxis
alone, and there is no preferred direction of motion.
The swimming speed statistics are shown in Fig. 5 and
the same trends are seen as in Fig. 4 for the data set C1.
In particular, we can extrapolate back from the linear
regions of the graphs in Fig. 5(b) and (c), as

s2
d (u) should take, although the limits (21) and (22)

should still hold for the Fokker–Planck equation to
be valid. We also seek information on the p.d.f.’s of
the cells’ swimming speeds in both cases to be able to
complete the calculations of the bulk mean swimming
velocity and cell diffusivity needed in continuum
equations that describe the motion of the suspension
of cells in bioconvection.

10. Swimming Speed Results

Data from six sets of experiments are presented in
this section. The data sets are summarized in Table 1.

10.1.   1 C. nivalis: 

In Fig. 4, we show the swimming speed statistics,
as a function of the timestep t used to analyse the
data, for a combined data set consisting of some 700
trajectories of various lengths taken in three
experiments over a period of approximately 40
minutes from the same algal culture. The original
mean time step for this data was t̄=0.08 s. The
measured speed is the apparent speed, not velocity,
projected on to the vertical two-dimensional plane of
view. Figure 4(a) is a histogram of the distribution of
observed swimming speeds for values of t equal to
0.1 s, 0.2 s and 0.3 s. These graphs show distributions,
similar in shape to an exponential distribution
( f(x; l)= x exp(−lx), xe 0), with a broad peak
centred around 40 mm s−1. The dependence of the
mean speed, v̄, and standard deviation, vsd , on t are
shown in Fig. 4(b) and (c): in both cases there is a
gradual decrease as t increases.



600

200

0
80 20040 120 160

100

300

400

500

(a)

0

80

0
1.0 3.00.5 1.5 2.0

20

40

60

(b)

0.0 2.5

100

0
–90 1800

20

40

60

(d)

–180 90

80

60

0
1.0 3.02.0

10

40

30

(c)

2.5

50

1.50.50.0

20

Speed    (µm s–1)υ Time step    (s)τ

Time step    (s)τ Direction θ°

S
.D

. 
of

 s
p

ee
d

  
 sd

 (
µm

 s
–

1
)

υ

S
p

ee
d

  
  

(µ
m

 s
–

1
)

υ

N
u

m
b

er

M
ea

n
 s

p
ee

d
  

  
(µ

m
 s

–
1
)

υ

   - 513

indicated by the dashed lines, to get v̄=67 mm s−1

and vsd =29 mm s−1 for the true mean speed and
standard deviation, respectively. The value of v̄ is
25% greater than for C1, presumably reflecting the
difference in the ages of the cultures, although little is
known in detail about how age affects swimming
behaviour.

10.3.   3  4 C. nivalis: 

Figure 6 shows the speed statistics for data set C3,
which contains approximately 1000 trajectories from
three experiments taken over a period of about 15
minutes. The C. nivalis cells were viewed in a
horizontal plane and subject to illumination of
80 klux from the side, which is sufficient to induce
positive phototaxis (i.e. movement towards the
source) and acts together with negative gravitaxis,

although the cells’ motion is constrained by the
shallow cuvette. The histogram of speeds in Fig. 6(a)
shows a larger proportion of slow cells than the
previous data set, and the mean speed and its
standard deviation are plotted as functions of the time
step t in Fig. 6(b) and (c). Both v̄ and vsd decrease as
t increases due to smoothing of the trajectories by
discretization.

Data set C4 consists of about 900 trajectories from
two experiments taken over 15 minutes. The cells were
again observed in a horizontal focal plane and were
subject to illumination from the side, this time of
200 klux, which induces a more precise, positive
phototactic response than in data set C3. The speed
statistics are plotted in Fig. 7 and Fig. 7(a) shows that
an even higher proportion of the population of cells
is slow moving at small values of t than in Fig. 6(a).

