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Using the continuum model of Pedley, Hill & Kessler (1988) for bioconvection in
a suspension of swimming, gyrotactic micro-organisms, we investigate the existence
and stability of a two-dimensional plume in tall, narrow chambers with stress-free
sidewalls. The system is governed by the Navier–Stokes equations for an incompress-
ible fluid coupled with a micro-organism conservation equation. These equations are
solved numerically using a conservative finite-difference scheme. In sufficiently deep
chambers, the plume is always unstable to both varicose and meandering modes. A
linear stability analysis for an infinitely long plume predicts the growth rates of these
instabilities, explains the mechanisms, and is in good agreement with the numerical
results.

1. Introduction
Bioconvection is the name given to pattern formation in suspensions of micro-

organisms, such as bacteria and algae, due to up-swimming of the micro-organisms
(Pedley & Kessler 1992). In all cases the micro-organisms are denser than water
and on average they swim upwards (although the reasons for up-swimming may be
different for different species). The algae (e.g. Chlamydomonas) are approximately 5%
denser than water, whereas the bacteria are nearly 10% denser than water. Micro-
organisms respond to certain stimuli by tending to swim in particular directions.
These responses are called taxes, examples being gravitaxis, phototaxis, chemotaxis and
gyrotaxis. Gravitaxis indicates swimming in the opposite sense to gravity, phototaxis
denotes swimming towards or away from light, and chemotaxis corresponds to
swimming up chemical gradients. Gyrotaxis is swimming directed by the balance
between the torque due to gravity acting on a bottom-heavy cell and the torque
due to viscous forces arising from local shear flows. This paper is concerned with
gyrotaxis.

The first detailed observations of bioconvection were carried out at the beginning
of this century by Wager (1911) but the subject was not taken up again until the
work of Platt (1961), who apparently coined the term ‘bioconvection’. Plesset & Winet
(1974) made some measurements of the wavelengths of the bioconvection patterns at
the onset of instability in a suspension of the ciliate, Tetrahymena pyriformis, which
is negatively gravitactic (but not apparently gyrotactic (Kessler 1985a)) and showed
agreement with the linear stability theory for a layer of dense fluid overlying a layer of
light fluid. Kessler (1985a) demonstrated that many swimming micro-organisms are
gyrotactic and made observations (Kessler 1985b) of both the almost regular patterns
that occur in concentrated algal suspensions in shallow layers a few millimetres deep,
and of gyrotactic plume formation in a tall narrow cylindrical tube. Figure 2(d) in the
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review by Pedley & Kessler (1992) shows irregular tall thin bottom-standing plumes
several centimetres deep and their instabilities which are modelled in this paper, but
there have not yet been any quantitative studies of these plumes. A recent quantitative
study of bioconvection in algal suspensions was conducted by Bees & Hill (1997),
who measured the wavelengths of the planforms of shallow bioconvection patterns
as a function of the depth and concentration of the suspension. Hill & Häder (1997)
measured the trajectories of individual swimming algal cells and showed that their
motion is well-characterized by the limit of a correlated biased random walk in
which the time step tends to zero. They were able to calculate the statistical moments
required for the coefficients of the Fokker–Planck equation for the cells’ orientational
probability density function. These coefficients are needed in Pedley & Kessler’s (1990)
new continuum model.

The centre of mass of a typical gyrotactic cell is displaced from the centre of
buoyancy so that in the absence of any flow it swims vertically upwards (gravitaxis).
Due to up-swimming, the top layer of the suspension becomes denser than the layer
below. If the parameters (e.g. the Rayleigh number) are above critical values, this leads
to a convective instability and formation of convection patterns. This phenomenon
is known as ‘bioconvection’; it has some similarity with Rayleigh–Bénard convection,
but is driven solely by the swimming of the micro-organisms. Pedley, Hill & Kessler
(1988) extended the theory of Childress, Levandowsky & Spiegel (1975) (who analysed
the bioconvection instability of a suspension of purely gravitactic cells) to develop a
continuum model for a suspension of gyrotactic micro-organisms.

Micro-organisms are of various shapes and sizes. For simplicity, algal cells such as
Chlamydomonas (whose shapes closely approximate a spheroid) are idealized here as
spheres of radius a. Figure 1 shows such a cell placed in a shear flow. The force of
gravity, acting through the centre of mass exerts a torque T g = m h × g, where m is
the mass of the cell and g is the acceleration due to gravity. For algal cells, h is a few
percent of the cell radius. The viscous torque on a sphere of radius a in a fluid of
viscosity µ is given by

T µ = 4πµa3 (∇× u− 2Ω) ,

where u is the fluid velocity field and Ω is the sphere’s angular velocity. The rate-of-
strain tensor gives rise to an additional torque only on aspherical bodies (Batchelor
1970). Hence the total torque is given by

T = 4πµa3 (∇× u− 2Ω) + m h× g. (1)

Since inertial effects are negligible at the low Reynolds numbers associated with the
motion of individual cells, their orientation is specified by T = 0 so that

dθ

dt
= −sin θ − Bζ

2B
, (2)

where ζ is the horizontal component of the vorticity and B = 4πµa3/mgh is the time
scale for the reorientation of the micro-organisms by the gravitational torque against
viscous resistance and is called the ‘gyrotactic orientation parameter’ by Pedley &
Kessler (1987).

Thus gravity and the vorticity can orient individual cells and guide their trajectories.
Gyrotaxis can be demonstrated in an experiment in a slow Poiseuille flow down a
vertical tube of circular cross-section. The balance between gravitational and viscous
torques gives one stable equilibrium orientation with individual cells tipped away from
the upward vertical towards the axis of the pipe. The cells swim towards the axis as
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Figure 1. An idealized algal cell. θ increases in the anti-clockwise sense and h denotes the
displacement of the centre of gravity from the centre of the cell. h = h (x̂ sin θ− ŷ cos θ) relative to
Cartesian coordinates, Cxy, with the origin at the centre of the cell, C , and the horizontal, x, and
the vertical, y, directions fixed relative to the laboratory. M is the centre of mass and W c is the
swimming velocity of the micro-organisms relative to the water.

they are carried along in the pipe flow, and focus into a narrow beam. Conversely, if
the direction of the flow is reversed, the cells are oriented away from the axis toward
the walls, confirming the role of gyrotaxis in cell orientation.

Gravity also enters in another, entirely different manner in producing co-operative
phenomena (Kessler 1985b). The local average fluid density is modified by the presence
of cells. If there is a small region with a greater than average concentration of cells,
the excess density is sufficient to produce a substantial sinking velocity. The sinking
region produces a fluid velocity field which guides further gyrotactic accumulation
perpendicular to it. This positive feedback generates and maintains the sharply focused
descending plumes of cells frequently observed in dense algal cultures. The focused
beam of algae is often observed to develop an instability in the form of regularly-
spaced axisymmetric ‘blobs’ (Kessler 1985b). The blobs are regions of increased cell
concentration, which are wider than the beam. They fall faster than the centreline
velocity and therefore have an internal vortex-ring structure.

Harashima, Watanabe & Fujishiro (1988) solved the equations of bioconvection
numerically for purely up-swimming cells (i.e. θ = 0) in a two-dimensional layer
of finite depth and width, and studied the evolution of bioconvection from an
initially uniform state. They proposed minimum potential energy as a principle for
the determination of the steady-state roll size for a given value of Rayleigh number
and a given box size. Their computational domain had a width/height ratio of 8.
In contrast, we consider numerical solutions of the equations of bioconvection for
gyrotactic cells in deep chambers using the continuum model of Pedley et al. (1988).

