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Abstract. Mathematical modelling of the directed movement of animals, mi-
croorganisms and cells is of great relevance in the fields of biology and medicine.
Simple diffusive models of movement assume a random walk in the position, while
more realistic models include the direction of movement by assuming a random
walk in the velocity. These velocity jump processes, although more realistic, are
much harder to analyse and an equation that describes the underlying spatial dis-
tribution only exists in one dimension. In this communication we set up a realistic
reorientation model in two dimensions, where the mean turning angle is depen-
dent on the previous direction of movement and bias is implicitly introduced in
the probability distribution for the direction of movement. This model, and the
associated reorientation parameters, is based on data from experiments on swim-
ming microorganisms. Assuming a transport equation to describe the motion of
a population of random walkers using a velocity jump process, together with this
realistic reorientation model, we use a moment closure method to derive and solve
a system of equations for the spatial statistics. These asymptotic equations are a
very good match to simulated random walks for realistic parameter values.

1. Introduction

Individual based diffusion models that use an uncorrelated random walk
in the spatial position are known as position jump processes (Othmer et
al., 1988). These simple models do not include directional effects in the
movement and are only valid as long-time approximations to the behaviour
of the population as they allow for effectively infinite propagation speeds
(Okubo, 1980; Othmer et al., 1988). A more realistic approach is to use a
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random walk in the velocity known as a velocity jump process (Othmer et
al., 1988; Hillen & Othmer, 2000; Othmer & Hillen, 2002). These models
result in a correlated random walk in space and directional effects can be
included. As a fixed or bounded speed can be assumed, they also avoid the
problem of infinte propagation that is found in diffusive models based on
position jump processes (Okubo, 1980; Othmer et al., 1988).

In one dimension, the simplest form of the velocity jump process is the
well known Goldstein–Kac equation or telegraph equation (Goldstein, 1953;
Kac, 1974). However, in two dimensions there is no closed form equation
for the underlying spatial distribution (Hillen, 2002). It is possible to use a
linear transport equation that describes the velocity jump process to derive
differential equations for the moments of the underlying spatial distribution.
However, the resulting system of differential equations is only closed in
particular special cases (Othmer et al., 1988; Hillen, 2002). In general, it
is necessary to make some assumption or approximation about the higher
order moments in order to close and solve the system.

When considering the case of a random walk in an external field, Othmer
et al. (1988) use a velocity jump process with a fixed speed where the new
angular direction of movement is only dependent on the current direction
of movement. For a special case, they derive a closed system of differential
equations for the spatial statistics by assuming that the reorientation kernel,
T (θ, θ′), is a superposition of two separate probability distributions that take
into account the correlation and the bias effects separately (see Othmer et
al. (1988) Sec. 4.2 and Fig. 4).

Although there has been much recent discussion comparing the suit-
ability of the velocity jump and position jump processes to various models
of movement (see for example Othmer et al., 1988; Ford & Lauffenburger,
1991; Dolak & Hillen, 2003), we are not aiming to compare the two processes
directly. Rather, we exploit the fact that the velocity jump process allows
for the direction of movement of the individual walkers to be explicitly mod-
elled. In our case, movement is modelled using a realistic individual-based
reorientation model that implicitly includes bias effects and has parameters
that have been observed experimentally (Hill & Häder, 1997). We derive a
closed system of differential equations by making several assumptions about
the parameter values and the higher order moments, and compare solutions
to simulations of random walks that use this reorientation model.

2. Transport equation

In a similar manner to Othmer et al. (1988) (see also Hillen & Othmer, 2000;
Othmer & Hillen, 2002), we use a transport equation to describe the velocity
jump process used by our walkers. We assume that the turning frequency
is given by a Poisson process of intensity λ, so that the time between turns
has an Exponential distribution with mean τ̄ = 1/λ.

Suppose we have an infinite two-dimensional phase space, x = (x1, x2)
with a preferred direction along the positive x1-axis of the plane, under
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the assumption that the bias only influences the turning angle distribution
T (θ, θ′). We have a population of individuals, p, moving with constant speed,
s, and turning with average time between turns, τ̄ . The appropriate density
function is p(x, θ, t) where θ is the angle between the current direction of
motion and the positive x1-axis. The direction of travel is ξ = (cos θ, sin θ)
and the preferred direction is ξ1 = (1, 0). The transport equation is (Othmer
et al., 1988)

∂p

∂t
+ sξ.∇xp = −λp + λ

∫ π

−π

T (θ, θ′) p(x, θ′, t) dθ′. (1)

In (1) the random changes of direction are introduced through the reori-
entation kernel T (θ, θ′). The total population remains fixed and is given
by ∫

R2

∫ π

−π

p(x, θ, t) dθ dx = N0. (2)

As the domain is infinite and the speed of movement is bounded, we assume
that as x → ∞, p(x, θ, t) → 0 and any boundary terms vanish at infinity,
see Othmer et al. (1988), p. 280 and Codling (2003).