F. 4. Swimming speed statistics for data set C1, C. nivalis cells seen in a vertical plane. (a) Histograms of apparent swimming speeds,
which decrease as the time step t increases, for t=0.1, 0.2 and 0.3 s. (b) and (c) Plots of the mean swimming speed and standard deviation
(solid lines) vs. t. The dashed lines are linear fits to the data for 0.6 sE t Q3.0 s. (d) Histogram of swimming speed, v, vs. direction, u,
when t=1.6 s, showing that v is independent of u.
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F. 5. Swimming speed statistics for data set C2, C. nivalis cells
seen in a horizontal plane. (a) Histograms of apparent swimming
speeds, which decrease as the time step t increases, for t=0.1, 0.2
and 0.3 s. (b) and (c) Plots of the mean swimming speed and
standard deviation (solid lines) vs. t. The dashed lines are linear fits
to the data for 0.6 sE tQ 3.0 s.

Figure 7(b) and (c) again shows that the mean speed
and its standard deviation decrease as t increases.

Interpretation

As described in Section 10.1, straight lines have
been fitted to each of Figs 6(b), 6(c), 7(b) and 7(c).
Extrapolating back to t=0 gives v̄=60 mm s−1 and
vsd =41 mm s−1 for the weaker illumination of 80 klux
and v̄=59 mm s−1 and vsd =47 mm s−1 when the
irradiance was 200 klux. The rather high value of vsd

in the latter case reflects the large number of slow
cells.

In Fig. 6(d), the swimming speed for data set C3
when t=1.0 s is plotted against u, now the polar
angle in the horizontal plane. u=0° is the direction
towards the light, which is the preferred swimming
direction as will be shown in Section 11.3. The graph
indicates that the cells’ swimming speed is in the main
independent of the direction of motion, although
there is an apparent decrease in swimming speed for
values of u between 90° and 180°.

In Fig. 7(d), we plot the swimming speed versus the
polar angle u in the horizontal plane when t=1.6 s
for data set C4. Again u=0° is the preferred direction
and there is evidence that the swimming speeds away
from the light are as little as 25% of those towards
the light when t=1.0 s. This suggests that C. nivalis
exhibit a directed photokinetic response, namely their
swimming speed depends on their direction of motion
relative to the light source.

10.4.   1 P. gatunense: 

Approximately 1600 trajectories of P. gatunense
cells seen in a horizontal plane from three experiments
conducted over 30 minutes were recorded in data set
P1. The speed statistics are shown in Fig. 8. The
overall distribution of speeds in Fig. 8(a) is well
peaked and we notice immediately that the mean
speed is 2.5 to 3 times greater than that of C. nivalis.
Consequently the number of data points per
trajectory is smaller than for previous data sets
because the time between points is determined by the
cycle time of the computer algorithm, and also
individual cells are more easily lost and reach the
edges of the viewing area more rapidly. The distances
between data points are greater too and so the effects
of ‘‘pixel noise’’ are much reduced, as is evident in
Fig. 8(b), which is approximately linear over the
whole range of the timestep t shown. Extrapolation
gives the true mean speed to be v̄=139 mm s−1. The
graph of the standard deviation in Fig. 8(c) is
irregular but, in order to make some estimate of the
true value, a straight line was fitted by the method of
least squares to the data points for values of t between
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0.6 s and 3.0 s. Extrapolation back to t=0 s
gives vsd =46 mm s−1. The swimming speed is found
to be independent of the direction of motion, as
expected.