Timm & Okubo (1994) derived a steady-state axisymmetric plume model for
gyrotactic cells but some of their assumptions are unlikely to be valid. In particular,
the horizontal component of swimming due to gyrotaxis was taken to be proportional
to the vertical fluid velocity, even though the torque balance equation shows it to
be proportional to the gradient of the fluid velocity. Also, the fluid viscosity and
diffusion due to the cells were neglected without justification. (Indeed, we show
that the dominant balance in the cell concentration profile in a plume is between
the horizontal components of gyrotaxis and cell diffusion.) Pedley (1988) tried to
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construct a model of ‘bottom-standing plumes’ for a two-dimensional horizontally
periodic pattern and derived estimates for the characteristic scalings but was unable
to obtain a fully consistent solution. In this paper, we shall derive a steady-state plume
model for a given plume spacing, assuming only that the solutions are independent
of the vertical coordinate. This is consistent with the numerical experiments.

We shall study two-dimensional bioconvection in a layer confined by a rigid bottom,
a stress-free top and lateral boundaries in the nonlinear regime. A wider chamber
will generate several plumes that are periodic in x with vertical stress-free boundaries
between them. The aim of the present computation is to study the structure and
stability of just one of them. Since we specify the plume spacing in advance, the
present study will not shed light on the wavenumber selection process. This paper
is organized as follows. The mathematical formulation of the continuum model is
outlined in § 2. In § 3, a brief description of the computational method is given, and a
comparison of the numerical results with the linear stability results of Hill, Pedley &
Kessler (1989) is given in § 4. The results of the numerical computations are presented
in § 5. We analyse the stability of an infinitely long gyrotactic plume in § 6 and, in § 7,
we make comparisons with the numerical results and draw conclusions.

2. Mathematical formulation
The geometry considered consists of a two-dimensional rectangular box of width

L and height H referred to Cartesian coordinates with the y-axis pointing upwards.
The left, right and top walls of the chamber are stress free and the bottom wall is
rigid. There is no flux of cells through any of the walls.

2.1. Governing equations

As in Pedley et al. (1988), we assume a monodisperse cell population which can be
modelled by a continuous distribution. The suspension is dilute so that the volume
fraction of the cells is small and cell–cell interactions are negligible. Each cell has a
volume ϑ and density ρ+∆ρ, where ρ is the density of the water in which the cells swim
and ∆ρ/ρ � 1. The velocity u is solenoidal and the vorticity, ω = curl u = (0, 0, ζ);
thus we introduce a stream function ψ such that

u = (u, v, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, ζ = −∇2ψ. (3)

Conservation of cells requires that the number of cells per unit volume, n, satisfies
the equation

∂n

∂t
= −∇ · J , (4)

where the flux of cells is

J = nu+ nWcp̄ − D∇n. (5)

The third term on the right-hand side of (5) represents the random component of
cell locomotion. We assume that the diffusion coefficient D is homogeneous and
isotropic and independent of the other parameters of the problem. The second term
in (5) arises due to the average swimming of the cells: Wcp̄ is the average swimming
velocity relative to the fluid and Wc is assumed to be constant; p̄(x, t) represents the
average orientation of cells.
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The vorticity evolves according to the equation

∂ζ

∂t
+ ∇ · (ζu) = ν∇2ζ − ∆ρgϑ

ρ

∂n

∂x
. (6)

Here ν is the kinematic viscosity and (6) is derived under the Boussinesq approxi-
mation, neglecting all effects of the cells on the fluid, except their negative buoyancy,
because the suspension is dilute.

2.2. Calculation of the mean direction

From figure 1, we have

p ≡ (px, py) = (− sin θ, cos θ),

where θ is the solution of (2). If the shear is sufficiently small so that |Bζ| 6 1, then
the steady-state orientation is obtained by setting the left-hand side of (2) equal to
zero. Thus when |Bζ| 6 1, we find

p̄ = (−κ, (1− κ2)1/2), |κ| 6 1, (7)

where κ = Bζ. If the vorticity is large (|Bζ| > 1), the cell tumbles but swims on
average in a fixed direction at an angle to the vertical (Kessler 1985b). When the
vorticity is large, the swimming direction p is approximated in the following way.

First consider the case when κ = Bζ > 1. Define τ ≡ t/2B, then (2) becomes

dθ

dτ
= κ− sin θ,

which gives

κ tan

(
θ

2

)
− 1 = γ tan

{
γ(τ+ C)

2

}
, (8)

where γ =
(
κ2 − 1

)1/2
and C is a constant of integration.

To find the period of rotation in terms of τ, note that as θ increases from 0 to 2π,
θ/2 increases by π and thus γ(τ + C)/2 changes by π, which implies that the period
is T = 2π/γ.

Let p̄ =
∫ T

0
p dτ/T be the average value of p over a period, thus

p̄x =
1

T

∫ 2π

0

− sin θ

dθ/dτ
dθ = −κ+ γ,

and

p̄y =
1

T

∫ 2π

0

cos θ

κ− sin θ
dθ = 0,

which is expected since the horizontal line through the centre of the cell is a line of
symmetry for the rotation of the cell. Thus, if κ = Bζ > 1, then

p̄ = (−κ+ (κ2 − 1)1/2, 0) (9)

and similarly, if κ = Bζ < −1, then

p̄ = (−κ− (κ2 − 1)1/2, 0). (10)

Equations (7), (9) and (10) determine the average swimming direction of the cells for
any value of ζ.
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The equations are scaled using the width L, the time scale L2/D and the mean
concentration n̄. The resulting system of coupled equations is

u = (u, v, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, ζ = −∇2ψ, (11)

∂ζ

∂t
+ ∇ · (ζu) = Sc∇2ζ − ScR ∂n

∂x
, (12)

and
∂n

∂t
= −∇ · J , (13)

where the flux of cells is

J = nu+ nVcp̄ − ∇n. (14)

For convenience we have kept the same notation for the dimensional and dimension-
less variables. Here Sc = ν/D is the Schmidt number, Vc = WcL/D is the scaled cell
swimming speed and R is a Rayleigh number defined as

R =
n̄ϑ∆ρgL3

ρνD
;

p̄ is defined by

p̄ =


(− κ, (1− κ2)1/2

)
, |κ| 6 1,([− |κ|+ (κ2 − 1)1/2

] κ
|κ| , 0

)
, |κ| > 1,

(15)

where κ = Gζ and G = BD/L2 is defined as the gyrotaxis number. The boundary
conditions are applied at

x = ± 1
2

and y = 0, λ,

where λ = H/L is the aspect ratio of the chamber.
The definition of R is non-standard in that it is based on the width and mean cell

concentration rather than the height and cell concentration at the top of the chamber.
The conventional Rayleigh number increases with an increase in the height of the
chamber, whereas our Rayleigh number remains constant. We use our definition so
that the height of the chamber can be varied independently of the other parameters.
R Vc λ

4/(1 − exp (−Vcλ)) equals the conventional Rayleigh number at a given aspect
ratio. Note also that the bioconvection equations reduce to those of the thermal
convection when Vc = 0.