The reorientation kernel, T (θ, θ′), used in our velocity jump process is
described in the next section.

3. Reorientation kernel

The simplest random walk models are fixed on a square lattice, and in two
dimensions there is only a choice of four possible directions of movement. A
more realistic model is not restricted to a lattice and allows for movement in
any direction at each step. This requires a probability distribution function
(p.d.f.) for the turning angle, δ.

Probability distribution functions on a circle, f(θ), satisfy

f(θ) ≥ 0 ∀ − π ≤ θ < π, (3)

and the normalization condition that
∫ π

−π

f(θ) dθ = 1. (4)

The simplest unimodal circular distributions to use for the p.d.f. of
the turning angle are the wrapped normal and von Mises distributions
(Batschelet, 1981; Mardia & Jupp, 1999). Both distributions have a sim-
ilar shape and, as they differ by only a few percent for appropriate choices
of parameters, they are often assumed to be equivalent. The mean of both
distributions is given by µδ, while the spread is measured differently. The
wrapped normal has an angular variance, σ2

δ , analagous to the variance of
the linear normal distribution; whereas the von Mises distribution has a
concentration parameter, κ. A relation between these two parameters can
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be found by equating the first moments (mean resultant lengths) of the
distributions, see Sec. 3.2.

The von Mises and wrapped normal distributions have been used as the
p.d.f. for the turning angle, δ, to model correlated and unbiased random
walks (e.g. Siniff & Jessen, 1969; Kareiva & Shigesada, 1983; Bovet & Ben-
hamou, 1988). In these models the mean turning angle, µδ, is assumed to
be zero so that there is a tendency to continue moving in the same direction
— a realistic model for animal motion where there is no overall preferred
direction of movement. If the mean turning angle, µδ, is made dependent
on the absolute angle, θ, then bias can be introduced into the turning angle
distribution as we shall show below. This is in contrast to the example con-
sidered by Othmer et al. (1988) who used a superposition of two separate
probability distributions for correlation and bias in their random walk in an
external field, see Sec. 4.2 and Fig. 4 in Othmer et al. (1988).

3.1. The von Mises distribution

Henceforth we define θ′ to be the previous direction of movement, and θ
as the new direction of movement after reorientation, so that the turning
angle is given by δ = θ − θ′ (where −π ≤ δ < π).

For our reorientation kernel, T (θ, θ′), we use the von Mises distribution
which is easier to work with analytically than the wrapped normal distrib-
ution. This is defined by

T (θ, θ′) =
1

2πI0(κ)
exp (κ cos(δ − µδ)) , (5)

where In denotes the modified Bessel function of the first kind and order n,
which is defined by

In(κ) =
1
2π

∫ π

−π

cos nθ exp (κ cos θ) dθ. (6)

When κ = 0 the von Mises distribution equals the uniform distribution,
and as κ → ∞ the distribution becomes sharply peaked about the mean
turning angle µδ (Batschelet, 1981; Mardia & Jupp, 1999). For the von
Mises distribution, the n-th moment is given by ρn = An(κ) (Mardia &
Jupp, 1999) where

An(κ) = In(κ)/I0(κ). (7)

Note that because of the dependence of µδ(θ′) on θ′ introduced in Sec. 4.1,
our reorientation kernel violates assumption T4 made by Hillen & Othmer
(2000) and Hillen (2002) in their general theory of velocity jump processes.
That is, a simple calculation shows that in general

∫ π

−π

T (θ, θ′) dθ′ 6= 1, (8)
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for our velocity jump process, although the usual normalisation condition
∫ π

−π

T (θ, θ′) dθ = 1, (9)

does hold (condition T1 in Hillen & Othmer (2000)).

3.2. Relation between the wrapped normal and von Mises distributions

If the first moments, ρ1, of the wrapped normal and von Mises distributions
are equal then the relation between σδ and κ is given by

ρ1 = A1(κ) = exp
(−σ2

δ/2
)
, (10)

and the two distributions only differ by a few percent so that in applications
it is convenient to treat their properties as being the same (Mardia & Jupp,
1999). The function A1(κ) and its inverse A−1(κ) are readily computed
numerically, or can be found by looking at tables of the inverse Bessel func-
tions (Batschelet, 1981; Mardia & Jupp, 1999). Assuming (10) holds then,
as κ → 0, σ2

δ →∞ asymptotically; and as κ →∞, σ2
δ → 0 asymptotically.

In the next section, we describe how we use the results from Hill &
Häder (1997) to give a range of values for κ, and a functional form for µδ

that introduces bias, both used in our velocity jump process.

