
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Correspond
E-mail addr

n.a.hill@maths
1Current add

Cork, Ireland
Journal of Theoretical Biology 233 (2005) 573–588

www.elsevier.com/locate/yjtbi
Sampling rate effects on measurements of correlated and
biased random walks

E.A. Codlinga,�,1, N.A. Hillb

aDepartment of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
bDepartment of Mathematics, University of Glasgow, Glasgow G12 8QQ, UK

Received 27 July 2004; received in revised form 4 November 2004

Available online 15 December 2004
Abstract

When observing the two-dimensional movement of animals or microorganisms, it is usually necessary to impose a fixed sampling

rate, so that observations are made at certain fixed intervals of time and the trajectory is split into a set of discrete steps. A sampling

rate that is too small will result in information about the original path and correlation being lost. If random walk models are to be

used to predict movement patterns or to estimate parameters to be used in continuum models, then it is essential to be able to

quantify and understand the effect of the sampling rate imposed by the observer on real trajectories. We use a velocity jump process

with a realistic reorientation model to simulate correlated and biased random walks and investigate the effect of sampling rate on the

observed angular deviation, apparent speed and mean turning angle. We discuss a method of estimating the values of the

reorientation parameters used in the original random walk from the rediscretized data that assumes a linear relation between

sampling time step and the parameter values.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The simple random walk model has been frequently
used to describe the movement and dispersal of groups
of animals or microorganisms (Skellam, 1951, 1973;
Okubo, 1980). Possibly the simplest form of the two-
dimensional random walk is when a walker is restricted
to changing positions on a square lattice where there is
equal probability of moving up, down, left and right at
each step. Such a walk is uncorrelated as the direction of
movement is completely independent of the previous
direction moved and results in Brownian motion
(Brown, 1828; Einstein, 1906). Bias can be introduced
e front matter r 2004 Elsevier Ltd. All rights reserved.
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into the random walk by making the probability of
moving in one particular direction more likely and a
drift in this direction will be observed (Berg, 1983). A
problem with these simple uncorrelated models is that
they allow for effectively infinite propagation speeds
(Okubo, 1980; Othmer et al., 1988), and the resulting
diffusion equations are only valid as long time
approximations to the true underlying behaviour.
A more realistic random walk model is one that

includes correlation between successive steps, so that the
random walk is in the velocity rather than the position. In
one dimension it is possible to set up a simple correlated
random walk on a line (velocity jump process) and derive
the telegraph equation to describe the population density
(Goldstein, 1951; Kac, 1974; Okubo, 1980). However, a
similar method does not work in higher dimensions and it
is not possible to derive an equation for the population
density directly (Othmer et al., 1988; Hillen and Othmer,
2000; Codling and Hill, 2004).

www.elsevier.com/locate/yjtbi
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It is not necessary to restrict the two-dimensional
correlated random walk to a lattice and it is more
realistic to use a continuous circular probability
distribution for the choice of direction at each step.
Given such a circular probability distribution for the
reorientation at each step, it is possible to calculate the
properties of a two-dimensional correlated and unbiased

random walk at a given time such as the mean squared
displacement (Tchen, 1952; Nossal and Weiss, 1974;
Kareiva and Shigesada, 1983), the sinuosity or rate of
turning (Dunn, 1983; Bovet and Benhamou, 1988), and
the mean dispersal distance (Bovet and Benhamou,
1988; McCulloch and Cain, 1989; Byers, 2001; Codling,
2003).
In general however, similar methods do not work with

biased and correlated two-dimensional random walks
and it is much harder to calculate their statistics. Using a
linear transport equation to describe the velocity jump
process, Othmer et al. (1988) show how it is possible to
calculate equations for the spatial moments of a random
walk that has separate probability distributions for bias
and correlation effects in the reorientation. This method
has been extended by Codling and Hill (2004) to include
a more realistic reorientation model that implicitly
includes bias and correlation effects in the same
probability distribution, although this method requires
making several moment closure assumptions. A general
theory for using velocity jump processes and deriving
transport equations is discussed in Hillen and Othmer
(2000); Othmer and Hillen (2002) and Hillen (2002).
If such random walk models are to be used to predict

or analyse the spatial properties of real animal popula-
tions, then it is essential that we use accurate and
realistic models for the movement and reorientation of
each individual. Both the position jump and velocity
jump processes result in discrete step-wise movement
paths that are not necessarily realistic. Certain animals
have been observed to move in a step-wise fashion, such
as ovipositing butterflies moving from site to site
(Kareiva and Shigesada, 1983), but most movements
are observed to have a more continuous path (e.g. Hill
and Häder, 1997). However, when observing and
recording the trajectory of an animal it is usually
necessary to impose a fixed sampling rate (the number of
observations in a given time) or sampling length (the
time or distance between successive observations) to
discretize the continuous path. The best results will
obviously come from observations using the smallest
possible sampling lengths but it may not be possible to
use such small sampling lengths due to experimental
constraints or practical considerations. It is therefore of
intrinsic interest to understand how the sampling rate
imposed by an observer will affect the properties of the
random walk and the subsequent conclusions that may
be drawn. In general, by increasing the sampling length,
the trajectory will initially appear more random as
correlation effects are lost, while smoothing of the path
will mean that the apparent speed will also decrease as
the total length of the walk decreases. The fact that the
apparent randomness in turning increases with sampling
length led to the definition of sinuosity (Bovet and
Benhamou, 1988) (see Section 4) and has also been
exploited by Hill and Häder (1997) in their random walk
on a circle (see Section 6). Hill and Häder (1997) used a
range of sampling time steps to estimate the reorienta-
tion parameters of a continuously turning walk, such as
the angular deviation per unit time (or sinuosity) and the
amplitude of the mean turning angle (which is used to
calculate the mean reorientation time). These para-
meters can then be used in continuum models for the
behaviour of populations of swimming microorganisms
where bioconvection patterns occur (Kessler, 1986; Hill
et al., 1989; Vincent and Hill, 1996; Hill and Pedley,
2004). However, the method of estimating the para-
meters used by Hill and Häder (1997) relies on an ad hoc
assumption of linear relations between the sampling
time step and both the angular deviation and the
amplitude of the mean turning angle. At small sampling
time steps this is likely to be true but at larger sampling
time steps this assumption will not hold, so it is essential
to be able to quantify at what point the sampling time
step becomes too large.
In this paper we investigate the effect of changing the

sampling rate on the observed properties of both biased
and unbiased simulated velocity jump processes and in
particular how the sampling rate affects the angular
deviation (sinuosity) and the apparent speed. We
demonstrate that the method of Hill and Häder (1997)
to estimate the reorientation parameters of a biased and
continuously turning random walk is valid for small
sampling time steps, and quantify when the method is
likely to fail.
2. Spatial and temporal sampling