10.5.   2 P. gatunense: 

The speed statistics for the data set P2 are shown
in Fig. 9. About 700 trajectories were recorded from
a different culture than that used in P1. The cells were
recorded in a vertical plane swimming subject to
negative gravitaxis. Again the distribution of speeds
shown in Fig. 9(a) is strongly peaked. The graph of
the mean speed, v̄, in Fig. 9(b) is a little irregular and
surprisingly takes values about a half of those for P1.
On fitting the straight lines (drawn as dashed lines in

the figures) by linear regression to the data points for
values of t between 0.6 s and 3.0 s, we estimate the
true value of v̄ to be 76 mm s−1 with a correspondingly
low standard deviation, vsd =14 mm s−1. These differ-
ences between the speeds calculated for P1 and P2
may be due to the use of different cultures. As for C.
nivalis subject only to negative gravitaxis, the mean
speed in P2 is independent of the direction of
swimming.

11. Angular Distribution Results

11.1.   1 C. nivalis: 

As described in Section 9, C. nivalis cells are
thought to be bottom heavy and subject to a

F. 6. Swimming speed statistics for data set C3, C. nivalis cells seen in a horizontal plane subject to 80 klux illumination from u=0°.
(a) Histograms of apparent swimming speeds, which decrease as the time step t increases, for t=0.1, 0.2 and 0.3 s. (b) and (c) Plots
of the mean swimming speed and standard deviation (solid lines) vs. t. The dashed lines are linear fits to the data for 0.6 sE tQ 3.0 s.
(d) Histogram of swimming speed, v, vs. direction, u, when t=1.6 s.
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F. 7. Swimming speed statistics for data set C4, C. nivalis cells seen in a horizontal plane subject to 200 klux illumination from u=0°.
(a) Histograms of apparent swimming speeds, which decrease as the time step t increases, for t=0.1, 0.2 and 0.3 s. (b) and (c) Plots of
the mean swimming speed and standard deviation (solid lines) vs. t. The dashed lines are linear fits to the data for 0.6 s E tQ 3.0 s. (d)
Histogram of swimming speed, v, vs. direction, u, when t=1.6 s, showing evidence that the speed towards the source is greater than away
from it (photokinesis).

passive gravitational torque orients them so that they
swim vertically up on average. In Fig. 10, we show
graphs of the mean turning angle, md , as a function of
the swimming direction u, for increasing values of the
timestep t. u=0 is vertically upwards. The turning
angles have been averaged over 12 intervals of 30°
width according to the swimming direction, u and are
represented by the solid lines that connect the
midpoints of the bins. The numbers of data points for
each bin are shown in Table 2. We see that md tends
to be positive when u is negative and vice versa, and
that md increases with t. These observations are
consistent with the cells swimming upwards on
average because the signs of the mean turning angles

are such as to correct deviations from the vertical.
They also show that changes in direction decrease as
t decreases i.e. that the motion is correlated and
changes in direction are gradual.

Interpretation

Curves of the form

md =−d(t)sin u, (40)

where d(t) is a parameter representing the ‘‘turning
amplitude’’ [see eqn (37)], have been fitted using the
method of least squares to each of the curves in
Fig. 10 and are shown as dashed lines. The fit is
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F. 8. Swimming speed statistics for data set P1, P. gatunense
cells seen in a horizontal plane. (a) Histograms of apparent
swimming speeds, which decrease as the time step t increases, for
t=0.1, 0.2 and 0.3 s. (b) and (c) Plots of the mean swimming speed
and standard deviation (solid lines) vs. t. The dashed lines are
linear fits to the data for 0.6 sE tQ 3.0 s.

reasonable, particularly for smaller values of tE 0.4 s
for which the data are smoother. The estimates of the
turning amplitude are plotted as a function of the
time step, t, and shown as the solid line in Fig. 11(a).
There is some scatter in the data but clearly d(t)
increases with t on average. The limits taken in the
derivation of the Fokker–Planck equation [see eqns
(21) and (22)] require that d(t) A t but the data are
too scattered to confirm or reject this hypothesis.
Nevertheless, in order to make estimates of the
coefficients in the Fokker–Planck equation, a straight
line through the origin has been fitted by linear
regression and is plotted as the dashed line in
Fig. 11(a). The gradient of this line is d0 =0.37 rad s−1

from which we estimate that

md = m0(u)t and m0 =0.37 sin u,

where m0 is the orientation (or drift) coefficient in the
Fokker–Planck equation (24). Also, from eqn (39), a
typical cell reorientation time is

B= d−1
0 =2.7 s.