4. The random walk on a circle as a model for the reorientation
of swimming microorganisms

Hill & Häder (1997) carried out experiments to observe and analyse the
trajectories of swimming microorganisms such as the alga Chlamydomonas
nivalis. By calculating the angular statistics of the trajectories and compar-
ing to a theoretical random walk on a unit circle, they were able to estimate
parameters such as the mean reorientation time, B, and the unit angular
variance, σ2

0 . C. nivalis is known to be influenced by both gyrotaxis due
to the balance between gravitational and viscous torques, as the algae are
bottom heavy (Kessler, 1986), and phototaxis as the algae are sensitive to
light (Hill & Vincent, 1993; Ghovai & Hill, 2004).

4.1. The Fokker–Planck equation and reorientation models

Hill & Häder (1997) set up a simple random walk in the absolute angle of
movement, θ, as a position jump process on a unit circle. Consistent with
standard random walk theory, they assumed that the mean turning angle,
µδ, and the variance of the turning angle, σ2

δ are proportional to the time
step between turns, τ , in the limit as τ → 0, i.e.

µδ(θ, τ) = µ0(θ)τ, (11)
σ2

δ (θ, τ) = σ2
0(θ)τ. (12)
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In this limit the Fokker–Planck equation for the probability density function
of the absolute angle, f(θ, t), is

∂

∂t
f(θ, t) = − ∂

∂θ
[µ0(θ)f(θ, t)] +

1
2

∂2

∂θ2
[σ2

0(θ)f(θ, t)]. (13)

Based on their experimental data, Hill & Häder (1997) suggested the fol-
lowing forms for the mean turning angle, µδ:

µδ(θ, τ) = −dτ sin θ, −π ≤ θ < π, (14)

for sinusoidal reorientation corresponding to gyrotaxis, and

µδ(θ, τ) =
{−dτθ, −π < θ < π,

0, θ = ±π,
(15)

for linear reorientation corresponding to phototaxis, where dτ = τ/B is
a dimensionless parameter and, without loss of generality, the preferred
direction is assumed to be θ = 0. The fact that the mean turning angle,
µδ, is dependent on the previous direction of movement, θ, introduces bias
into the motion. Hill & Häder (1997) assumed that σ2

0 is constant and
independent of the absolute angle, θ.

4.2. Steady state solutions of the Fokker–Planck equation

For sinusoidal reorientation, where µδ is as defined in (14), the normalized
solution of the steady state Fokker–Planck equation (13), plus appropriate
boundary conditions, is the von Mises distribution:

f(θ) = M(θ; θ0, 2z) =
1

2πI0(2z)
exp (2z cos(θ − θ0)) , (16)

where z = (Bσ2
0)−1.

For linear reorientation, where µδ is as defined in (15), the normalized
solution of the steady state Fokker–Planck equation (13), plus appropriate
boundary conditions, can be shown to be

f(θ) = N(z) exp
(−zθ2

)
, (17)

where z = (Bσ2
0)−1 and N(z) is the normalization function defined by

N(z) =
(∫ π

−π

exp
(−zθ2

)
dθ

)−1

=
√

z
(√

π erf(π
√

z)
)−1

. (18)

Thus, (16) and (17) give the expected long-time (steady-state) probability
distributions for the absolute angle, θ.
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Table 1. Parameter values observed by Hill & Häder (1997) in experiments on
the swimming algae C. nivalis. Data set C1 corresponds to algae moving with
gyrotaxis which is modelled using a sinusoidal reorientation model; data set C4
corresponds to algae moving with phototaxis which is modelled using a linear
reorientation model. Values in brackets are estimates calculated using only the
smaller sampling time steps, τs < 0.4 s. We refer to parameter values calculated
using all sampling time steps as data sets C1:a and C4:a, while those parameter
values calculated using only the smaller sampling time steps, τs < 0.4 s, are
referred to as C1:b and C4:b. In our velocity jump process we assume τ̄ = 0.08 s,
while κ has been calculated from σ2

δ using (10).

Data B−1 σ0 dτ = B−1τ̄ σ2
δ = σ2

0 τ̄ κ

C1:a(b) 0.37 (0.80) 1.3 (2.0) 0.030 (0.064) 0.136 (0.320) 7.89 (3.73)
C4:a(b) 0.19 (0.61) 0.9 (1.7) 0.015 (0.050) 0.064 (0.224) 16.14 (5.03)

4.3. Using the reorientation models in a velocity jump process

By rediscretizing the trajectories of swimming microorganisms with differ-
ent fixed sampling time steps, τs, observing µδ and σ2

δ for each time step,
and assuming the linear dependence given in (11) and (12), Hill & Häder
(1997) were able to estimate the parameters B−1 and σ0, see Table 1. Data
set C1 corresponds to C. nivalis moving in a vertical plane subject to gyro-
taxis, while C4 corresponds to C. nivalis moving in a horizontal plane and
exhibiting phototaxis due to a fixed light source. As Hill & Häder (1997)
were unsure as to the point at which the sampling time step, τs, becomes
too large and the linear relations in (11) and (12) break down, they made
two estimates for each parameter by using either all time steps, or only the
smaller time steps, τs < 0.4 s. In Codling & Hill (2004), we show that the
estimates using only τs < 0.4 s are likely to be much closer to the true
values of the reorientation parameters.