We are concerned with discrete temporal sampling of
the trajectory, i.e. an observation is made every ts time
units (where ts is the sampling time step and the sampling

rate is given by 1=ts). This is in contrast to discrete
spatial sampling where a section of the trajectory that is
already known is split into steps of a fixed length L, as
used by Bovet and Benhamou (1988). In situ observa-
tions of the movement of animals and microorganisms
are likely to rely on temporal sampling. Spatial sampling
can only be used when a sufficient length of the complete
trajectory has already been observed and, as the data is
purely spatial, it is not possible to observe waiting times
or variable speeds of movement that may have occurred
in the original movement. In both temporal and spatial
sampling, as the sampling time step or length (ts or L)
increases, an observer will lose more information about
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the original trajectory. In a correlated random walk, the
initial correlation between successive steps is lost as the
sampling length increases so that the observed walk
appears less correlated (or completely random), while
the apparent speed will be less as the observed trajectory
will cover less total distance in the same time. Bovet and
Benhamou (1988) note that many examples of biological
movement has been observed to approximately fit the
simple diffusion model (which is based on a purely
random uncorrelated walk, see Okubo, 1980), and the
reason for this may be that the sampling lengths are too
large to distinguish the correlations.
In a correlated and biased random walk (where there

is a preferred direction of movement), correlation
between successive steps will be lost as the sampling
length increases. The apparent speed will also decrease,
but the motion will appear more like a straight line in
the preferred direction. Bovet and Benhamou (1988)
argue that a purely spatial measure of the sinuosity is
useful because temporal sampling will result in an
amalgamation of time and space so that it is not possible
to distinguish between the components representing the
animal’s path and those representing its velocity. This
blending of spatial and temporal components is most
significant when there is likely to be a correlation
between the animal’s velocity and the structure of its
path, such as with foraging animals that show area-
restricted searching behaviour. We do not try and
address this problem here, so care should be taken in
generalizing any results to such cases.
3. The velocity jump process and reorientation model

3.1. The velocity jump process

In their ‘random walk in external field’, Othmer et al.
(1988) describe a simple two-dimensional velocity jump
process where a population of individuals all move with
a fixed speed s and the probability of turning is governed
by a Poisson process with turning frequency l: As there
is a fixed speed in this process, the only change in the
velocity is in the direction of movement. The probability
of turning from the previous direction of movement y0 to
a new direction of movement y (so that d ¼ y� y0 is the
turning angle, where y and y0 are absolute angles
measured in relation to some fixed origin) is governed
by a reorientation kernel Tðy; y0Þ: Under these assump-
tions, the velocity jump process can be described by a
linear transport equation (see Eq. (71) in Othmer et al.,
1988), which can be used to derive a system of equations
for the spatial moments. In this particular example of a
velocity jump process, Othmer et al. (1988) used a
superposition of two separate probability distributions
for Tðy; y0Þ to represent bias and correlation effects (see
Fig. 4 in Othmer et al., 1988). Using this choice of
Tðy; y0Þ; they then derived a simple closed system of
differential equations for the spatial statistics of the
population of random walkers. More recently, Hillen
and Othmer (2000), Othmer and Hillen (2002) and
Hillen (2002) discuss the general properties of velocity
jump processes and describe how, for most choices of
Tðy; y0Þ; it is necessary to use an appropriate moment
closure or approximation method to derive a closed
system of equations for the spatial moments.
Note that the spatial moments such as the average

position and spread will be unaffected by changing the
temporal sampling rate as each individual will still be
observed in the same position at the same time, although
as discussed earlier, the apparent speed will decrease.

3.2. Circular distributions

The simplest random walk models are fixed on a
square lattice, and in two dimensions there is only a
choice of four possible directions of movement. A more
realistic model is not restricted to a lattice and allows for
movement in any direction at each step. This requires a
probability distribution function (p.d.f.) for the turning
angle, d:
The simplest unimodal circular distributions to use

for the p.d.f. of the turning angle are the wrapped
normal and von Mises distributions (Batschelet, 1981;
Mardia and Jupp, 1999). Both distributions have a
similar shape and, as they differ by only a few percent
for appropriate choices of parameter values, they are
often assumed to be equivalent. The mean of both
distributions is given by md; while the spread is measured
in slightly different ways. The wrapped normal has an
angular variance, s2d; that is analogous to the variance of
the linear normal distribution; while the von Mises
distribution has a concentration parameter, k: A relation
can be found between these two parameters by equating
the first moments (mean resultant lengths) of the
distributions; see Section 3.4.
The von Mises and wrapped normal distributions

have been used as the p.d.f. for the turning angle, d; to
model correlated and unbiased random walks (e.g. Siniff
and Jessen, 1969; Kareiva and Shigesada, 1983; Bovet
and Benhamou, 1988). In these models the mean turning
angle, md; is assumed to be zero so that there is a
tendency to continue moving in the same direction—a
realistic model for animal motion where there is no
overall preferred direction of movement. If the mean
turning angle, md; is made dependent on the direction of
movement, y0; then bias can be introduced into the
turning angle distribution as we show in Section 6. If the
bias introduced into the system is fixed and only
dependent on the direction of movement (spatially
independent) such as in phototaxis (Hill and Vincent,
1993) or gyrotaxis (Kessler, 1986), then our reorienta-
tion kernel is arguably more realistic than Othmer et al.



ARTICLE IN PRESS
E.A. Codling, N.A. Hill / Journal of Theoretical Biology 233 (2005) 573–588576
(1988), who used a superposition of two separate
probability distributions for correlation and bias in
their random walk in an external field.

3.3. The von Mises distribution

For our reorientation kernel, Tðy; y0Þ; we use the von
Mises distribution as it easier to simulate and to work
with analytically than the wrapped normal distribution.
This is defined as

Tðy; y0Þ ¼
1

2pI0ðkÞ
expðk cosðd� mdÞÞ; (1)

whereZ p

�p
Tðy; y0Þdy ¼ 1 (2)

and In denotes the modified Bessel function of the first
kind and order n. d ¼ y� y0 is the turning angle and the
mean turning angle, mdðy

0
Þ; is either zero (in the case of

an unbiased walk) or takes a sinusoidal or linear form to
introduce bias (Hill and Häder, 1997) see Section 6.
When k ¼ 0 the von Mises distribution equals the
uniform distribution, and as k ! 1 the distribution
becomes sharply peaked about the mean turning angle
md (Batschelet, 1981; Mardia and Jupp, 1999).
Note that, because of the dependence of mdðy

0
Þ on y0

that we introduce in Section 6, (1) violates assumption
T4 of Hillen and Othmer (2000) and Hillen (2002) in
their general theory of velocity jump processes. That is,
a simple calculation shows that when mdðy

0
Þa0;Z p

�p
Tðy; y0Þdy0a1; (3)

for our velocity jump process and the general results of
Hillen and Othmer (2000) and Hillen (2002) may not
hold.