2.3. Initial and boundary conditions

We impose rigid, no-slip boundary conditions at the bottom wall and assume that
the other boundaries are stress-free, so that

ψ = 0 at x = ± 1
2

and y = 0, λ,

∂ψ

∂y
= 0 at y = 0,

∂2ψ

∂x2
= 0 at x = ± 1

2
,

∂2ψ

∂y2
= 0 at y = λ.

 (16)

The boundary condition on n is that there be no flux of cells through the walls, thus

J · x̂ = 0 at x = ± 1
2

and J · ŷ = 0 at y = 0, λ. (17)
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The initial conditions are that of a uniform state together with a small perturbation
to the uniform concentration of cells:

ψ = 0, ζ = 0, n = 1 + ε cos (mπx), (18)

where ε = 10−5 and m = 2. The perturbation is applied for computational convenience
to ensure that the plume forms in the middle of the chamber.

3. Numerical procedure
The governing equations (11)–(13) are discretized using a conservative finite-

difference scheme (Ghorai 1997) on a staggered mesh, with the stream function
and vorticity stored on one set of nodes and the concentration stored on another
set of nodes. The grid is chosen so that the concentration nodes lie in the interior
only whereas those of the stream function and vorticity lie in the interior and on the
boundary of the domain. The advantage of the staggered mesh is that the no-cell-flux
boundary condition can be satisfied immediately when discretized without further ap-
proximation. We know that a plume is concentrated along a narrow column and that
there are boundary layers at the top and bottom walls due to the large cell concentra-
tion and the presence of the rigid wall respectively. In order to describe these gradients
accurately, it is necessary to use a non-uniform coordinate mesh. We transform the
non-uniform spatial increments ∆xi and ∆yj in the finite-difference equations to a
uniform grid using an orthogonal transformation ξk = ξk(xk) which also maps the
problem to the computational domain −1 6 ξk 6 1, where xk = (x, y) and ξk = (ξ, η).
An accurate transformed finite-difference equation for the first derivative fIi is given by

fi+1 − fi−1

2∆ξ
(
dx/dξ

)
i

= fIi

[
1 +

(∆ξ)2

6

(
d3x

dξ3

)
i

/(dx

dξ

)
i

]
(19)

(de Rivas 1972). The second term inside the bracket on the right-hand side of (19)
is important only when there is a large grid variation. The second derivative of f is
obtained by recursion of (19). The above difference approximation has a truncation
error O(∆ξ2) for an arbitrary mesh transformation in problems of boundary layer
character. Here we have taken the transformations proposed by Roberts (1970).

An expression for the vorticity boundary condition can be obtained by expanding
the stream function near the rigid surface using a three-term Taylor series expansion
and the no-slip condition:

ζw = −ζnw

2
− 3ψnw

(∆n)2
, (20)

where ζnw, ψnw are the values of ψ, ζ at the near-wall node (adjacent to the wall) and
∆n is the non-dimensional distance of the near-wall node from the wall.

An implicit scheme with Euler backward differencing in time and central differenc-
ing in space is used to obtain the transient solutions. A line-by-line tridiagonal matrix
algorithm with relaxation is used to solve the nonlinear discretized equations. The
number of grid points along the x-direction is 36 and the number of grid points along
the y-direction is increased with an increase in aspect ratio. For example 36 points
are taken for λ = 1 and 56 points are taken for λ = 4 along the vertical direction.
Some of the results were run with different numbers of grid points to check the grid
independence of the solutions. In § 5.1, we compare solutions of different grids for an
aspect ratio of 1. Many of the details of the numerical procedure, and its validation
by comparison with a benchmark computation of thermal convection (de Vahl Davis



8 S. Ghorai and N. A. Hill

1983), are available on request from JFM Editorial office. Full details can be found
in the thesis of Ghorai (1997).

4. Linear stability of the basic equilibrium state
Equations (11)–(13) possess a steady solution in which ψ = ζ = 0 and the concen-

tration has the equilibrium exponential profile

np(y) =
Vcλ exp (Vc y)

exp (Vcλ)− 1
. (21)

HPK have examined the linear stability of this equilibrium solution in a finite-depth
chamber. In the absence of gyrotaxis (G = 0), the wavelength (Λ) of the most unstable
mode is large (as found by Childress et al. 1975). On the other hand, in the presence
of gyrotaxis, the most unstable wavelength is finite. We compute the critical Rayleigh
number as a function of the wavelength using the present code and compare the
results with those of Hill et al. (1989). The depth of the chamber is taken as the
length scale in this section only. The top and the bottom walls are rigid and the
sidewalls are rigid and stress free. The Rayleigh number is

R∗ =
n̄ϑ∆ρgH3

ρνD
,

which is related to the Rayleigh number RHPK of Hill et al. by

RHPK =
R∗ V 2

c

1− exp (−Vc) .
The numerical solutions were obtained in the following way. First a solution for

a single convection cell was established. This solution is one half of the periodic
solution of wavelength equal to twice the chamber width. Then the value of the
Rayleigh number was decreased by 5% and the new solution was allowed to settle
to its steady state step by step. The critical Rayleigh number was taken to be
approximately the value at which the final steady state is first equal to the equilibrium
steady state. The exact Rayleigh number lies within ± 5% of the computed values.
Figure 2 shows the neutral curves for Vc = 5 and the agreement between the linear
stability analysis and the numerical results is satisfactory. It is difficult to compute the
critical Rayleigh number for G = 0.02 when the wavelength is large (Λ> 3), since the
wavelength of the most unstable mode is approximately 1.5 and this mode dominates
the numerical solutions in wider chambers.

5. Results
To study the effect of the depth on plume formation, the governing parameters

R, Sc, G, Vc are kept constant and the aspect ratio is varied from small to large values.
The following parameter values are based on a chamber width of approximately
0.5 cm using data from table 1 of Kessler (1986) for a suspension of Chlamydomonas
nivalis:

R = 500, Sc = 20, G = 0.01, Vc = 10. (22)

5.1. Aspect ratio λ = 1

The critical Rayleigh number for Sc = 20, G = 0.01, Vc = 10 and λ = 1 is ap-
proximately 260. Since the governing parameters are above the critical values, the
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Figure 2. Comparison between numerical estimates (+) and the solutions of the linear stability
analysis (solid lines) for the neutral curves at the onset of bioconvection when Vc = 5 and G = 0.0
and 0.02.
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Figure 3. Evolution of the cell concentration, n(y), in the mid-vertical plane, for an ultimately
unstable suspension at an early stage for aspect ratio λ = 1. The values of the other parameters are
given in (22). np(y) is the equilibrium profile.

concentration profile initially develops towards (21), but bioconvection begins before
the profile develops fully.

Figure 3 shows an example of the initial evolution of cell concentration in the
y-direction with time and also the solution given by (21). At t = 0, the concentration
is uniform and n = 1 approximately. The concentration at the top (bottom) of
the chamber increases (decreases) with time due to cells swimming upwards and
accumulating at the top, where the no-cell-flux condition holds. As time increases,
the concentration profile tends to the exponential profile given by (21). Since the
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ψmax ζmax

Grid Nodes nmid (x, y) x(y = 0)

Stretched 26× 26 3.713 1.891 56.392
(0.224, 0.583) −0.232

Stretched 36× 36 3.685 1.883 55.895
(0.225, 0.585) −0.233

Uniform 46× 46 3.679 1.880 55.988
(0.225, 0.584) −0.233

Table 1. Properties of the solution of the final steady state (2+) using different grids when λ = 1,
R = 500, Sc = 20, Vc = 10 and G = 10−2.

parameters are above the critical values, a plume begins to form (solutions become
functions of x also) before the equilibrium exponential profile is achieved.