The possible error in estimating d0 is relatively large
due to the scatter in the data. It is also questionable
whether or not the data points for tE 0.4 s are more
reliable. A straight line fitted to these points, the
dotted line in Fig. 11(a), gives an alternative estimate
which is that d0 =0.80 and correspondingly
B=1.25 s.

The second quantity of interest is the angular
deviation sd (u, t) of the turning angle distribution,
and graphs of these data as functions of u for two
values of t are plotted in Fig. 11(b), using
Definition (1). It is immediately clear that there is no
obvious dependence on t and that there may be a
weak dependence on u of the form

sd (u)= a− b sin u,

where a1 1.2 rad and b1 0.2 rad, but the noise in
the data renders it difficult to reliably estimate a, b
and to test for dependence on t. For mathematical
modelling purposes, a good first approximation is to
assume that sd (u, t) is independent of u, and so we
choose to examine the behaviour of sd� (t), the overbar
indicating the mean value of sd (u, t) averaged over all
values of the swimming direction u, which is graphed
in Fig. 11(c). This shows that sd� (t) increases as t

increases from 0.1 s to 0.4 s, reaching a maximum
value of about 1.2 radians, and then gradually
decreases as t increases further. This behaviour is also
found in numerical simulations of random walks
(which are currently under investigation and will be
reported in a separate paper later) and can be
understood as follows.
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F. 9. Swimming speed statistics for data set P2, P. gatunense
cells seen in a vertical plane. (a) Histograms of apparent swimming
speeds, which decrease as the time step t increases, for t=0.1, 0.2
and 0.3 s. (b) and (c) Plots of the mean swimming speed and
standard deviation (solid lines) versus t. The dashed lines are linear
fits to the data for 0.6 sE tQ 3.0 s.

Bovet & Benhamou (1988) demonstrated that for
an unbiased, correlated random walk sd� (t) A zt,
so that measurements of the turning angle become
less correlated as the time scale t is increased.
However, for a biased random walk, the segments of
the trajectory become more likely to be aligned
closely with the preferred direction as t is increased
and the segments become longer. Thus the p.d.f. of
the swimming direction, u, becomes more peaked
about the preferred direction, mu say, as t increases,
with a consequent reduction in the mean turning
angle md (t) and thus in sd� (t). Of course, the
statistical analysis is complicated further by pixel
noise for small values of t, by the smoothing of
helical trajectories, and by the decreasing number of
data points for large values of t, all of which
augment the observed values of sd� (t).

As a consequence of these effects, it is not possible
to reliably estimate the true limiting behaviour of
sd� (t) as t : 0. Fortunately, additional information
can be gleaned from studying the p.d.f., f(u), of the
direction of swimming, which is plotted for a typical
time step t=0.4 s as the histogram in Fig. 11(d).
From the estimates for the mean angle, mu=22°, and
the mean length, r=0.22, for the swimming
direction, u, a von Mises p.d.f. has been fitted and is
plotted as the solid line. The fit is good. The mean
swimming direction, mu , differs a little from the
vertical which may be due to thermal convection
currents in the cuvette during the experiments. This
will also have contributed to the error in fitting the
sinusoidal curves to md (u) in Fig. 10. As expected, mu

proves to be independent of t, and the plot of the
angular deviation of u, su (t), in Fig. 11(e) shows that
it decreases linearly and very gradually with t.
Extrapolating back to t=0, shows that su (0) lies
between 1.7 and 1.9 radians. The very weak
dependence of su on t permits the calculation of an
estimate of sd� (t) from d0 and su from eqn (31), using
the analysis of the sinusoidal reorientation model of
Section 6.