3.4. Relation between the wrapped normal and von Mises

distributions

If the first moment (mean resultant length), R, of the
wrapped normal and von Mises distributions are equal
then the relation between sd and k is given by

R ¼ A1ðkÞ ¼ InðkÞ=I0ðkÞ ¼ expð�s2d=2Þ (4)

and the two distributions only differ by a few percent, so
that in applications it is convenient to treat their
properties as being the same (Mardia and Jupp, 1999).
The function A1ðkÞ and its inverse A�1ðkÞ are readily
computed and can be found from tables of the inverse
Bessel functions (Batschelet, 1981; Mardia and Jupp,
1999). Assuming (4) holds then, as k ! 0; s2d ! 1; and
s2d ! 0 as k ! 1:
In the subsequent simulations, we set up a random

walk that uses the von Mises distribution for the p.d.f.
of the turning angle d; and exploit the fact that this
distribution is approximately equal to the wrapped
normal in order to study the angular deviation sd:

3.5. Simulating the velocity jump process

To simulate the random walk of an individual
organism as a velocity jump process we use the
following algorithm (a full description of the algorithm
is given in Codling, 2003):
1.
 The random walker starts at the origin ðx; yÞ ¼ ð0; 0Þ
facing a direction, y0; chosen at random from the
uniform distribution.
2.
 The walker then moves with a fixed speed, s, in the
current direction, y0; for a random time period, t;
before turning. The turning frequency is drawn from
a Poisson process with intensity l: In such a Poisson
process the times between events are exponentially
distributed with mean 1=l (e.g. Grimmett and
Stirzaker, 2001), so the average time between turning
events is given by t̄ ¼ 1=l:
3.
 The walker then turns to a new direction, y; where y is
randomly drawn from a von Mises distribution with
parameters k and md: The parameters k and dt (the
amplitude of the mean turning angle, md) are fixed at
the start of the simulation. If dt ¼ md ¼ 0 then the
walk is unbiased; realistic models for mdðy

0
Þ that

introduce bias are discussed in Section 6. The von
Mises distribution is much simpler to simulate than
the wrapped normal, and we use an algorithm by
Fisher and Best (1979). The value of k used is related
to the angular deviation sd by (4).
4.
 Steps 2–3 are then repeated for the required time.

In the algorithm there are no other external effects on
the movement of the walker, e.g. environmental factors,
interactions or flow. In the form described above, the
algorithm is suitable for simulating the movement of
walkers where the preferred direction of movement and
the reorientation parameters are always fixed. The
algorithm is easily adapted to account for a changing
preferred direction or spatially dependent parameters
(Codling et al., 2004), but the results presented here
assume that these are fixed for all time for all walkers.
4. The sinuosity of an unbiased velocity jump process

For a correlated random walk Bovet and Benhamou
(1988) defined sinuosity as

S ¼ sd=
ffiffiffiffi
P

p
; (5)

where sd and P are the angular deviation and step length
used in the original random walk. From simulation
results they found that the observed sinuosity took
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Fig. 1. Plots of observed sn
ts
against

ffiffiffiffiffiffiffiffiffi
ts=t̄

p
for an unbiased velocity

jump process with sd ¼ 0:1 ðBÞ; sd ¼ 0:2 (n), sd ¼ 0:4 (&), sd ¼ 0:6
ð
Þ; sd ¼ 0:8 (+), and sd ¼ 1:0 ðnÞ: The dashed lines are plots of

0:79 sd
ffiffiffiffiffiffiffiffiffi
ts=t̄

p
: It is clear that when sn

ts
o1:2 rad the linear relation

between sn
ts
and

ffiffiffiffi
ts

p
holds but, when sn

ts
41:2 rad; the linear relation

starts to break down and the sinuosity cannot be measured.
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the form

S	 ¼ z s	L=
ffiffiffiffi
L

p
; (6)

where z is a constant to be found that takes into account
smoothing of the trajectories and s	L is the angular
deviation observed when a fixed spatial step length of L

is imposed on the random walk. Thus, there is a linear
relationship between the observed angular variance
ðs	LÞ

2 and the step length used to observe the walk.
Dunn (1983) also looked at the mean square turning
angle per unit time which is a measure of the temporal
sinuosity, while Hill and Häder (1997) used the
assumption that the relationship between the observed
angular variance and the sampling time step is linear to
estimate the reorientation parameters of a continuously
turning random walk from experimental data. In a
similar manner to Bovet and Benhamou (1988), we
define the temporal sinuosity to be

St ¼ sd=
ffiffiffī
t

p
(7)

and the observed temporal sinuosity to be

S	
t ¼ x s	ts

=
ffiffiffiffi
ts

p
; (8)

where t̄ is the average time step between turns in the
original random walk or velocity jump process, x is a
constant that accounts for smoothing of the trajectories,
and ts is the fixed sampling time step imposed by the
observer. If we use a fixed speed s in the original random
walk then, in a fixed time step ts; a walker will move a
maximum distance of D ¼ sts; so that it may appear
that (5) and (7) are the same. This is not true however, as
the underlying sampling processes are different. Spatial
sampling imposes a fixed distance between separate
points of the random walk, while with temporal
sampling there is only a maximum distance between
points, and the observed distance between points can be
anything less than this maximum depending on the rate
of turning.
Bovet and Benhamou (1988) completed simulations

of unbiased and correlated random walks with a fixed

step length between turns to find the value of z in their
model. For s	Lo1:2 rad they found that

s	L ¼ 0:85 sd
ffiffiffiffiffiffiffiffiffi
L=P

p
(9)

and thus z ¼ 1:18 in (6). For values of s	L41:2 rad this
relationship breaks down as, when the angular variance
is large, the distribution of turning angles appears
almost completely random and all original correlation
effects are lost.

4.1. The observed sinuosity

In order to study the relationship between the
observed angular deviation, s	ts

; and the sampling time
step, ts; we have simulated unbiased velocity jump
processes using the algorithm given in Section 3.5 (where
the mean turning angle md ¼ 0). In each simulation we
run 1000 walkers for 200 time units, all with a fixed
angular deviation sd (from which we use (4) to calculate
a value for k in the simulation), a fixed speed s ¼ 1 and
turning rate l ¼ 1: The time between turning events
varies but the average time between turns is given by
t̄ ¼ 1: This is equivalent to a non-dimensionalized
system. Each original trajectory is then rediscretized
using linear interpolation with a given sampling time
step ts and the angular deviation is calculated for each
trajectory and averaged over the population.
Fig. 1 shows plots of the observed angular deviation,

s	ts
; against

ffiffiffiffiffiffiffiffiffi
ts=t̄

p
for various values of sd: It is clear

from Fig. 1 that for sn
ts
o1:2 rad there is a linear relation

between sn
ts
and

ffiffiffiffi
ts

p
; but for larger values of sn

ts
this

linear relation starts to break down and the sinuosity
cannot be measured. This is the same behaviour as
Bovet and Benhamou (1988) observed. Using the
method of least squares, we have fitted linear functions
to the observed data for which sn

ts
o1:2 rad; and for each

value of sd we find

sn

ts
¼ 0:79 s

ffiffiffiffiffiffiffiffiffi
ts=t̄

p
: (10)

This is similar to (9) except for the smaller value for 1=x;
the constant that gives a measure of the smoothing effect
of the sampling time step on the original random walk.
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This difference arises because of the variable time
between each turning event in the velocity jump process.
When imposing a fixed sampling time step it is likely
that, if the time between two particular turning events in
the original walk is large, then the discretization process
will introduce artificial ‘zero turns’ of d ¼ 0 that were
not in the original walk. This will lead to an under-
estimation of sd; and it is the reason that our value of
1=x is found to be smaller than that found by Bovet and
Benhamou (1988) in their spatial sampling of random
walks that have a fixed step length between turns.
Fig. 2. Plots of the natural logarithm of the apparent speed � logðs	Þ

against ts=t̄ for an unbiased velocity jump process with a speed of

v̂ ¼ 1 fixed over the population. Simulations have been run with sd ¼
0:2 ðnÞ; sd ¼ 0:4 ð&Þ; sd ¼ 0:6 ð
Þ; sd ¼ 0:8 (+), and sd ¼ 1:0 ðnÞ:
The dashed lines are plots of 0:074 s2 ts=t̄: Simulations using a

variable speed across the population produce the same results.
5. The effect of sampling rate on the apparent speed of an

unbiased velocity jump process

The apparent speed of an unbiased and correlated
random walk will decrease as the sampling time step
increases since the apparent distance moved will get
smaller as the walk is rediscretized. Averaging over the
whole population, the average total displacement will
always be zero in an unbiased random walk. This is in
contrast to a biased random walk where there is an
average displacement in the preferred direction that is
dependent on the reorientation parameters k (or s2d) and
md and can be calculated (Codling and Hill, 2004). If we
increase the sampling time step in an unbiased random
walk, we expect the observed apparent speed to tend
asymptotically to zero. It is also clear that the more
sinuous the trajectory is, the more the apparent speed
will decrease, and vice versa.
Simulations of 1000 walkers have been completed as

described in the previous section. The trajectories are
rediscretized with different sampling time steps, ts; and
the observed apparent speed (averaged over the whole
population), s	; and the standard deviation of the
apparent speed, s	s; are calculated.