Hill & Häder (1997) assumed that the underlying random walk was
‘smooth’ in the sense that the walkers were continuously turning. A velocity
jump process is made up of discrete steps of fixed length and is clearly
not smooth. However, if the average time step between turns, τ̄ → 0, the
velocity jump process becomes ‘approximately smooth’, and from (11) and
(12), µδ, σ2

δ → 0. In the following analysis we make the assumption that
our velocity jump process is smooth, and assume that dτ and τ̄ are both
small. Table 1 gives values for dτ and κ calculated from the data of Hill &
Häder (1997), assuming that τ̄ = 0.08 s (the smallest sampling time step
used by Hill & Häder (1997) due to experimental constraints).

5. The spatial moments

We are interested in the mean location of the population of walkers, H(t),
their mean velocity, V(t), their mean squared displacement, D2(t), and their
mean squared deviation, σ2(t), which is a measure of the fluctuations of the
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individual’s path around the expected path. The definitions are

H(t) =
1

N0

∫

R2

∫ π

−π

x p(x, θ, t) dθ dx, (19)

V(t) =
s

N0

∫

R2

∫ π

−π

ξ p(x, θ, t) dθ dx, (20)

and D2(t) =
1

N0

∫

R2

∫ π

−π

‖x‖2 p(x, θ, t) dθ dx, (21)

while the mean squared deviation can be defined in terms of the other
statistics as

σ2(t) =
1

N0

∫

R2

∫ π

−π

‖x−H(t)‖2 p(x, θ, t) dθ dx = D2(t)− ‖H(t)‖2. (22)

We also define the following:

D2
1(t) =

1
N0

∫

R2

∫ π

−π

x2
1 p(x, θ, t) dθ dx, (23)

D2
2(t) =

1
N0

∫

R2

∫ π

−π

x2
2 p(x, θ, t) dθ dx, (24)

and

σ2
1(t) = D2

1(t)− ‖H1(t)‖2, (25)
σ2

2(t) = D2
2(t)− ‖H2(t)‖2. (26)

We assume that at t = 0 the population of walkers all start at the ori-
gin, (0, 0), with a uniform distribution of initial directions. Hence, all the
statistics defined in (19)-(26) are zero at t = 0.

6. Calculating the spatial statistics for the sinusoidal
reorientation model

Using the transport equation, (1), and the reorientation kernel, (5), together
with the sinusoidal reorientation model, (14), we now complete a moment-
closure method to derive and solve differential equations for the statistics
of the underlying spatial distribution.

6.1. Higher order moments

In a similar manner to Sect. 5 we define the following higher order moments
required subsequently:

Fn(t) =
1

N0

∫

R2

∫ π

−π

cosnθ p(x, θ, t) dθ dx, (27)

Gn(t) =
1

N0

∫

R2

∫ π

−π

x1 cosnθ p(x, θ, t) dθ dx, (28)
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Yn(t) =
1

N0

∫

R2

∫ π

−π

sin nθ p(x, θ, t) dθ dx, (29)

and Zn(t) =
1

N0

∫

R2

∫ π

−π

x2 sin nθ p(x, θ, t) dθ dx, (30)

where n = 1, 2, 3, · · ·. Using these definitions, V(t) = s(F1(t), Y1(t)).When
the initial position is (0, 0) and there is a uniform distribution of initial
directions, then the higher moments (27)-(30) are all zero at t = 0.

6.2. Closure assumptions

Closure assumption 1

From standard integrals of the von Mises distribution (Mardia & Jupp,
1999) we can derive the following integrals