Figure 4 shows the evolution of the plume at various times from the uniform state
(18). In these figures, we have plotted (a) cell concentration as a surface, (b) total cell
flux vector J , and (c) streamline contours. At the beginning, the cells swim upwards
and an exponential cell concentration profile begins to develop. There is also a very
weak circulation due to the perturbation given to the initial uniform concentration.
Figure 4 shows that a plume starts developing in the vertical mid-plane (x = 0) at
t = 0.370 due to the initial perturbation, and at t = 0.445 the head of the plume
begins descending. The plume has hit the bottom of the chamber at t = 0.483. The
variation of the central concentration, nmid = n(0, 1

2
), at the midpoint of the chamber

(figure 5) shows that the plume becomes steady after a relatively short time. We
have chosen the following method to determine whether a given solution is in steady
state. The concentration fields from two different numerical solutions, usually 2000
time steps apart, are subtracted from each other at every grid point. If the maximum
difference is less than 10−5, then we declare the solution to be steady.

Figure 6(a–c) shows the final steady-state cell concentration, total cell flux vector
J , and streamline contours respectively, whereas figure 7(a–c) shows the individual
contributions of the advective cell flux, un, the diffusive cell flux, ∇n, and the gyrotactic
cell flux, Vcp n, respectively, to the total cell flux vector J .

To illustrate the dependence of the solution on the mesh, the properties of the
above steady solution were compared on three different grids as shown in table 1,
where the quantities given are

(i) the value of the concentration n at the mid-point of the two-dimensional box;
(ii) the maximum value of the stream function ψ together with its location;
(iii) the maximum value of the vorticity ζ on the rigid wall (y = 0), together with

its location.
Since the solution is symmetric, the locations of ψmax and ψmin are symmetric about

the y-axis and the same is true for the vorticity. The positions of the maximum and
minimum values are obtained by a third-order polynomial approximation. It is seen
from the table 1 that three-figure accuracy is achieved with 36× 36 grid.

The above steady solution, classified as a one plume/two convection cell solution
(the 2+ solution of Lennie et al. 1988), of the bioconvection problem is not unique.
There exist steady-state solutions with a single clockwise (1+) convection cell and
likewise one in an anti-clockwise sense (1−). Figure 8(a–c) shows one of these solutions,
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Figure 4. Gyrotactic plume formation for the suspension shown in figure 3 for aspect ratio
λ = 1: (a) concentration, (b) cell fluxes, (c) streamlines. The positive streamlines take values of
0.1, 0.3, 0.5, 0.7, 0.9 of ψmax with similar labelling for the negative streamlines. Here ψmax = −ψmin.
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Figure 5. Variation of the central concentration with time for aspect ratio λ = 1.
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Figure 7. Steady-state cell fluxes for λ = 1 due to (a) advection, (b) diffusion and (c) gyrotaxis.

which arises from the initial cell distribution

n = 1 + ε sin (m π x), − 1
2
6 x 6 1

2
, (23)

where ε = 10−4 and m = −1. There also exists a two-plume (at x = ± 1
2
) solution with

two convection cells, which arises from the initial concentration distribution of the
following form:

n = 1− ε cos (m π x), − 1
2
6 x 6 1

2
,
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(c) streamlines (equally spaced contour levels). This solution corresponds to initial cell distribution
given by (23).
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Figure 9. Gyrotactic solutions (2+) of plume for aspect ratio λ = 2 at t = 2.0: (a) concentration,
(b) cell fluxes, (c) streamlines (at equally spaced contour levels).

where ε = 10−4 and m = 2. This solution is termed the 2− solution by Lennie et al.
(1988).

5.2. Aspect ratio λ = 2

The concentration, cell fluxes and streamlines at t = 2 for λ = 2 are shown in the
figure 9(a–c). It is seen from figure 9(b) that some of the cells are circulating at the
bottom of the plume and that in the mid-region of the plume, the flow is almost
independent of the vertical y-coordinate. If the solutions are independent of the
y-coordinate, then from the equation of cell conservation, we find

d

dx
Jx = 0 ⇒ Jx ≡ Vc px n− dn

dx
= C,

where the constant C = 0 since ζ = 0 and dn/dx = 0 along the plume. Thus we have
a balance between the horizontal diffusive flux and the horizontal gyrotactic flux.
A plot of the horizontal gyrotactic cell flux, Vc px n|y=1, against the negative of the

horizontal diffusive cell flux, ∂n/∂x|y=1, verifies this conclusion (see figure 10a).
A plot of the central concentration, nmid = n(0, 1), against time is shown in the
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Figure 10. (a) Comparison of the negative of the horizontal diffusive cell flux, dn/dx (——) with
the horizontal gyrotactic cell flux, Vcpxn (– ∗ –∗ –) at y = 1 for aspect ratio λ = 2. (b) Variation of
nmid = n(0, 1) with time for aspect ratio λ = 2.

2y

4

(a) t =1.11

0
0.5

x
0

(b) t =1.16 (c) t =1.21 (d ) t =1.26

–0.5

Figure 11. One cycle of the oscillation in concentration (plotted as contour levels) for aspect ratio
λ = 4. The period is approximately 0.15 in non-dimensional units.

figure 10(b). The large value of n(0, 1) at around t = 0.25 is the concentration at the
head of the plume when it passes through the mid-point. The fluctuations in nmid

are due to the occurrence of a small varicose ‘blob’. The fluctuations take longer
to disappear than when λ = 1. The solution remains apparently in a steady state
(2+ solution) for a considerable amount of time. Ultimately, the perturbation due to
rounding error grows and it shifts the plume to one of the stress-free sidewalls and
a steady-state single convection cell (either 1+ or 1−) forms with the fluid rotating in
either the clockwise or anti-clockwise sense, similar to the solution shown in figure 8.

5.3. Aspect ratio λ = 4

In this case, the blob does not disappear; instead it convects along the plume
periodically forming an intermediate state. Figure 11(a–d) shows one cycle of the
oscillation. Figure 11(a) shows the blob just above the mid-height of the chamber and
it is about to hit the bottom of the chamber in figure 11(b). Figure 11(c) shows the
blob after it has hit the bottom of the chamber and figure 11(d) completes the cycle.
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Figure 12. Growth of meandering instability: streamlines (equally spaced contour levels) for
aspect ratio λ = 4.
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Figure 13. Variation of the central concentration, nmid = n(0, 2), with time in a chamber of aspect
ratio 4. The drop in concentration at around t = 3 indicates that the plume has shifted to one of
the sidewalls via a meandering instability.

The wavelength of the varicose mode is the distance between two blobs. For aspect
ratio 4, this wavelength is a little less than 4, since the two blobs are not located
exactly at the top and the bottom of the chamber.

This periodic blob convection persists for a considerable amount of time, but
ultimately a sideways ‘meandering’ instability develops. The development of this
instability is shown in figure 12, where the streamlines are plotted at equal intervals
of time. This meandering instability grows rapidly and the plume shifts from the
centreline to one of the sidewalls. The wavelength of the meandering mode is also
approximately 4 (see figure 12), the aspect ratio of the chamber.