5.1. The observed speed

Fig. 2 shows plots of the negative natural logarithm of
the observed speed, � log s	; against ts=t̄ for various
values of the angular deviation, sd; for simulations using
a fixed speed. Using the method of least squares, we
have fitted linear functions to the observed data for
which s	40:75: This value of s	 corresponds to the
sampling time steps in the previous section where the
observed angular deviation becomes too large,
sn
ts
o1:2 rad (compare Figs. 1 and 2). The resulting

relation between s	 and ts=t̄ is given by

s	 ¼ expð�0:074 s2dts=t̄Þ: (11)

Similar simulations were also completed with a variable

speed across the population. In these simulations, each
walker still has a fixed speed, s, but this is now randomly
drawn for each walker from a normal distribution,
Nð1; 0:5Þ; centred on 1 with standard deviation 0.5. We
further restrict these speeds by rejecting any draws
where sp0 or sX2 to ensure there are no non-sensical
negative speeds and a symmetric distribution. This
results in a symmetric distribution of speeds, with an
average of 1 but with a standard deviation � 0:44: From
simulations it is found that the observed speed, s	; is
unaffected by the introduction of a variable speed into
the population of walkers and the results are thus
omitted.

5.2. The observed standard deviation of the speed

The standard deviation of the apparent speed, s	s;
measures the variability of the observed speed. It is not
immediately clear how the standard deviation of the
observed speed would be expected to change as the
sampling time step increases for a random walk with a
fixed speed. However, even though the speed is constant
in the original random walk, if s	s40 then rediscretizing
the trajectories produces variability in the observed
speed. Fig. 3(a) shows plots of the observed standard
deviation of the apparent speed, s	s; against ts=t̄ for
various values of the angular deviation, sd; for simula-
tions using a fixed speed. Using the method of least
squares, we have fitted linear functions of the form
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(a)

(b)

Fig. 3. Plots of (a) the standard deviation of the apparent speed s	s and

(b) the negative natural logarithm of the standard deviation of the

apparent speed � logðs	sÞ; against ts=t̄ for an unbiased velocity jump

process with (a) a fixed speed and (b) a variable speed over the

population. Simulations have been run with sd ¼ 0:2 ðnÞ; sd ¼ 0:4
ð&Þ; sd ¼ 0:6 ð
Þ; sd ¼ 0:8 (+), and sd ¼ 1:0 ðnÞ: In (a) the dashed

lines are plots of f ðxÞ ¼ a ts=t̄; where a has been calculated by the

method of least squares for s	so0:04 and a ¼ 0:00085 for sd ¼ 0:2;
a ¼ 0:00257 for sd ¼ 0:4; a ¼ 0:00441 for sd ¼ 0:6; a ¼ 0:00626 for

sd ¼ 0:8; and a ¼ 0:00803 for sd ¼ 1:0: In (b) the dashed lines are plots
of � logðssÞ þ 0:069 s2d ts=t̄; where ss is the standard deviation of the

speed in the original velocity jump process.
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f ðxÞ ¼ ax (where x ¼ ts=t̄) to the observed data for
which s	so0:04 (except for sd ¼ 1:0 where we have fitted
a linear function for s	so0:03). The gradients of the
linear functions are given by a ¼ 0:00085 for sd ¼ 0:2;
a ¼ 0:00257 for sd ¼ 0:4; a ¼ 0:00441 for sd ¼ 0:6; a ¼

0:00626 for sd ¼ 0:8; and a ¼ 0:00803 for sd ¼ 1:0: The
sampling time steps where the linear relations seem to
break down correspond to the same sampling time steps
in the earlier results where the linear or exponential
relations are no longer valid. There is no obvious
relation between the angular deviation sd and the
gradient of the linear function fitted. For s	s40:04 and
the larger values of sdX0:6; there is no obvious
relationship and the data are noisy.
The increase in the standard deviation of the observed

speed with the increase in sampling time step can be
explained by the nature of the velocity jump process
and the fact that the speed is constant. As the sampling
time step increases and the turning events are further
apart in time, there is greater variability in the observed
spatial distance between turns and hence the standard
deviation of the observed speed increases. If the walk is
highly correlated and like a straight line (small sd
values), there will be less variability in the speed when
the sampling time step is increased and hence the
standard deviation will be small when compared to a
more sinuous walk.
Fig. 3(b) shows plots of � log s	s against ts=t̄ for

various values of the angular deviation, sd; for simula-
tions using a variable speed. Using the method of least
squares, we have fitted linear functions to the observed
data for which s	s40:33: As before, the sampling time
steps where the linear relations seem to break down
correspond to the same sampling time steps in the earlier
results where the linear or exponential relations are no
longer valid. The general form of the relation between s	s
and ts=t̄ is given by

s	s ¼ ss expð�0:069 s2dts=tÞ; (12)

where ss is the standard deviation of the speed in the
original velocity jump process. Note that due to the
random nature of the simulations, ss is different for
every value of sd; which is why the plots in Fig. 3(b)
have different initial values.
In contrast to the behaviour of s	s for a random walk

with a fixed speed, when there is a variable speed s	s
decreases exponentially with sampling time step for
s	s40:33: The fact that the observed variability in the
speed decreases with sampling time step is almost
certainly due to smoothing of the trajectories. This is
consistent with the fact that one would expect less
smoothing in the random walks that are highly
correlated and more like straight lines (small sd), as
when these trajectories are rediscretized less information
is lost about the original walk when compared to a
highly sinuous walk.
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Table 1

Parameter values observed by Hill and Häder (1997) in experiments on

the swimming algae C. nivalis

Data set s̄ (mms�1) ss (mms�1) dt ¼ B�1t sdðtÞ (rad)

C1 55 31 0:37 ð0:80Þ t 1:3 ð2:0Þ
ffiffiffi
t

p

C3 60 41 0:44 ð0:62Þ t 1:8 ð2:1Þ
ffiffiffi
t

p

C4 59 47 0:19 ð0:61Þ t 0:9 ð1:7Þ
ffiffiffi
t

p

Values in brackets are estimates using only the smaller sampling time

steps, to0:4 s.
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6. The random walk on a circle

Hill and Häder (1997) carried out experiments to
observe and analyse the motion of swimming micro-
organisms such as the algae Chlamydomonas nivalis and
compared results for swimming direction to a theoretical
random walk on a unit circle. C. nivalis is known to be
influenced by both gyrotaxis due to the balance between
gravitational and viscous torques as the algae are
bottom heavy (Kessler, 1986), and phototaxis as the
algae are sensitive to light (Hill and Vincent, 1993;
Vincent and Hill, 1996).