∫ π

−π

cos nθ

2πI0(κ)
eκ cos(θ−θ′+dτ sin θ′)dθ =

In(κ)
I0(κ)

cos(nθ′ − ndτ sin θ′), (31)
∫ π

−π

sinnθ

2πI0(κ)
eκ cos(θ−θ′+dτ sin θ′)dθ =

In(κ)
I0(κ)

sin(nθ′ − ndτ sin θ′), (32)

which occur during the derivation of the moment equations. To make further
analytic progress, we assume that the average time between turning events is
small, τ̄ ¿ 1, and recall the definition, dτ = B−1τ . From the experimentally
observed values of B−1 in Table 1, 0 ≤ dτ ¿ 1, and we seek an asymptotic
expansion in powers of dτ for the trigonometric functions. The trigonometric
terms are expanded as Taylor series

cos(nθ − ndτ sin θ) = cos nθ + ndτ sin θ sin nθ − n2d2
τ

2
sin2 θ cos nθ, (33)

sin(nθ − ndτ sin θ) = sin nθ − ndτ sin θ cosnθ − n2d2
τ

2
sin2 θ sin nθ, (34)

correct to O(d3
τ ). Using standard trigonometric identities, (33) and (34)

reduce for n = 1 and n = 2 to

cos(θ − dτ sin θ) =
dτ

2
+

(
1− d2

τ

8

)
cos θ − dτ

2
cos 2θ +

d2
τ

8
cos 3θ, (35)

cos(2θ − 2dτ sin θ) =
d2

τ

2
+ dτ cos θ +

(
1− d2

τ

)
cos 2θ − dτ cos 3θ, (36)

sin(θ − dτ sin θ) =
(

1− 3d2
τ

8

)
sin θ − dτ

2
sin 2θ +

d2
τ

8
sin 3θ, (37)

sin(2θ − 2dτ sin θ) = dτ sin θ +
(
1− d2

τ

)
sin 2θ − dτ sin 3θ. (38)
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Closure assumption 2

To close the system of derived differential equations we make an assumption
about the form of the underlying spatial distribution p(x, θ, t). In general,
it is not the case that the x and θ components of p(x, θ, t) are independent.
However, for several of the higher moments in the system we assume that
when averaging over all positions x, we can approximate p(x, θ, t) by

p(x, θ, t) = f(θ)p∗(x, t), (39)

where f(θ) is the long-time angular distribution given by (16), and
∫ π

−π

f(θ) dθ = 1 and
1

N0

∫

R2
p∗(x, t) dx = 1. (40)

Under this assumption, and using the standard integrals of the von Mises
distribution (Mardia & Jupp, 1999) we get

Fn(t) =
In(2z)
I0(2z)

≡ An(2z), (41)

Gn(t) =
In(2z)
I0(2z)

x̄1 = An(2z)x̄1(t), (42)

Yn(t) = 0, (43)
Zn(t) = 0, (44)

where z = (Bσ2
0)−1, and x̄1 = H(t).ξ1. Note that (41) is independent of

t, while (42) is dependent on t. These approximations are shown to be a
good match to large time numerical simulations for all n if the assumption
that τ̄ is small holds (Codling, 2003). In (33) and (34), terms of O(dm

τ ) for
m ≥ 3 are truncated, and to be consistent we use (41) and (42) for n ≥ 3
also. The choice to approximate Fn(t) and Gn(t) for n ≥ 3 is justified as
the following analysis shows that these higher order terms are multiplied by
small coefficients and are not significant. If this approximation is made for
n < 3 then the final solutions are not valid for all time and do not match
well with numerical simulations.

6.3. Deriving differential equations for the moments

To illustrate how to derive the differential equations for the statistics and
higher order moments of the underlying spatial distribution we give the
example of calculating the equation for the moment F1(t) as defined by
(27).

Multiply the linear transport equation (1) by cos θ, integrate over θ and
x, and divide by N0, to give

1
N0

∫

R2

∫ π

−π

cos θ
∂p

∂t
dθ dx = − s

N0

∫

R2

∫ π

−π

cos θ (ξ.∇xp) dθ dx

− λ

N0

∫

R2

∫ π

−π

cos θ p dθ dx +
λ

N0

∫

R2

∫ π

−π

∫ π

−π

cos θ T (θ, θ′)p(θ′)dθ′dθ dx.
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Using the definitions for Fn(t) from (27)and for T (θ, θ′) from (5) together
with the sinusoidal reorientation model, (14), gives

dF1

dt
= − s

N0

∫

R2

∫ π

−π

∇x.(cos θξp) dθ dx− λF1

+
λ

N0

∫

R2

∫ π

−π

∫ π

−π

cos θ

2πI0(κ)
eκ cos(θ−θ′+dτ sin θ) p(θ′) dθ′ dθ dx.

As we assume the probability density and associated boundary terms are
zero at infinity, use of the divergence theorem shows that the first term in
the right hand side of the above is zero, see Codling (2003) for full details.
The order of the integration in the third term can be changed, and using
the von Mises integral (31), we get

dF1

dt
= −λF1 +

λI1(κ)
N0I0(κ)

∫

R2

∫ π

−π

cos(θ′ − dτ sin θ′) p(θ′) dθ′ dx.