The evolution of the central cell concentration, nmid = n(0, 2), at the midpoint of
the chamber from the initial uniform state to the final state of the plume is plotted
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Figure 14. Snapshots of (a) periodic blob convection and (b) the growth of the meandering
instability: streamlines for aspect ratio λ = 6.

4y

8
(a) t =1.60

0
0.5

x
0

(b) t =1.88

–0.5

Figure 15. Snapshots of (a) periodic blob convection and (b) the growth of the meandering
instability: streamlines for aspect ratio λ = 8.

in figure 13. The fluctuation of nmid in 0.5 6 t 6 2.5 corresponds to the periodic blob
convection. This periodic behaviour is destroyed by the meandering instability (shown
in figure 12) in the interval 2.5 6 t 6 3 and ultimately the plume shifts to one of the
sidewalls forming a single convection cell (1±).

5.4. Aspect ratios λ = 6 and λ = 8

The streamlines for the aspect ratios 6 and 8 at two different times are shown in
figure 14 and figure 15. Figure 14(a) shows periodic blob convection, where one blob
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Figure 16. Concentration contours for G = 5× 10−3 (a) at an early stage and (b) at final steady
state for aspect ratio λ = 4.

has hit the bottom of the chamber and another blob is approaching the mid-height.
Figure 15(a) shows that after one blob has hit the bottom of the chamber, another is
at the mid-height and another has formed at the top. Figure 14(a) is the intermediate
state between solutions with one blob at λ = 4 and two blobs at λ = 8.

Figure 14(b) and figure 15(b) show the onset of the meandering instability for
aspect ratios 6 and 8 respectively. These figures show that the meandering instability
for λ = 8 occurs after a shorter time than for λ = 6, indicating that the growth
rate of the meandering instability increases with an increase in the aspect ratio. The
wavelength of the varicose mode is approximately 4 and that of the meandering mode
is approximately 4 too based on the solution at λ = 8.

5.5. Parametric dependence

Due to the large number of parameters, it is difficult to obtain a comprehensive
picture across the whole parameter domain. Below we describe the results for a
physically relevant sample of parameter values.

5.5.1. Dependence on G

The value of the gyrotaxis parameter, G, was varied in the range from 5× 10−3 to
1.5× 10−2, while the other parameters were kept constant:

R = 5× 102, Sc = 20, Vc = 10, λ = 4. (24)

It was observed that for smaller values of the gyrotaxis number, the plumes do not
extend down to the bottom of the chamber. The oscillations due to the ‘blobs’ begin
to disappear after a relatively short time, but the meandering instability grows more
rapidly. Ultimately this meandering instability destabilizes the plume and it shifts
towards one of the stress-free sidewalls. Figure 16 shows the plume solution at two
different times for G = 5× 10−3. The solution at t = 10 is almost steady.

For intermediate values of G, the oscillations due to blobs persist longer, but
still the meandering instability ultimately dominates over the varicose instability,
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Figure 17. Almost steady-state concentration contours at t = 10 for aspect ratio λ = 4 when
G = 0.01 and 0.015.

although it takes longer, and the plume shifts to one side. For large G, the blobs
almost disappear, as most of the cells, after reaching the bottom of the chamber, are
forced to remain there due to the strong circulation. Thus a large value of G stabilizes
the plume. The cells tumble for values of G greater than approximately 0.012. The
weak effective horizontal gyrotactic swimming due to tumbling is a reason for the
stabilization of the plume for large G. After a sufficiently long time, rounding errors
in the computation gradually introduce perturbations, which begin to grow into the
meandering instability. Ultimately this meandering instability breaks the plume down
as in the previous cases. Figure 17 shows the steady-state concentration contours
for G = 0.01 and G = 0.015. The cell concentration at the bottom of the chamber
increases with an increase in the values of G.

The variation of the central concentration, nmid = n (0, 2), at the midpoint of the
chamber with time is shown in figure 18 for the three different values of G. It is seen
that the time taken by the meandering instability to destabilize the plume increases
with increase in the values of G. The oscillations due to blobs virtually disappear
for large values of G. Sudden drops in the concentration values around t = 2, 3 and
9 in figure 18 indicate the shifting of the plume to one of the sidewalls. They show
that the growth rate of the meandering instability decreases with increasing G but the
exact times also depend on the level of numerical rounding errors. This is discussed
further in § 7.

5.5.2. Dependence on Vc

Here we keep four of the parameters fixed at

R = 5× 102, Sc = 20, G = 10−2, λ = 4 (25)

and vary the cell swimming speed, Vc, in the range from 5 to 20.
The properties of the solution with increase in Vc are similar to those for the increase

in G except that the blob convection persists for larger values of Vc. Figure 19 shows
the variation of the central concentration, nmid = n (0, 2), at the midpoint of the
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Figure 18. Effect of gyrotaxis number: variation of nmid = n (0, 2) with time for three different
values of G at aspect ratio λ = 4.
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Figure 19. Effect of cell swimming speed: variation of nmid = n (0, 2) with time for three different
values of Vc at aspect ratio λ = 4.

chamber with time for three different values of Vc. The meandering instability sets in
more quickly at smaller values of Vc.

5.6. Remarks

The 2+ and 2− solutions in the steady state are equivalent and the same is true for the
1+ and 1− solutions except the sense of fluid rotation. The solution with the central
plume (2+) has wavelength equal to the width of the chamber, whereas the solution
with a plume on one of the sidewalls (either 1+ or 1−) has a wavelength equal to twice
the width of the chamber. Consequently, the critical Rayleigh numbers are different
depending on whether the plume is initiated in the middle or at one of the sidewalls.
The varicose mode can be simulated in a chamber of half the width of the original
chamber, since the solution has symmetry about x = 0. However, since the sidewalls
are rigid and stress free with zero cell-flux through them, the meandering mode and
its growth rate can only be studied on a plume at the middle of the chamber. Our
initial conditions make the plume form in the middle of the chamber. Simulations
without a perturbation to the initial uniform concentration usually lead to an initial
disturbance in one of the corners at the top of the layer (due to accumulation of
rounding errors) and result in one plume/single convection cell solutions (1±).

When G is small, the weak gyrotaxis is unable to pull enough cells from the top
layer to extend the plume to the bottom of the chamber. However the 1± plume is
longer than the 2+ plume. This is because the area of the region adjacent to the plume
for 1± solutions is twice that of the 2+ solution so that the number of cells under the
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influence of gyrotaxis is greater. Consequently, the effect of gyrotaxis is stronger for
1± solutions than for the 2+ solution.

6. Linear stability of a gyrotactic plume
We have seen two kinds of instabilities in a large aspect ratio chamber. In order

to understand these instabilities better, a model of an infinitely long plume is derived
and its linear stability is tested. The linear stability analysis is valid only when the cells
do not tumble so that G cannot be too large. The governing equations are (11)–(14)
with the swimming direction given by

p̄ =
(− Gζ, (1− G2ζ2)1/2

)
.

6.1. The primary flow

The basic flow configuration is sketched in figure 20. The central axis of the plume
is located along the vertical y-axis and the flow is bounded by walls at x = ± 1

2
. The

walls are stress free and there is no flux of cells through them. Also the total non-
dimensional fluid flux, Qf , and the total non-dimensional cell flux, Qc, are prescribed.
The values of both Qf and Qc are zero for the numerical experiments. We first seek
the equilibrium steady fluid speed, v(x), and the cell concentration, n(x).