6.1. Reorientation models

Consistent with random walk theory, Hill and Häder
(1997) assumed that the mean turning angle, md; and the
variance of the turning angle, s2d; are proportional to the
time step between turns, t; such that as t ! 0

mdðy; tÞ ¼ m0ðyÞt; (13)

s2dðy; tÞ ¼ s20ðyÞt: (14)

Based on their experimental data, they suggested the
following forms for the mean turning angle, md:

mdðy; tÞ ¼ �dt sin y; �ppyop (15)

for sinusoidal reorientation corresponding to gyrotaxis,
and

mdðy; tÞ ¼
�dty; �poyop;

0; y ¼ 
p

(
(16)

for linear reorientation corresponding to phototaxis,
where dt ¼ t=B is a dimensionless parameter, t is
the time step between turning events, B is the
typical reorientation time, and without loss of general-
ity, the preferred direction is assumed to be y ¼ 0:
The fact that the mean turning angle, md; is dependent
on the previous direction of movement, y; introduces
bias into the motion. Hill and Häder (1997) assumed
that s20 is a constant, and independent of the absolute
angle, y:

6.2. Expected long time absolute angular distributions

Hill and Häder (1997) showed that for sinusoidal
reorientation, where md is as defined in (15), the
normalized steady-state solution for the probability
density of the absolute angle, f ðyÞ; is the von Mises
distribution

f ðyÞ ¼ Mðy; y0; 2zÞ ¼
1

2pI0ð2zÞ
expð2z cosðyÞÞ; (17)

where z ¼ ðBs20Þ
�1:

For linear reorientation, where md is as defined in (16),
the normalized steady-state solution for the probability
density of the absolute angle is

f ðyÞ ¼ NðzÞ expð�zy2Þ; (18)

where NðzÞ is the normalization function defined by

NðzÞ ¼

Z p

�p
expð�zy2Þdy

� ��1

¼
ffiffiffi
z

p
ð

ffiffiffi
p

p
erfðp

ffiffiffi
z

p
ÞÞ
�1: ð19Þ

6.3. Experimental observations of the reorientation

parameters

The values of the reorientation parameters observed
in experiments on swimming algae by Hill and Häder
(1997) are given in Table 1, together with the observed
mean speed, s̄; and the standard deviation of the speed,
ss: Data set C1 corresponds to C. nivalis moving in a
vertical plane and exhibiting gyrotaxis, while C3 and C4
correspond to C. nivalis moving in a horizontal plane
and exhibiting phototaxis due to light sources of 80 and
200 klux, respectively.
More recently, Vladimirov et al. (2000) used a laser

tracking algorithm to follow swimming algae. They
impose a sampling time step of ts ¼ 1:1 s and calculate
the swimming velocity over a period of 20 s. This is
likely to give a very large underestimate of the
instantaneous swimming speed of the algae, and is thus
only useful as an estimate of the long time average
velocity.
7. Parameter estimation for a biased velocity jump

process

7.1. The biased and smooth random walk as a velocity

jump process

The method used by Hill and Häder (1997) to
estimate the reorientation parameters assumes that the
underlying random walk is smooth so that the walker is
continuously turning. The velocity jump process model
described in Section 3.1 uses discrete steps, but if the
mean turning angle at each step becomes small this
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process becomes approximately smooth. Thus we can
approximate a continuously turning random walk by
having a velocity jump process that has a reorientation
kernel, (1), with small values for the angular variance s2d
and the mean turning angle md; see (13) and (14). Hence,
from (15) and (16), dt is also small. This results in a
reorientation kernel that is very sharply peaked about
the mean turning angle, which itself is very close to the
previous direction of movement, producing a ‘pseudo-

smooth’ velocity jump process.

7.2. Sinusoidal reorientation

Simulations of a velocity jump process have been
completed using the algorithm described in Section 3.5,
together with the sinusoidal reorientation model for the
mean turning angle (15). All simulations were completed
with 1000 walkers for 200 time units, a fixed speed s ¼ 1;
a fixed average time between turns t̄ ¼ 1 (so that the
system is non-dimensionalized), and a fixed mean
turning angle amplitude dt ¼ 0:005 (so that the average
reorientation time is 200 time units). A fixed value of the
angular deviation sd was also used for each simulation,
but it should be noted that for the larger values of sd
the approximation to a smooth random walk becomes
less valid.
Each original trajectory was rediscretized using linear

interpolation with a given sampling time step ts: For all
the rediscretized trajectories, the angular data was split
into 18 bins of size p=9 corresponding to the value of the
absolute angle y: The average angular variance and
mean turning angle were calculated for each bin. This is
exactly the same method as used by Hill and Häder
(1997) for their experimental data, except that they used
12 bins since they had fewer data points. In fact, for
larger sampling time steps, Hill and Häder (1997) had as
few as 1 or 2 data points in each bin and their results
were liable to error. In our simulations there are as
(a) (b)

Fig. 4. Plots of the observed mean turning angle mdðyÞ vs. y for simulations u
and various sampling time steps ts: The dashed lines are sinusoidal functions
least squares to find a. (The scale of each plot is different.) (a) ts ¼ 1; g ¼ 0:
many as 350,000 data points when ts ¼ 0:6 time units,
and even at the largest sampling time steps, there are a
large number of data points (an average of 2000 data
points at ts ¼ 100). Thus some of the problems that Hill
and Häder (1997) encountered can be avoided.
The plots in Fig. 4 show how the observed mean

turning angle, mdðyÞ; changes with y for various sampling
time steps applied to a random walk with sd ¼ 0:1: It is
immediately clear that there is a strong sinusoidal
relation between mdðyÞ and y and, using the method of
least squares, we have fitted functions of the form f ðyÞ ¼
�a sin y for each sampling time step ts: Plotting these
values of a against ts suggests a linear relationship that
we can use to estimate the original value of dt used in
the random walk, see Fig. 6(a). Using the method of
least squares gives f ðxÞ ¼ 0:0039x where x ¼

ffiffiffiffiffiffiffiffiffi
ts=t

p
;

which underestimates the true value of dt ¼ 0:005 by
20%. This underestimate is likely to be due to
smoothing effects as we have observed earlier.
The plots in Fig. 5 show how the observed angular

variance, s2dðyÞ; changes with y for various sampling
time steps applied to a random walk with sd ¼ 0:1: In
the original random walk, s2d is independent of y and,
for smaller sampling time steps in Fig. 5, this is
observed. However, at large sampling time steps
ðts420Þ; there is a small observed variance for the
angular bins where jyj � 0 and a much larger variance
for the bins where jyj is large. This effect was also seen
by Hill and Häder (1997). It is likely that this effect
occurs because at large sampling time steps the most
likely direction to be moving in is the preferred direction
y ¼ 0: Simulation results show that for large sampling
time steps there are significantly more data points in the
corresponding angular bins where jyj � 0; resulting in a
lower observed variance. This effect is not observed in
unbiased random walk simulations where there is no
preferred direction. Because of the non-uniform dis-
tribution of data points across the angular bins, the
(c)

sing the sinusoidal reorientation model with dt ¼ 0:005; sd ¼ 0:1; t̄ ¼ 1

of the form f ðyÞ ¼ �a sinðyÞ (where a ¼ d	
ts
) fitted using the method of

0039; (b) ts ¼ 5; g ¼ 0:0196 and (c) ts ¼ 20; g ¼ 0:0783:
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(a) (b) (c)