Using closure assumptions 1 and 2 and expanding using (35) gives

dF1

dt
= −λ11F1 + â1 − â1F2 + â2A3(2z), (45)

which is correct to O(d3
τ ). The constant terms are given by

λ11 = λ

(
1− (1− d2

τ

8
)A1(κ)

)
, â1 =

λdτA1(κ)
2

, â2 =
λd2

τA1(κ)
8

. (46)

6.4. Final system of differential equations and solutions

Using the same method as in Sect. 6.3 we derive the leading order system of
differential equations for the higher moments of the spatial distribution as
given in Appendix A.1. The system is only an approximation as higher order
terms have been omitted using the closure assumptions given in Sect. 6.2.

Solving the system of linear differential equations is straightforward
(Codling, 2003). The solution for V(t) is

V(t) = s
(
Af1

(
1− e−φ1t

)
+ Bf1

(
1− e−φ2t

))
ξ1, (47)

and the solution for H(t) is

H(t) = s

(
(Af1 + Bf1)t− Af1

φ1

(
1− e−φ1t

)− Bf1

φ2
(
1− e−φ2t

))
ξ1, (48)

where the coefficients in the solutions are defined in Appendix A.3.
The solutions for the spread about the origin in each direction are

D2
1(t) = AD1 + BD1t + CD1t

2 + ED1(t), (49)
D2

2(t) = AD2 + BD2t + ED2(t), (50)
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where AD1, BD1, etc are constants, and ED1 and ED2 are decaying expo-
nential terms. The full solutions for D2

1(t) and D2
2(t) are given in (90) and

(91) in Appendix A.2. The total spread about the origin is given by

D2(t) = D2
1(t) + D2

2(t), (51)

which is calculated from (49) and (50). Using these solutions for H(t), D2
1(t)

and D2
2(t), the spread about the mean position in each direction, σ2

1(t) and
σ2

2(t), can be calculated from (25) and (26) but we omit the full solutions
given in Codling (2003).

It is interesting to note that D2
2(t) ∝ t, the usual behaviour for a diffusive

process, but D2
1(t) ∝ t2. This is explained by the fact that, in a biased

random walk, there is always an average drift in the preferred direction
(given by H(t) ∝ t in our walk). Thus, the spread about the origin in the
preferred direction, D2

1(t), will be dominated by this average drift term. If
we consider the spread about the mean position, or if the random walk is
unbiased, then this average drift is not included, σ2

1(t) ∝ t and σ2
2(t) ∝ t,

and the spread is purely diffusive.
If dτ = 0 and there is no bias in the system, then the original differential

equations for G1(t) and Z1(t), (86) and (87) given in Appendix A.1, reduce
to

dG1

dt
=

s

2
− λ0G1, (52)

dZ1

dt
=

s

2
− λ0Z1, (53)

where λ0 = λ (1− I1(κ)/I0(κ)). This gives the solution

D2
1(t) = D2

2(t) =
s2

λ0

(
t− 1

λ0
(1− e−λ0t)

)
, (54)

and the spread about the origin is the same in each direction. Thus, if there
is no bias in the random walk, our equation for the total spread about the
origin, (51), is the same as that derived by Othmer et al. (1988) for their
random walk with no bias (equations (49) and (50) in their paper). Note
also that in the case of zero bias, there is no average drift and the mean
position is the origin. Hence in this case D2

1(t) = D2
2(t) = σ2

1(t) = σ2
2(t).

7. Calculating the spatial statistics for the linear reorientation
model

Using the transport equation, (1), and the reorientation kernel, (5), to-
gether with the linear reorientation model, (15), we now complete a moment-
closure method to derive and solve differential equations for the statistics
of the underlying spatial distribution in a similar way to Sect. 6.
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7.1. Higher order moments

In a similar manner to Sect. 5 we define the following higher order moments
which are required when deriving the differential equations for the statistics
of interest:

Kn(t) =
1

N0

∫

R2

∫ π

−π

θ sin nθ p(x, θ, t) dθ dx, (55)

Ln(t) =
1

N0

∫

R2

∫ π

−π

θ cos nθ p(x, θ, t) dθ dx, (56)

Mn(t) =
1

N0

∫

R2

∫ π

−π

θ2 cos nθ p(x, θ, t) dθ dx, (57)

Nn(t) =
1

N0

∫

R2

∫ π

−π

θ2 sin nθ p(x, θ, t) dθ dx, (58)

Pn(t) =
1

N0

∫

R2

∫ π

−π

x1θ sinnθ p(x, θ, t) dθ dx, (59)

Qn(t) =
1

N0

∫

R2

∫ π

−π

x2θ cosnθ p(x, θ, t) dθ dx, (60)

Rn(t) =
1

N0

∫

R2

∫ π

−π

x1θ
2 cos nθ p(x, θ, t) dθ dx, (61)

and Sn(t) =
1

N0

∫

R2

∫ π

−π

x2θ
2 sin nθ p(x, θ, t) dθ dx, (62)

for n = 1, 2, 3, · · ·. The higher moments Fn(t), Gn(t), Yn(t) and Zn(t),
defined in (27)-(30), are also required. Assuming all walkers start at the
origin with a uniform distribution of directions at t = 0, the initial con-
ditions are Fn(0) = Gn(0) = Yn(0) = Zn(0) = Ln(0) = Nn(0) = 0 and
K1(0) = 1, M1(0) = −2, K2(0) = −1/2, M2(0) = 1/2.