For this data set, we have estimated that
d0 =0.37 rad (or 0.80 rad) and su =1.82 0.1 rad,
which implies that the best estimate for the angular
deviation of d is

sd =1.3zt or 2.0zt rad.

Using eqn (25), this gives the effective rotational
diffusivity to be

D=0.85 or 2.0 rad2 s−1.

As well as the actual estimates of parameters, the
key points from the above statistical analysis are:
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F. 10. Angular statistics for data set C1, C. nivalis cells seen in a vertical plane. Graphs of the mean turning angle, md , vs. the swimming
direction, u, (solid lines) are shown for successive values of the time step, t. Curves of the form −d(t)sin u (dashed lines) have been fitted
to the data using the method of least squares.
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T 2
Numbers of data points for calculating the mean turning angle, md , for data set C1 as a function of the swimming

direction, u, and the time step, t

Time step Swimming direction u°
t(s) −165 −135 −105 −75 −45 −15 15 45 75 105 135 165

0.1 400 364 654 540 595 427 467 354 234 331 245 320
0.4 84 66 96 138 120 92 80 64 61 46 50 70
1.0 12 12 28 35 25 14 17 15 9 8 14 14
1.6 5 2 9 11 11 1 8 3 3 1 2 4

Note that the number of data points decreases as t increases so that the statistics become less significant for larger time steps.

(1) the turning angle data support the conclusion
that md =−d0t sin u, which validates the
assumption of orientation due to a gravita-
tional torque and is consistent with a
description of the cells’ motion as the
continuous limit of a biased random walk;

(2) the independence of mu on t is as predicted by
the solution of the Fokker–Planck equation
derived from the random walk model.

11.2.   2 C. nivalis: 

Data set C2 is taken from C. nivalis cells viewed
swimming in a horizontal plane. Gravitaxis, due to
the cells being bottom heavy, is the only orientating
mechanism in the absence of illumination, and so
there should be no preferred direction of motion in
the horizontal plane. Plots of the mean turning angle,
md (u), (not shown) confirm that md (u) is independent
of the swimming direction u and that it is
approximately zero, as expected. The graph of sd� (t)
should show that sd� (t) A zt as described by Bovet
& Benhamou (1988) but the data are noisy and no
clear trend can be seen, probably because the data set
is too small and consists of only 70 trajectories.

11.3.   3  4 C. nivalis:
, 80   200 

The swimming cells, whose trajectories were
recorded in data sets C3 and C4 in a horizontal plane,
were subject to illumination from u=0°, which
induced positive phototaxis. Of course, the cells are
also oriented by gravitaxis, so the overall preferred
swimming direction will be at an angle between the
upwards vertical and u=0° in the horizontal plane
(Kessler et al. 1992), but again any vertical motion is
constrained by the shallow cuvette. Plots of md (u) are
shown for the two data sets in Figs 12(a) and 13(a)
for typical values of the time step. The solid lines are
for t=0.3 s and the dashed lines for t=0.6 s. Unlike
orientation by gravitaxis for which md (u) A −sin u

as discussed in Section 10.1, it appears that
md (u) A − u for phototaxis, although the points at
the ends of the graphs (=u =e 165°) become very

variable as t increases due to there being very few
longer segments of trajectories lying in these
directions.

Interpretation

Straight lines of the form md (u)=−d(t)u have
been fitted by linear regression to the central points
of the graphs (=u =Q 165°), and graphs of d(t) against
t are shown as the solid curves in Figs 12(b) and
fitted to all the data by linear regression and is plotted
as the dashed line. The fit is good and we estimate that

d=0.44t

so that md (u)=−0.44t. The linear dependence on t

is consistent with the limits required in the derivation
of the Fokker–Planck equation (24), and thus the
coefficient m0(u) in the Fokker–Planck equation is
estimated to be

m0(u)=−0.44u.