Fig. 5. Plots of the observed standard deviation of the turning angle sdðyÞ vs. y for simulations using the sinusoidal reorientation model with

dt ¼ 0:005 and sd ¼ 0:1 and various sampling time steps ts: The dashed lines are the value of b ¼ s	ts
: Calculated by averaging sdðyÞ over all y: (The

scale of each plot is different.) (a) ts ¼ 1;s	ts
¼ 0:082; (b) ts ¼ 5; s	ts

¼ 0:0184 and (c) ts ¼ 20;s	ts
¼ 0:0359:
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average angular variance is close to the values in the bins
where jyj � 0; and to find the average angular deviation,
s	ts

; we take the mean of the angular variance values over
the whole population and all y values. As in Section 4,
plots of the observed values of s	ts

against ts suggest a
linear relationship, see Fig. 6(b). Applying the method
of least squares gives f ðxÞ ¼ 0:79sdx where x ¼

ffiffiffiffiffiffiffiffiffi
ts=t

p
;

which is identical to (10) for unbiased random walks.
A similar analysis of simulated data was completed

for random walks with dt ¼ 0:005 and sd ¼ 0:2; sd ¼
0:4 and sd ¼ 0:6: The plots in Fig. 6 show the relations
between (a) the observed value of the amplitude of the
mean turning angle d	

ts
and ts; and (b) the observed

angular deviation s	ts
and

ffiffiffiffi
ts

p
; for each of the original

random walks.
From Fig. 6(a) it is clear that for sd ¼ 0:1 there is a

strong linear relation between d	
ts
and ts; but for larger

values of sd the linear relation does not hold and the
data are very noisy, even with several thousand data
points. Linear functions were fitted for the smaller
values of ts where the data are less noisy (tsp6 for sd ¼
0:2 and tsp3 for sd ¼ 0:4 and sd ¼ 0:6), and the
estimates for dt are given in Table 2. It appears that
the underestimates of dt become worse as sd increases,
perhaps because the more sinuous walks (with large
values of sd) are affected by smoothing to a greater
extent than walks that are straighter.
After least-squares analysis, all the plots in Fig. 6(b)

are found to closely fit the relation given in (10) that was
observed in unbiased random walks. There may be
slightly less smoothing of the data in the biased walk, as
the values in Table 2 are slightly larger than 0.79 (found
from simulations with unbiased walks) but the differ-
ence does not appear to be significant. This suggests
that, if there is only a small amount of bias present (as
with the pseudo-smooth velocity jump process), then the
observed sinuosity is unaffected and a linear relation
between the observed angular variance, s2ts
; and the

sampling time step, ts; holds as long as the angular
deviation is not too large ðs	ts

41:2Þ:
The parameter estimates found from the data in Fig. 6

correspond to the variance per unit time, s20; and the
inverse of the average reorientation time, 1=B: However,
the simulations are non-dimensionalized with respect to
time as s ¼ 1 and t̄ ¼ 1; and from Section 6, dt ¼ t̄=B ¼

1=B and s2d ¼ t̄s20 ¼ s20 in this case. If the data are not
scaled with respect to time then it is only possible to
estimate dt and s2d for a discrete random walk if the
average time between turns in the original trajectory, t̄;
is also known or estimated (see Section 6), which is a
non-trivial problem. For continuum models for biocon-
vection (Hill and Pedley, 2004) or other examples that
assume a smooth random walk, it is only necessary to
know the unit parameters s20 and B, as t̄ is assumed to
tend to 0 in these models.
When analysing experimental data, Hill and Häder

(1997) observed an approximately linear relationship
between d	

ts
and ts and gave two possible estimates for B

(recall that d	
ts
¼ ts=B) depending on whether they used

only small sampling time steps or all sampling time
steps. From our results, it seems their estimate using
only the smaller sampling time steps is likely to be more
accurate. However, Hill and Häder (1997) found that
their data on the observed angular deviation s	ts

was too
noisy to estimate s0 (the sinuosity or angular deviation
per unit time). Using the observed long time angular
distribution f ðyÞ together with the expected distribution
given in (17) and their two estimates for B, they
calculated two possible estimates for s0: We have
completed a similar analysis using the simulated long
time distribution for the absolute angle f ðyÞ: The
simulations were run for 1000 time units so the system
is in an approximately steady state. The mean resultant
length, Rf was calculated for the observed distribution
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(a)

(b)

Fig. 6. Plots of (a) the observed amplitude of the mean turning angle,

d	
ts
vs. ts=t̄ and (b) the observed average angular deviation s	ts

v
ffiffiffiffiffiffiffiffiffi
ts=t̄

p
;

for simulations using the sinusoidal reorientation model with dt ¼

0:005 and sd ¼ 0:1 ðBÞ; sd ¼ 0:2 ðnÞ; sd ¼ 0:4 ð&Þ; sd ¼ 0:6 ð
Þ: The
dashed lines have been fitted to the data using the method of least

squares and take the form (a) f ðxÞ ¼ a x and (b) f ðxÞ ¼ b
ffiffiffi
x

p
; where

x ¼ ts=t̄: The values of a and b are given in Table 2.

Table 2

Estimates of the parameters d	
ts
(the inverse of the observed average

reorientation time) and s	ts
(the observed angular deviation) calculated

using data from simulations of biased random walks using sinusoidal

reorientation

Sim. dt Sim. sd (a) Est.

d	
ts

(a) Est.

s	ts

Rf (b) Est.

d	
ts

(b) Est.

s	ts

0.005 0.1 0.0039 0:79sd 0.4407 0.0049 0.1008

0.005 0.2 0.0032 0:81sd 0.1219 0.0049 0.2017

0.005 0.4 0:0019y 0:81sd 0.0342 0.0054 0.3822

0.005 0.6 0:0021y 0:79sd 0.0189 0:0068y 0:5143y

Estimates are calculated using (a) a least-squares fit to the linear

relations between the observed parameters and sampling time step, ts;
(b) a simple numerical solver routine where the parameters are found

using the concentration parameter of f ðyÞ; the steady-state density

function for the absolute angle, and the mean resultant length, Rf :
Estimates noted y are likely to be unreliable as the data is noisy due to

the large value of sd in the original walk.

E.A. Codling, N.A. Hill / Journal of Theoretical Biology 233 (2005) 573–588 583
f ðyÞ; and a von Mises distribution with the correspond-
ing value of Rf was fitted to the data, see Fig. 7. From
(17), the concentration parameter of the fitted von Mises
distribution is given by 2Bs20 ¼ 2dt=s2d; so if the
concentration parameter is calculated from Rf and
either of the parameters B or s0 are known then the
other parameter can be estimated. This may prove to be
a useful technique in the situation described previously
where the original random walk has a large value of sd;
and it is hard to estimate B but there is a good estimate
of s0: Table 2 gives the estimated values of dt (¼ 1=B in
our non-dimensionalized simulations) calculated using a
simple numerical solver routine from the mean resultant
length of f ðyÞ and (17), assuming a perfect estimate of s0
(using (10) with our observed values of s	ts

does give a
very good estimate of s0). Using this method with the
random walks with small sd; the estimates of dt are
actually better than the estimates found using the least-
squares analysis of the observed mean turning angle.
However, for the larger values of sd the estimates are
less good because the data in the final angular
distribution f ðyÞ are noisy, see Fig. 7. Similarly, we
have calculated estimates of s0; assuming that we
have a perfect estimate of dt; and the results are given
in Table 2.