7.2. Closure assumptions and further approximations

When using the transport equation, (1), with the linear reorientation kernel
to derive a closed system of differential equations for the moments of the
spatial distribution the two closure assumptions given in Sec. 6.2 are needed.
Note that in closure assumption 2, the simple equations in (41) and (42)
do not hold for the linear reorientation model as the steady state absolute
angular distribution is different and the approximations are calculated nu-
merically using (17).

To derive differential equations for all the higher order moments using
the linear reorientation kernel it is also necessary to solve the following
integrals that occur when integrating the transport equation (1):

kn(µδ, κ) =
∫ π

−π

θ sin nθ eκ cos(θ−µδ) dθ, (63)
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ln(µδ, κ) =
∫ π

−π

θ cos nθ eκ cos(θ−µδ) dθ, (64)

mn(µδ, κ) =
∫ π

−π

θ2 cosnθ eκ cos(θ−µδ) dθ , (65)

and
nn(µδ, κ) =

∫ π

−π

θ2 sinnθ eκ cos(θ−µδ) dθ , (66)

for n = 1 and 2, and where µδ = θ′−dτθ′. These integrals are then multiplied
by p(x, θ′, t) and integrated over θ′ and x to give differential equations for
the moments of the population distribution.

In the absence of analytical expressions for these integrals, we fit func-
tions of Bessel functions by inspection to solutions calculated numerically
to make further progress. The fitted functions require increasingly complex
terms involving higher order Bessel functions as κ increases. To avoid over-
complication, the function

k1(µδ, κ) = 2πI0(κ)− πI1(κ) cos µδ − πI2(κ), (67)

was used to approximate (63) with n = 1. When κ = 0, both the exact
integral and the estimate function k1(µδ, κ) equal 2π.

Similarly, we fitted the following functions to the integrals given in (63)-
(66), for n = 1 and n = 2 respectively:

l1(µδ, κ) = −I1(κ)π sin µδ + 2I2(κ)π sin 2µδ, (68)
m1(µδ, κ) = −4πI0(κ) + 8πI1(κ) cos µδ − 4πI2(κ) cos 2µδ, (69)
n1(µδ, κ) = 6πI1(κ) sin µδ, (70)
k2(µδ, κ) = −πI0(κ) + 3πI1(κ) cos µδ − 3/2 πI2(κ) cos 2µδ, (71)
l2(µδ, κ) = −3/2 I1(κ)π sin µδ − I2(κ)π sin 2µδ, (72)

m2(µδ, κ) = πI0(κ)− 4πI1(κ) cos µδ + 6πI2(κ) cos 2µδ, (73)
n2(µδ, κ) = −4πI1(κ) sin µδ + 8πI2(κ) sin 2µδ. (74)

These estimates are then used in place of the integrals (63)-(66) in order to
make further analytic progress. Full details and plots of exact integrals and
estimated functions are given in Codling (2003).

In general, these functions are a good fit for small values of the parame-
ter κ but become increasingly less of a fit as κ gets larger. It should be made
clear however, that if the random walk is approximately smooth and dτ ¿ 1
(as we have assumed throughout), then any errors due to estimating these
functions are likely to be insignificant. This is for two reasons. (i) The errors
between the exact integrals and our estimated functions are greatest when
µδ is large (Codling, 2003). However, from (15), µδ will always be small if
dτ ¿ 1. (ii) Terms involving these estimated functions are themselves mul-
tiplied by dn

τ m terms (where m ≥ 1) and will hence be small. In Sec. 8 our
asymptotic solutions using these estimated functions are shown to fit well
with simulation results. If the random walk is not approximately smooth
(dτ is large) then our asymptotic solutions are likely to be inaccurate.
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7.3. Final system of differential equations and solutions

Using the same method as in Sec. 6.3 we derive the leading order system of
differential equations for the higher moments of the spatial distribution as
given in Appendix B.1. The system is only an approximation as higher order
terms have been omitted using the closure assumptions given in Sec. 6.2.
Note that the differential equations for H(t), D2

1(t) and D2
2(t) are the same

for all reorientation kernels T (θ, θ′) (see comment at the end of Appen-
dix A.1). Thus, these differential equations are the same for both our si-
nusoidal and linear reorientation models, and are the same as differential
equations (74) and (76) in Othmer et al. (1988) which were derived for a
different reorientation model.