As for data set C1 in Section 10.1, it may be that more
reliable estimates would be derived from fitting a
straight line to those data for which tE 0.4 s; such a
fit is shown as the dotted line in Fig. 12(b), from
which we calculate that m0(u)=−0.62u.

There is rather more scatter in the values of d(t)
from data set C4 [Fig. 13(b)]. Again to estimate m0(u),
straight lines have been fitted as described above and
leads us to calculate, with some reservations, that

m0(u)=−0.19u or −0.61u.

Plots of the angular deviation, sd (u), for fixed
values of t are shown in Figs 12(c) and 13(c) for
typical values of the time step. The solid lines are for
t=0.3 s and the dashed lines for t=0.6 s. For both
data sets, independently of t, sd (u) takes its largest
values at the endpoints (=u =q 135°) corresponding to
swimming directions away from the light source
where there are fewer data points. For any given value
of t, sd (u) is roughly constant for the central values
of u (=u =Q 135°).

Graphs of the mean angular deviation, sd� (t),
averaged over all values of the swimming direction u
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F. 11. Angular statistics for data set C1, C. nivalis cells seen in a vertical plane. (a) Plot of the turning amplitude, d vs. time step,
t. Straight lines through the origin have been fitted using linear regression to all the data (dashed line) and to the data for which tE 0.4 s
(dotted line). (b) Graphs of the angular deviation of the turning angle, sd , vs. swimming direction, u, for t=0.3 s (solid line) and for
t=0.6 s (dashed line). (c) Plot of the mean angular deviation of the turning angle, sd� (t), averaged over all swimming directions, vs. t.
(d) Histogram of the p.d.f., f(u), of the swimming direction, u, over which is plotted a von Mises p.d.f. that has been fitted using the mean
angle and length for the u-statistics. (e) Plot of the angular deviation, su , of the swimming direction showing linear dependence on t.
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F. 12. Angular statistics for data set C3, C. nivalis cells seen in a horizontal plane subject to 80 klx illumination from u=0°. (a) Graphs
of the mean turning angle, md , vs. the swimming direction, u, are shown for t=0.3 s (solid line) and for t=0.6 s (dashed line). Straight
lines of the form −d(t)u have been fitted to the data for which =u =Q 165°, using the method of least squares. (b) Plot of the turning
amplitude, d, vs. time step, t. Straight lines through the origin have been fitted using linear regression to all the data (dashed line) and
to the data for which tE 0.4 s (dotted line). (c) Graphs of the angular deviation of the turning angle, sd , vs. swimming direction, u, for
t=0.3 s (solid line) and for t=0.6s (dashed line). (d) Plot of the mean angular deviation of the turning angle, sd� (t), averaged over all
swimming directions, vs. t. (e) Histogram of the p.d.f., f(u), of the swimming direction, u, over which is plotted a von Mises p.d.f. that
has been fitted using the mean angle and length for the u-statistics. (f) Plot of the angular deviation, su , of the swimming direction.
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F. 13. Angular statistics for data set C4, C. nivalis cells seen in a horizontal plane subject to 200 klx illumination from u=0°. (a)
Graphs of the mean turning angle, md , vs. the swimming direction, u, are shown for t=0.3 s (solid line) and for t=0.6 s (dashed line).
Straight lines of the form −d(t)u have been fitted to the data for which =u =Q 165°, using the method of least squares. (b) Plot of the turning
amplitude, d, vs. time step, t. Straight lines through the origin have been fitted using linear regression to all the data (dashed line) and
to the data for which tE 0.4 s (dotted line). (c) Graphs of the angular deviation of the turning angle, sd , vs. swimming direction, u, for
t=0.3 s (solid line) and for t=0.6 s (dashed line). (d) Plot of the mean angular deviation of the turning angle, sd� (t), averaged over all
swimming directions, vs. t. (e) Histogram of the p.d.f., f(u), of the swimming direction, u, over which is plotted a von Mises p.d.f. that
has been fitted using the mean angle and length for the u-statistics. (f) Plot of the angular deviation, su , of the swimming direction.
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are presented in Figs 12(d) and 13(d). These show
similar behaviour as in the gravitactic case, C1, with
a rapid increase with t for values of tE 0.4 s and little
dependence on t for larger values of t. In general for
any given value of t, sd� (t) is smaller for C4 than for
C3.