7.3. Linear reorientation

Simulations have also been completed in exactly the
same manner as described in the previous section with
1000 walkers for 200 time units, but using the linear
reorientation model given in (16) in the pseudo-smooth
velocity jump process.
The plots in Fig. 8 show how the observed mean

turning angle, mdðyÞ; changes with y for various sampling
time steps applied to a random walk with sd ¼ 0:1:
Allowing for noisy data at jyj � p; there is seen to be a
strong linear relation between mdðyÞ and y: Using the
method of least squares, we have fitted functions of the
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(a) (b)

(d)(c)

Fig. 7. Plots of the long time absolute angular distribution f ðyÞ after 1000 time units for the sinusoidal reorientation model with dt ¼ 0:005 and (a)

sd ¼ 0:1 and Rf ¼ 0:4407; (b) sd ¼ 0:2 and Rf ¼ 0:1219; (c) sd ¼ 0:4 and Rf ¼ 0:0342; and (d) sd ¼ 0:6 and Rf ¼ 0:0189; where Rf is the mean

resultant length of f ðyÞ calculated from the data. It is possible to fit a von Mises distribution with the value of Rf to the data (dashed lines in plots),

and assuming sd is known or has been estimated from the data one can use the corresponding concentration parameter to estimate dt using the

theoretical equation for f ðyÞ (or vice versa).

(c)(b)(a)

Fig. 8. Plots of the observed mean turning angle mdðyÞ vs. y for simulations using the linear reorientation model with dt ¼ 0:005; sd ¼ 0:1; t̄ ¼ 1 and

various sampling time steps ts: The dashed lines are linear functions of the form f ðyÞ ¼ �a y fitted using the method of least squares to find a. (The

scale of each plot is different.) (a) ts ¼ 1; g ¼ 0:0044; (b) ts ¼ 5; g ¼ 0:0229 and (c) ts ¼ 20; g ¼ 0:0684:

E.A. Codling, N.A. Hill / Journal of Theoretical Biology 233 (2005) 573–588584
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form f ðyÞ ¼ �ay for each sampling time step ts: Plotting
the values of a against the corresponding values of ts

results in a linear relation that we can use to estimate the
original value of dt used in the random walk (since we
 
 

(a)

(b)

Fig. 9. Plots of (a) the observed amplitude of the mean turning angle,

d	
ts

vs. ts=t̄ and (b) the observed average angular deviation s	ts
vs.ffiffiffiffiffiffiffiffiffi

ts=t̄
p

; for simulations using the linear reorientation model with dt ¼

0:005 and sd ¼ 0:1 ðB; sd ¼ 0:2 ðnÞ; sd ¼ 0:4 ð&Þ; sd ¼ 0:6 ð
Þ: The
dashed lines have been fitted to the data using the method of least

squares and take the form (a) f ðxÞ ¼ a x and (b) f ðxÞ ¼ b
ffiffiffi
x

p
; where

x ¼ ts=t̄: The values of a and b are given in Table 3.
have a non-dimensionalized system), see Fig. 9(a). The
linear relation was found to be given by f ðxÞ ¼ 0:0043x

where x ¼
ffiffiffiffiffiffiffiffiffi
ts=t

p
; which slightly underestimates the true

value of dt ¼ 0:005 due to smoothing effects. Simula-
tions were also completed for dt ¼ 0:005 and sd ¼ 0:2;
sd ¼ 0:4 and 0:6; and the resulting data analysed in a
similar way.
As with the sinusoidal results, Fig. 9(a) shows that

there is a strong linear relation between d	
ts
and ts; only

for the smaller values of sd and ts: At larger values there
is no clear relation between the mean turning angle,
mdðyÞ; and the absolute angle, y; and although we fit
linear functions using the method of least squares this
becomes almost arbitrary and produces large residuals.
The estimated values of dt from the observed data are
given in Table 3.
The observed angular variance, s2dðyÞ; for the linear

reorientation simulations is found to behave in a similar
manner to the observed angular variance of the
sinusoidal model as described previously and shown in
Fig. 5. At larger sampling time steps, the angular
variance is no longer independent of y and is larger for
the angular bins where jyj � p because of the paucity of
data points.
The plots in Fig. 9(b) clearly demonstrate the linear

relation between the observed angular deviation, s	ts
;

and the square root of the sampling time step, ts: As
with the sinusoidal model and the unbiased simulations,
(10), the function f ðxÞ ¼ 0:79sdx where x ¼

ffiffiffiffiffiffiffiffiffi
ts=t

p
gives the best fit to the data using least-squares analysis
(Table 3).
The expected long time distribution f ðyÞ for linear

reorientation is given in (18). The mean resultant length,
Rf ; was calculated for the observed distribution, f ðyÞ;
after 1000 time units and a distribution with the form
given in (18) was fitted to the data. From (18), the
concentration parameter of the fitted distribution is
given by dt=s2d (recall that we use non-dimensionalized
simulations), so if the concentration parameter is
calculated from Rf and either of the parameters dt or
sd are known then the other parameter can be estimated.
Table 3 gives the estimated values of dt and sd
Table 3

Estimates of the parameters d	
ts
and s	ts

calculated using data from

simulations of biased random walks using linear reorientation

Sim. dt Sim. sd (a) Est.

d	
ts

(a) Est.

s	ts

Rf (b) Est.

d	
ts

(b) Est.

s	ts

0.005 0.1 0.0043 0:79sd 0.5999 0.0048 0.1016

0.005 0.2 0.0035 0:81sd 0.2108 0.0046 0.2085

0.005 0.4 0:0019y 0:81sd 0.0617 0.0050 0.3985

0.005 0.6 0:0024y 0:79sd 0.0331 0:0060y 0:5468y

Estimates are calculated using the methods as described for Table 2.