Application of the no-cell flux condition at the sidewalls to the equations of
bioconvection, (11)–(14), gives

d3v

dx3
= R

dn

dx
(26)

and
dn

dx
= −Vc G dv

dx
n. (27)

Equation (26) represents the balance between viscous stress and buoyancy and (27)
represents the balance between the horizontal diffusive and the horizontal gyrotactic
cell fluxes. Because of symmetry, the primary flow is solved for only in the region
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0 6 x 6 1
2
. The boundary conditions are

dv

dx
= 0 at x = 0, 1

2
, (28a)

∫ 1/2

0

v(x) dx = Qf/2, (28b)

and ∫ 1/2

0

[
v(x) + Vc

(
1− G2ζ2

)1/2 ]
n(x) dx = Qc/2. (28c)

Equation (27) can be integrated once giving

n(x) = n0 exp {−Vc G (v + v0)} , (29)

where n0 = n(0) and v0 = −v(0) are unknown constants and (26), on integrating twice
and applying the boundary condition (28a), gives(

dv

dx

)2

=
2R n0

T

{
1− exp (−T (v + v0))− AT (v + v0) exp (−T v0)

}
, (30)

where T ≡ Vc G and A is a constant of integration. Let B be another constant defined
so that v( 1

2
) = Bv0. Since (dv/dx)( 1

2
) = 0, (30) implies that

1− exp (−T v0 (1 + B))− AT v0 (1 + B) exp (−Tv0) = 0. (31)

For a given value of A and B, the product T v0 (and hence v0) is determined as a root
of (31). On introducing ω = T (v + v0), (30) can be integrated as∫ ω

0

dω̃√
1− exp (−ω̃)− Aω̃ exp (−Tv0)

= x (2R n0 T )1/2 . (32)

When x = 1
2
, (32) reduces to∫ Tv0(1+B)

0

dω̃√
1− exp (−ω̃)− Aω̃ exp (−Tv0)

= (2R n0 T )1/2 /2. (33)

The integral in (33) has an integrable singularity at both end points and n0 is
determined from this equation. Once n0 is determined, ω and hence v(x) are found
from (32), and then n(x) from (29), for any x ∈ [0, 1

2
]. Equations (31), (28b) and (28c)

are three simultaneous nonlinear equations in three unknowns A,B and Tv0, which
are solved numerically using iteration.

Figure 21 shows the basic flows for different values of G, the gyrotaxis number. The
peak cell concentration is relatively low for large G and vice versa. Figure 22 shows
the effect of Vc on the basic flows. The concentration gradient becomes steeper as
the values of the cell swimming speed become larger but the peak cell concentration
varies little.

6.2. The linear stability problem

We consider a small perturbation of amplitude ε (0 < ε� 1) to the equilibrium state,
so that

ψ = ψ(x) + εψ∗(x, y, t), n = n(x) + ε n∗(x, y, t), (34)

and look for normal modes of the form

ψ∗ = φ(x) exp (iα(y − ct)) and n∗ = θ(x) exp (iα(y − ct)).
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Figure 21. Basic velocity (a) and concentration (b) for an infinitely long plume for different values
of G in a flow between stress-free sidewalls. Here R = 500, Vc = 10, Qf = 0 and Qc = 0.
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Figure 22. Basic velocity (a) and concentration (b) for an infinitely long plume for different values
of Vc in a flow between stress-free sidewalls. Here R = 500, G = 0.01, Qf = 0 and Qc = 0.

Substituting into the governing equations (11)–(13) and linearizing about the basic
state gives at O(ε)

D4φ = −RDθ +

{
2α2 − iαc

Sc
+

iαv(x)

Sc

}
D2φ+

{
iα3c

Sc
− iα

Sc

dζ

dx
− iα3v(x)

Sc
− α4

}
φ (35)

and

D2θ = −VcGζ(x) Dθ +

{
α2 − iαc+ iαv(x)− VcGdζ

dx
+ iαVc

(
1− G2ζ2

)1/2
}
θ

+VcGn(x) D3φ+

{
VcG

dn

dx
+

iαVcG
2ζ(x)n(x)(

1− G2ζ2
)1/2

}
D2φ− α2VcGn(x)Dφ

+

{
iα

dn

dx
− α2VcG

dn

dx
− iα3VcG

2ζ(x)n(x)(
1− G2ζ2

)1/2

}
φ, (36)
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Figure 23. Growth rates as functions of the wavenumber, α, of (a) the varicose and (b) the
meandering instability modes of an infinitely long plume when G = 0.01 (——) and G = 0.005
(– – –). Here R = 500, Vc = 10, Qf = 0 and Qc = 0.

where D ≡ d/dx; v(x) and ζ(x) are the velocity and vorticity in the unperturbed
equilibrium state. The boundary conditions are

φ = D2φ = Dθ = 0 at x = ± 1
2
. (37)

This is an eigenvalue problem for c as a function of the dimensionless parameters
R, Sc, Vc, G and α, and the instability grows whenever Im(c) > 0.

6.3. Numerical results

Solutions to the full linear stability problem (35) to (37) are calculated with a fourth-
order-accurate finite-difference scheme provided by Dr D. R. Moore (Cash & Moore
1980). This scheme is used to compute (i) neutral curves for which Im(c) = 0, and (ii)
the growth rate as a function of α for a given values of the parameters. Initially, values
of R, G, Vc, Sc and α are supplied, and the values of c, φ and θ are estimated either
from the asymptotic results, or from the previous numerical results, or by imposing a
sinusoidal variation in φ(x) and θ(x). Once a solution is obtained, this solution can be
used as an initial guess for the neighbouring parameter values. The dependence of the
numerical solutions on the number of grid points was tested for different parameter
values. The orders of magnitude of the growth rates at long wavelengths agree with
those predicted by the asymptotic analysis (see the Appendix). It is clear from the
nature of (35) and (36) that if φ(x) is an odd function in x, then θ(x) must be an
even function. This is the varicose mode. For the meandering mode, φ(x) is even and
θ(x) is odd in x.

6.3.1. Effect of the gyrotaxis number

The growth rate curves associated with two different values of G are plotted
in figure 23. Figure 23(a) shows that, for the varicose mode, the plume with the
larger gyrotaxis number is more unstable at large wavenumbers and vice versa.
The dependence of the growth rate for the meandering mode on G is opposite to
that of the varicose mode (see figure 23b). Plumes are always unstable (Im(c) > 0)
at small wavenumbers (long wavelengths), but unconditionally stable (Im(c) < 0) at
sufficiently large wavenumbers (small wavelengths). The peaks in the growth rate
curves (figure 23) correspond to the most unstable wavenumbers. The value of Re (c)
is non-zero for both the varicose and the meandering modes.

Figure 24 shows the stability diagram in the (G, α)-plane. It is seen that the plane
can be divided into five regions. In region I, the plume is unstable to both the
varicose and the meandering modes, but the growth rate of the meandering mode
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Figure 24. Stability diagram for an infinitely long plume in the (G, α)-plane. Here R = 500, Vc = 10,
Qf = 0 and Qc = 0. The growth rate of the varicose mode (Vg) is zero on the long-dashed line and
that of the meandering mode (Mg) is zero on the short-dashed line, and Vg = Mg on the solid line.