The p.d.f.’s, f(u), for swimming directions are
shown as histograms in Figs 12(e) and 13(e) for
t=0.1 s. The solid curves show von Mises p.d.f.’s,
M(u; 0, k), where

A(k)= exp(−s2
u (t)/2)

as in eqn (10) which have been fitted from the
calculated values of the mean direction and mean
angle for the U-statistics. The p.d.f.’s for all values of
t are unimodal and show little dependence on t.
Those for C3 have a fairly broad peak centred on
u=0° towards the light source. The distribution for
C4 is more sharply peaked because sd� (t) is smaller for
C4 than for C3, even though the values of m0(u) are
also smaller for C4 than for C3, showing that the
brighter illumination elicits a stronger phototactic
response. Graphs of the angular deviation for u,
su (t), versus t, in Figs 12(f) and 13(f), show that su (t)
decreases very linearly with t, as is the case for data
set C1, and linear interpolation gives su (0)=1.7–
1.8 rad and 1.5–1.6 rad for C3 and C4 respectively.

As in the geotactic case 1, it is possible to estimate
the limiting behaviour of sd� (t) from the values of
su (0) and m0(u) by inverting equation (36) from the
analysis for the linear orientation model in Section 6.
For data set C3, we find that sd� (t)=1.8zt radians

if we take m0(u)=−0.44 u, and sd� (t)=2.1zt

radians if m0(u)=−0.62 u. For C4, sd� (t)=0.9zt

radians if m0(u)=−0.19 u, and sd� (t)=1.7zt

radians if m0(u)=−0.61 u.

11.4.   1 P. gatunense: 

The P. gatunense cells in this data set were recorded
swimming in a horizontal plane, so there is no
preferred horizontal direction. A logarithmic graph of
the angular deviation sd� (t) is plotted in Fig. 14(a).
ln sd� (t) appears to depend linearly on t and thus the
straight line

ln sd� (t)=m ln t+ln s0,

where m and s0 are parameters, has been fitted to the
data for values of tE 0.4 s by the method of least
squares and is plotted as the dashed line in the figure.
The slope is m=0.43, which is acceptably close to the
value of 0.5 that would be expected if sd� (t)= s0zt

as required when taking the limits (22) in the
derivation of the Fokker–Planck equation. We also
estimate that s0 =0.91 rads−1/2. This gives an upper
bound on values of sd� (t) due to the additional
contribution from the pixel noise. Analysis of the
angular deviation, su (t) of the swimming direction in
Fig. 14(b) shows once again that it gradually
decreases linearly as t increases and by extrapolation
that su (0)=1.8–1.9 rad.

11.5.   2 P. gatunense: 

Finally we note that there was too much scatter in
the angular statistics of data set P2, for P. gatunense

F. 14. Angular statistics for data set P1, P. gatunense cells seen in a horizontal plane. (a) Logarithmic plot of the mean angular deviation
of the turning angle, sd� (t), averaged over all swimming directions (solid line), vs. t. A straight line (dashed line) has been fitted to those
data for which tE 0.4 s. (b) Plot of the angular deviation, su , of the swimming direction.
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T 3
Summary of results
C1 C2 C3

Data set (vertical) (horizontal) (phototaxis: 80 klux)

v̄(mm s−1) 55 67 60
vsd(mm s−1) 31 29 41
m0(u)(rad) −0.37 (0.80)t sin u — −0.44 (0.62)u
sd� (t)(rad) 1.3 (2.0)zt —1 1.8 (2.1)zt
su (rad) 1.82 0.1 —1 1.752 0.05
D= s2