Estimates noted y are likely to be unreliable as the data is noisy due to

the large value of sd in the original walk.
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calculated using a simple numerical solver routine from
the observed mean resultant length of f ðyÞ and (18),
assuming that we have a perfect estimate of one of the
parameters. As with the sinusoidal model, the estimates
of dt using this method are better than the least-squares
analysis except when the original random walks have a
large angular deviation and the data then becomes
noisy. For the same reorientation parameter values (dt

and sd), the mean resultant length is larger for the linear
reorientation model. This can be explained by the fact
that the linear model is a ‘better’ model for reorientation
in the sense that in the linear model the maximum
average reorientation back to the preferred direction
ðy ¼ 0Þ is when facing directly away from the preferred
direction ðy ¼ pÞ; while the sinusoidal model will have a
zero average reorientation when y ¼ p:

7.4. Effects of sampling rate on apparent speed

Simulations have been completed in the same manner
as described in Section 5 but using the sinusoidal and
linear reorientation models. For the unbiased simula-
tions, the apparent speed is related to the observed
angular variance and sampling time step used, see (11).
In the previous section, we demonstrated that when dt

and sd are both small, there is no difference between the
observed angular deviation of biased and unbiased
random walks, and thus we expect the apparent speed to
behave in the same way as well. Simulations completed
with dt ¼ 0:005 and various values of sd have confirmed
exactly the same behaviour as observed in Figs. 2 and 3
and the relations given in (11) and (12) are found to hold
for s	40:75:
When tracking the trajectories of swimming micro-

organisms, Hill and Häder (1997) observed a steep
decrease in the apparent speed of the organisms for
small sampling time steps which they attributed to ‘pixel
noise’ due to discretization of the video images at these
small length scales. When looking at much larger
sampling time steps, they then observed a linear decrease
in the apparent speed which they used to extrapolate
back and predict the original speed. While it is certainly
true that pixel noise may have influenced the observa-
tions at small sampling time steps, our results suggest
that perhaps Hill and Häder (1997) should have looked
for a decaying exponential function similar to (11)
rather than a linear function to extrapolate an estimate
of the average speed (at very large sampling time steps
an exponentially decaying function will appear approxi-
mately linear as it tends asymptotically to zero). This
would result in a much larger estimate for the speed.
As with the speed, Hill and Häder (1997) observed a

sharp decrease in the standard deviation of the speed at
small sampling time steps, while the decrease appeared
linear at larger sampling time steps. Again, this may be
due to pixel noise, or it could be that they should have
used a decaying exponential function similar to (12)
rather than a linear function to extrapolate an estimate
for the true standard deviation of the speed. The fact
that Hill and Häder (1997) observed a decrease in the
standard deviation with sampling time step implies that
there was a smoothing of the apparent speeds and as we
have shown previously, this suggests that there was a
large variability in the true speed in the original
trajectories (recall that when the speed is fixed over the
population the standard deviation of the observed speed
increased with sampling time step).
8. Conclusions and discussion

We have demonstrated that the method of calculating
the sinuosity of a correlated and unbiased random walk
given by Bovet and Benhamou (1988) can be extended
to an unbiased velocity jump process for which temporal
sampling is used. Due to the inherent variability of the
time between turning events in the original random walk
with a velocity jump process, we find a slightly smaller
value for the constant that takes into account smoothing
effects. The sinuosity is defined as the linear relation
between the observed angular deviation s	ts

and the root
of the sampling time step ts: If the linear relation exists
then the sinuosity can be used to find the average
angular deviation per unit time s0 which can be used in
continuum models, or if the time between turns in the
original random walk is known or can be estimated then
the original angular deviation used in the walk can be
calculated. As with Bovet and Benhamou (1988), we find
that the linear relation between the angular deviation
and the root of the sampling time step breaks down
when the observed angular deviation becomes too large.
Thus, if the original random walk is highly correlated
then a larger sampling time step can be used before the
linear relation breaks down, when compared to a more
sinuous walk.
We have also demonstrated that the observed

apparent speed fits a decreasing exponential function
as the sampling time step increases, and this relation
breaks down at the same sampling time steps where the
linear relation between the angular deviation and the
root of the sampling time step breaks down.
These results have been shown to also hold for a

biased random walk that has been simulated using a
pseudo-smooth velocity jump process. This model seems
to be realistic approximation to the movement of
continuously turning walkers such as swimming algae.
We demonstrate that the method used by Hill and
Häder (1997) is valid if the assumption that the original
random walk is smooth holds (i.e. angular deviation and
mean turning angle are small) and the sampling time
step is not too large so that the linear relations between
the observed angular variance, ðs	ts

Þ
2; and the observed
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amplitude of the mean turning angle, d	
ts

and the
sampling time step, ts; do not break down. It is possible
to use the observed long time distribution for the
absolute angle, f ðyÞ; together with the expected dis-
tribution to either check the estimates of the parameters
found or to calculate an unknown parameter value if the
other parameter value is the only estimate likely to be
reliable.
Revisiting the results of Hill and Häder (1997), it

seems likely that their sampling time step was too large
because they observed linear relations only for the very
smallest sampling time steps, and also their data was
extremely noisy. However, their minimum sampling
time step was determined by experimental constraints.
Hill and Häder (1997) were unable to estimate smooth-
ing effects, and we have demonstrated that even with a
strong linear relation between the observed data and the
sampling time step, the parameter estimate is likely to be
approximately 80% of the actual value if the original
random walk is a velocity jump process. Bovet and
Benhamou (1988) showed that in a walk with a fixed
step length the estimated angular deviation will be
approximately 85% of the actual value. Thus the results
of Hill and Häder (1997) are likely to underestimate the
true reorientation parameters and also possibly the true
speed and standard deviation of the speed.
The method of Hill and Häder (1997) is likely to

break down if the reorientation parameters used in the
original random walk are large, or if too great a
sampling time step is used. We have demonstrated that,
if the original random walk has a large angular
deviation sd; then the linear relations between the
sampling time step ts and the observed values of d	

ts

and ðsdÞ
2 break down. Such random walks can no

longer be considered approximately smooth (continu-
ously turning). Simulations have also been completed
where the original random walk has a large value for the
parameter dt; so that the average reorientation time is
small (this also can no longer be considered an
approximately smooth walk). We find that in such
walks, when larger sampling time steps are applied and
the trajectories are analysed the linear relation between
d	
ts
and ts is either non-existent or only holds for a very

small range of sampling time steps. In fact, in the case of
linear reorientation, d	

ts
will never be observed to be

greater than one, see Codling (2003). If in the original
random walk dt � 1; then d	

ts
is not proportional to ts

for sampling times that are larger than the average time
between turns in the original walk ðts4t̄Þ: Similarly,
simulations show that if the sampling time step applied
to any biased random walk is large enough, then the
observed angular deviation will decrease as ts increases.
This is because at every sampling time step it becomes
increasingly likely for a walker to be observed moving in
the preferred direction, which reduces the angular
deviation when averaging over each trajectory. Further
discussion can be found in Codling (2003), but these are
extreme cases.
The results we have demonstrated may not be relevant

in all random walk models. We have assumed that all
our walkers move with the same constant reorientation
parameters and our results may not be valid if there is a
large variation in turning behaviour between indivi-
duals. We have also only considered biased random
walks where there is a fixed preferred direction and a
fixed magnitude of bias. If there is a population of
walkers moving to a point source (e.g. fish larvae
recruiting to a reef in Codling et al., 2004), or moving up
a gradient where the signal strength of the bias increases
in magnitude (e.g. in chemotaxis models in Othmer and
Hillen, 2002, etc), then the results given here may not
generalize. Any similar analysis is likely to be compli-
cated and would have to take into account the fact that
the preferred direction and magnitude of bias will
change with the position of each walker.
However, although any quantitative results are likely

to be different in more complicated random walks, it is
clear that care should be taken with any interpretation
of data that has been collected by tracking the move-
ments of animals and microorganisms. We have
demonstrated how it is easy for the rediscretization of
the movement path that is imposed by the observer to
affect the measured properties of the trajectory and any
possible estimates of parameters that are made. It is
worth bearing this in mind, when considering the large
number of experiments in the literature that have
observed animal movement to fit the simple random
walk and diffusion model, as these may have been
carried out with too large a sampling time step (Bovet
and Benhamou, 1988).
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