(Mg) is greater than that of the varicose mode (Vg). Thus the plume becomes unstable
via a meandering instability at small wavenumbers (region I). For large values of G
and moderate values of the wavenumbers (regions II and IV), the plume becomes
unstable via a varicose instability. On the other hand, for small values of G and
moderate values of the wavenumbers (region III), the plume becomes unstable via
a meandering instability. The plume is unconditionally stable at sufficiently large
wavenumbers (region V).

6.3.2. Effect of the cell swimming speed

The behaviour of the growth rates and the associated linear stability diagram when
Vc is varied are similar to those when the gyrotaxis number is varied. Plumes with
large (small) values of Vc are more unstable at large (small) wavenumbers to the
varicose mode and the opposite is true for the meandering mode. The plumes become
unstable via the meandering mode at small wavenumbers for all values of Vc and
at moderate wavenumbers for smaller values of Vc. On the other hand for moderate
values of the wavenumbers and larger values of Vc, the plume becomes unstable to the
varicose mode. The plume is unconditionally stable at sufficiently large wavenumbers.

6.3.3. Instability mechanism

We have plotted the instability growth rate curves for the infinitely long plume
in figure 23 for the parameter values (shown in the caption) that were used in
the numerical experiments to examine the effect of the aspect ratio on the plume’s
structure and stability. For the varicose mode, the critical wavelength is approximately
1.5 and the most unstable wavelength is approximately 4. For the meandering mode,
the critical wavelength is approximately 2 and the most unstable wavelength is
approximately 17, but all the wavelengths in the range from 6 to ∞ have growth
rates nearly equal to the growth rate of the most unstable wavelength. Also, the
meandering mode dominates the varicose mode for wavelengths in the range from
2.4 to ∞. The instability associated with the varicose mode leads to blob formation,
whereas a meandering mode leads to the formation of a sinuous plume. The contours
of the perturbed concentration are plotted for the varicose mode over a wavelength of
4 in figure 25(a) and for the meandering mode over a wavelength of 6 in figure 25(b).

The mechanism for the varicose instability is shown schematically in figure 26(a).
The bulging region of the plume corresponds to positively perturbed concentration
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Figure 25. Contours of the perturbed concentration n′(x, y) for (a) the varicose and (b) meandering
instability modes for an infinitely long plume. Here R = 500, G = 0.01, Vc = 10, Qf = 0 and Qc = 0.

and the narrow region corresponds to negatively perturbed concentration. The region
of higher cell concentration sinks downwards because it is more negatively buoyant,
and introduces circulations as shown in figure 26(a). These circulations attract more
cells due to gyrotaxis from nearby and reinforce the bulging region. The region
of lower concentration induces circulations in the opposite sense and hence the
concentration in that region depletes further.

The mechanism for the meandering instability is shown schematically in figure 26(b).
The region where the plume bends radially outwards sinks because it is negatively
buoyant and causes circulations as shown in figure 26(b). These circulations lead
to the accumulation of more cells in the regions indicated by downward pointing
arrows and depletion of cells on the opposite side. Thus gyrotaxis also enhances the
formation of this mode.

7. Conclusions
It is instructive to compare the instability mechanisms and wavelengths for the

infinitely long plume to those of the plume in a chamber of finite depth. Numerical
experiments in a chamber of finite depth, with a rigid and no-slip bottom wall and a
stress-free top wall were performed in § 5. We observed the occurrence of a varicose
mode for aspect ratio 2 during the evolution of the plume, but this ultimately
disappears. This is presumably due to the constraints imposed by the boundary
conditions at the top and bottom boundaries. At higher aspect ratios, the blob persist
for longer and are convected along the plume periodically. Ultimately, however, the
plume becomes unstable to a meandering instability. There is one blob at aspect ratio
4, but this increases to two for aspect ratio 8, which indicates that the varicose mode
has a finite most unstable wavelength. The growth rate curve for the varicose mode
(see figure 23) on an infinite plume predicts this value to be approximately 4, which
is consistent with the numerical evidence for a finite-depth plume.

We observed that the plume at aspect ratio 1 was stable, but at aspect ratio 2 it
was unstable to the meandering mode when given a small perturbation, although the
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(a)
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in this region

Cells depleted in
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Basic concentration contour

Perturbed concentration contour

(b)

Cells accumulate
in this region
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Figure 26. The mechanism for the (a) varicose and (b) meandering instability. The regions marked
with downward (upward) pointing arrows are more (less) negatively buoyant and cause circulation
in the sense shown in the figure.

growth rate of this mode was small. This suggests that the critical wavelength is less
than 2 due to the non-periodicity of the top and bottom boundaries. The estimate
for the most unstable wavelength for the meandering mode, based on numerical
experiments at aspect ratios 4, 6 and 8, is approximately 4. Both of these values
are lower than those predicted by the infinite-depth linear stability theory. This
underestimate is likely to be due to several reasons. First the presence of the large cell
concentration at the top of the plume amplifies the growth rate to such an extent that
the top of the plume shifts to one of the sidewalls before the meandering disturbance
reaches the bottom of the chamber. Also, due to the strong circulation and the no-slip
bottom wall, the lowest part of the plume is less susceptible to horizontal movement.
Thirdly, in the numerical experiments, the meandering instability develops in the
presence of the varicose instability and the vertical wavelength of the meandering
mode appears to be constrained approximately between two varicose blobs.
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Figure 27. Comparison between full numerical solutions (+) and the asymptotic solutions
(solid lines) of the linear stability problem for the infinitely long plume when R = 500,
G = 0.01, Vc = 10, Qf = 0 and Qc = 0.

There is also good agreement between the linear stability analysis for an infinite
plume and numerical experiments in a chamber of aspect ratio 4 as various parameters
are varied. For values of G in the range from 0.005 to 0.015, following an initial
varicose instability, the plume reaches the critical meandering instability stage rapidly
when G = 0.005. When G is increased to 0.01, the varicose instability persists longer,
i.e. the growth rate of the meandering mode decreased as G is increased from small
to intermediate values. When G = 0.015, the blobs almost disappear, i.e. the growth
rate of the varicose mode again decreases. Linear stability analysis also suggests that
the meandering mode is dominant at moderate wavelengths for smaller values of G
and the growth rate of the varicose (meandering) mode increases (decreases) as G
is increased from small to intermediate values (see figures 23 and 24). The linear
stability analysis is not applicable for G > 0.012 since the cells tumble for G > 0.012.
We also performed numerical experiments in a chamber of aspect ratio 4 for values
of Vc in the range from 5 to 15. The time taken to reach the critical meandering stage
increases with an increase in the values of Vc. Thus the growth rate of the varicose
(meandering) mode increases (decreases) with an increase in the value of Vc, which is
also predicted by the linear stability analysis.

Linear stability analysis predicts that the meandering instability is the most unstable
mode for a wavelength greater than approximately 2.4 (see figure 23) when G =
0.01, R = 500 and Vc = 10. In our numerical experiments, we always observed the
varicose instability appearing first since the initial condition (18) strongly favours
the varicose mode over the meandering mode. This is because the initial condition
and the equations are symmetric under reflection in x so that the solution will
remain symmetric until numerical rounding errors become significant and trigger
the meandering instability. Thus the varicose instability is forced to appear at the
beginning, but ultimately the meandering instability is dominant.