0 /2(rad2 s−1) 0.85 (2.0) —1 1.6 (2.2)
Notes B=2.7 (1.3) s 1 No data

C4 P1 P2
Data set (phototaxis: 200 klux) (horizontal) (vertical)

v(mm s−1) 592 139 76
vsd(mm s−1) 472 46 14
m0(u)(rad) −0.19 (0.61)u — —3

sd� (t)(rad) 0.9 (1.7)zt 0.91zt —3

su (rad) 1.552 0.05 1.852 0.05 —3

D= s2
0 /2(rad2 s−1) 0.40 (1.4) 0.41 —3

Notes 2 Photokinesis 3 No data

v� and vsd are the mean swimming speed and its standard deviation
m0(u) is the oritation coefficient in the Fokker–Planck equation. sd� (t) and su are the

angular deviations of the mean turning angle and swimming direction, respectively. D
is the effective rotational diffusivity and B is the gyrotactic reorientation time. Numbers
in parentheses are based on alternative estimates for the value of the mean turning angle
when t=0.

cells viewed in a vertical plane, to obtain significant
turning angle statistics. This is surprising, given that
data from over 700 trajectories were recorded, but
plots of the trajectories show that most are very
straight and show little evidence of turning, so this
type of analysis may be inappropriate for these
micro-organisms. This argument is supported by the
observation that the p.d.f., f(u), for the direction of
swimming was seen to be sharply peaked at 0°
(confirming that the cells are negatively gravitactic),
but it is not well-fitted by a von Mises distribution
because the central peak in the data is too narrow.

All the above results are summarized in Table 3.

12. Conclusions

A new theory for modelling the trajectories of
motile algal cells that are swimming in a preferred
direction has been presented. The model is based on
the continuous limit of a biased, correlated, random
walk as the time step tends to zero. It has been
successfully tested against experimental data and used
to estimate the parameters that quantify the motion
and are required to calculate the macroscopic, bulk
parameters needed in the description of the fluid
mechanics of the whole suspension. The model also
justifies the rational continuum model for the
bioconvection of suspensions of such swimming algae
introduced by Pedley & Kessler (1990), thus
completing the cycle of modelling from the micro-

scopic behaviour of individual cells to the flow of
suspensions containing tens of millions of cells.

Two fundamentally different orientation mechan-
isms, negative gravitaxis and positive phototaxis have
been studied. The former is effected by a passive
mechanical torque acting on the asymmetric distri-
bution of mass within the cell as is confirmed by the
sinusoidal dependence of the turning angle on
the direction of swimming. The latter active
mechanism does not depend sinusoidally on the
swimming direction but linearly. Further experiments
over a complete set of illumination intensities will
be required to determine the full range of phototactic
behaviour to confirm and quantify the generic
responses assumed by Vincent & Hill (1996) in
their model of bioconvection driven by phototaxis.
These experiments should include recordings of
cells swimming in both horizontal and vertical
planes.

As discussed in Section 2, the occurrence of thermal
drifts is an almost unavoidable feature of this type of
experiment. One possible improvement would be to
introduce easily identifiable, passively advected
particles into the suspension to measure the drifts and
cell swimming trajectories simultaneously, so that
drifts could be subtracted from the trajectories of the
cells before further analysis.

Work is under way, using numerical simulations of
biased, correlated random walks, to further under-
stand and quantify the behaviour of the angular
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deviations of both the swimming direction and the
turning angle of the statistics of the trajectories of
swimming micro-organisms on the time step, es-
pecially at longer times. The effects of finite pixel
resolution and projection are also being studied.

Finally, we hope that this method of analysis will
prove a valuable tool for examining the responses of
individual algal cells to a whole range of stimuli which
elicit taxes.

We should particularly like to thank Professors J. T.
Kent, J. O. Kessler and T. J. Pedley for many helpful
discussions and encouragement.
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