Time-dependent varicose instabilities or ‘blobs’ on plumes in bioconvection are
studied here. This phenomenon is not new to convection problems. Lennie et al.
(1988) found similar structures in the thermal convection of a Boussinesq fluid with
an infinite Prandtl number confined between rigid boundaries. The time dependence
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is related to the formation of hot or cold blobs in the unstable thermal boundary
layers. The varicose instability described in this paper is similar to the bamboo
waves (Bai, Chen & Joseph 1992) generated in a vertical pipe upflow when more
viscous, less dense oil in the core flow is encircled by less viscous, more dense
water. Lister (1987) investigated the stability of the two-dimensional flow due to
the steady fall of a narrow, laminar plume: a dense fluid falling through a lighter
fluid. The plume is found to be unstable to both varicose and meandering modes.
The fundamental cause of the instability in the last two references is the contrast
in viscosity between the two fluids. On the other hand, Smith (1989) analysed the
stability of a vertical column of one fluid on the axis of a cylinder containing another,
both acted upon by a uniform pressure gradient. The densities of the two fluids
were different but their viscosities were the same. The mechanism for this instability
is based on the interaction between the shear stress and the pressure. The present
system is a single fluid with constant viscosity, unlike the two-fluid systems of Bai
et al. (1992), Lister (1987) and Smith (1989), where a clear boundary exists between
the two fluids. The role of gyrotaxis can be drawn out from the following argument.
First, it helps in the formation of a concentrated line plume due to gyrotactic
focusing. Secondly, suppose we switch off the gyrotaxis and cell diffusion in an
existing concentrated plume. The linear stability equation for the cell conservation
equation becomes

c θ = φ
dn

dx
+ (v(x) + Vc) θ. (38)

The boundary condition on θ is

θ = 0 at x = 0 for the meandering mode.

We specify

θ = 1 at x = 0 for the varicose mode

to fix the amplitude of the perturbation.
Since dn/dx = 0 at x = 0, (38) is satisfied at x = 0 for any value of c for the

meandering mode, whereas for the varicose mode c is real. Thus, the meandering
instability is possible without gyrotaxis but gyrotaxis enhances the meandering mode
by the mechanism described in § 6.3.3. On the other hand, gyrotaxis is essential for
the varicose instability.

Some aspects of the cell suspension that require further study include the following:
(i) Cell geometry For simplicity, we have considered spherical cells only, whereas

a typical algal cell closely resembles a spheroid. Also the effects of the flagella were
ignored.

(ii) Randomness in cell swimming trajectories In this paper, the randomness in the
cells’ swimming trajectories is modelled by a constant isotropic diffusion coefficient,
D, (see (5)) and the mean swimming direction, p̄, is given deterministically by (15).
Although this has the benefit of simplicity and is a good first model for gyrotaxis, it
is ad hoc. Pedley & Kessler (1990) have proposed a more rational model in which the
mean swimming direction and the diffusion are derived from the probability density
function for the orientation of the cells, which itself is governed by a Fokker–Planck
equation. Bees, Hill & Pedley (1998) and Bees & Hill (1998, 1999) have obtained
analytical results for a continuum model of bioconvection which incorporates the
Fokker–Planck equation. The new model remains a challenge for future numerical
solution.
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Appendix. Solutions valid at long wavelengths
Due to the nonlinear coefficients in (35) and (36), it is difficult to solve these

equations analytically, but in the limit of long wavelengths, i.e. α → 0, the order of
the linear stability equations can be reduced and the growth rate can be estimated
analytically. Since the order of the growth rate of the meandering mode (θ(x) odd)
is higher than that of the varicose mode (θ(x) even) at long wavelengths, only the
solutions for the meandering mode are presented.

The boundary conditions are

Dφ = D3φ = θ = 0 at x = 0, (A 1a)

φ = D2φ = Dθ = 0 at x = 1
2

(A 1b)

and
D2φ = 1 at x = 0. (A 1c)

The boundary condition (A 1c) is used to fix the amplitude of the perturbation.
Let

φ = φ0 + αφ1 + α2φ2 + . . . ,

θ = θ0 + αθ1 + α2θ2 + . . .

and

c = α−1c−1 + c0 + αc1 + α2c2 + . . . .

Substituting into (35), (36) and into the boundary conditions (A 1a)–(A 1c), we find
at leading order, O(1), that

D4φ0 + RDθ0 = − ic−1

Sc
D2φ0 (A 2)

and

D2θ0 + VcGD(ζ(x)θ0)− VcGD(n(x)D2φ0) = −ic−1θ0, (A 3)

with boundary conditions

Dφ0 = D3φ0 = θ0 = 0 at x = 0, (A 4a)

φ0 = D2φ0 = Dθ0 = 0 at x = 1
2

(A 4b)

and
D2φ0 = 1 at x = 0. (A 4c)

Now suppose that $ =
∫ x

1/2
θ0 dx. Integrating (A 2) and (A 3) using the boundary

conditions, we get

D2φ0 + R$ = − ic−1

Sc
φ0 (A 5)

and

D2$ + VcGζ(x)D$ − VcGn(x)D2φ0 = −ic−1$, (A 6)

subject to the boundary conditions

D$ = Dφ0 = 0 at x = 0, (A 7a)

φ0 = $ = 0 at x = 1
2

(A 7b)
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and

R$ +
ic−1

Sc
φ0 = −1 at x = 0. (A 7c)

Multiplying (A 5) by D2φ̄0, where φ̄0 denotes the complex conjugate of φ0, and
integrating from x = 0 to x = 1

2
, we get∫ 1/2

0

|D2φ0|2 dx =
ic−1

Sc

∫ 1/2

0

|Dφ0|2 dx− R
∫ 1/2

0

$D2φ̄0 dx. (A 8)

Integrating by parts and using the mean value theorem, we get the following identities:∫ 1/2

0

$D2$̄ dx = −
∫ 1/2

0

|D$ |2 dx.∫ 1/2

0

ζ(x)$D$̄ dx = −
∫ 1/2

0

v(x)|D$ |2 dx+ v(ξ)

∫ 1/2

0

|D$ |2 dx for 0 6 ξ 6 1
2
,∫ 1/2

0

n(x)$D2φ̄0 dx = n(τ)

∫ 1/2

0

$D2φ̄0 dx for 0 6 τ 6 1
2
.

Taking the complex conjugate of (A 6), multiplying by $ and integrating from
x = 0 to x = 1

2
(using the above identities), we get∫ 1/2

0

[1− VcG (v(ξ)− v(x))] |D$ |2 dx− ic−1

∫ 1/2

0

|$ |2 dx+ VcG n(τ)

∫ 1/2

0

$D2φ̄0 dx = 0.

(A 9)
Elimination of ∫ 1/2

0

$D2φ̄0 dx

from (A 8) and (A 9) shows that c−1 is purely imaginary at leading order and thus
determines the stability of plume. Since c−1 is purely imaginary, the eigenfunctions
are real and at leading order only a fifth-order system given by (A 5) to (A 6) needs
to be solved to determine the eigenvalues and eigenfunctions. Since c−1 is purely
imaginary, the modes are non-oscillatory at long wavelengths. Figure 27 shows that
there is good agreement between the asymptotic and numerical solutions.
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