To leading order, (113) in Appendix B.1 has general solutions

Fn(t) = Ãfne−φ1t + B̃fne−φ2t + C̃fn,

Kn(t) = Ãkne−φ1t + B̃kne−φ2t + C̃kn,

Mn(t) = Ãmne−φ1t + B̃mne−φ2t + C̃mn, (75)

where Ãfn, B̃fn, C̃fn etc are all O(1) constants. All the eigenvalues, φi,
have negative real part, and hence any exponential terms in the solutions
decay away to zero as t →∞, and the solutions tend to O(1) constants.

Although the matrices in (113) and (114) are similar, the fact that all the
initial conditions in (114) are zero, results in the following trivial solutions
for the moments

Yn(t) = Ln(t) = Nn(t) = 0 ∀ t, (76)

and the higher moments that correspond to the non-preferred direction are
zero for all time.

The solution for V(t) is

V(t) = s
(
Ãf1e

−φ1t + B̃f1e
−φ2t + C̃f1

)
ξ1, (77)

where Ãf1, B̃f1 and C̃f1 are all constants such that C̃f1 = −(Ãf1 + B̃f1)
and V(0) = 0. Note that the coefficents in the linear model are not the
same as those defined for the sinusoidal model, Ãf1 6= Af1.

The solution for H(t) is

H(t) = s

(
C̃f1t +

Ãf1

φ1
+

B̃f1

φ2
+ ẼH(t)

)
ξ1 (78)

where the term ẼH(t) takes into account all the decaying exponential terms
dependent on the eigenvalues φi and the constants multiplying them, so
that ẼH(t) → 0 as t →∞, and

H∞ ∼ sC̃f1tξ1. (79)
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Similarly, the solutions for D2
1(t) and D2

2(t) have the form

D2
1(t) = ÃD1 + B̃D1t + C̃D1t

2 + ẼD1(t), (80)
D2

2(t) = ÃD2 + B̃D2t + ẼD2(t), (81)

where ÃD1, B̃D1 etc are constants, and ẼD1 and ẼD2 are decaying exponen-
tial terms. The solutions for D2(t), σ2

1(t) and σ2
2(t) can be calculated from

(78), (80) and (81). As with the sinusoidal model, D2
1(t) t2 and D2

2(t) t for
the same reasons as discussed previously in Sec. 6.4.

In principle it is possible to calculate general equations for the coeffi-
cients in the final solutions that are dependent on λ, dτ and κ. However,
these are long and cumbersome — it is much simpler to solve numerically
the systems of equations in (113)-(116) in Appendix B.1 for particular values
of the parameters. Numerical values of the coefficients in the final solutions
are shown in Appendix B.2 for values of the reorientation parameters that
correspond to data set C4 (linear reorientation due to phototaxis) from Hill
& Häder (1997), given in Table 1.

8. Simulation results

To test the validity of the asymptotic solutions in Sec. 6.4 and Sec. 7.3, a
computer algorithm has been programmed to simulate a population of ran-
dom walkers moving as a velocity jump process with either the sinusoidal or
linear reorientation kernels, and to then calculate the spatial statistics. At
each turning step an algorithm from Fisher & Best (1979) is used to sim-
ulate the von Mises distribution, and we have also used algorithms RAN1,
GAMDEV and BESSI from Press et al. (1992). For full details of the sim-
ulation algorithm see Codling (2003). In all the following simulations we
assume that the population are moving in the (x, y) plane and the preferred
direction is the y-direction (i.e. x1 = y).

8.1. Simulations using experimentally observed parameter values

Comparisons between simulations and the asymptotic solutions have been
completed for a large range of parameter values in Codling (2003). Here
we present results of simulations for parameter values calculated from the
experimental results of Hill & Häder (1997) given in Table 1. Henceforth,
from Table 1, we refer to the parameter values calculated using estimates
over all sampling times as data sets C1:a and C4:a, and parameter values
calculated using the estimates over sampling times τs < 0.4 s as data sets
C1:b and C4:b.

Simulations of 500 walkers were completed using the sinusoidal reorien-
tation model with reorientation parameters C1:a and C1:b from Table 1,
with λ = 1/τ = 12.5 s−1 and a fixed speed of s = s̄ = 55 µms−1, taken from
the results of Hill & Häder (1997). Similarly, simulations have also been
run for data sets C4:a and C4:b from Table 1 using the linear reorientation
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model with λ = 1/τ = 12.5 s−1 and a fixed speed of s = s̄ = 59 µms−1,
again taken from the results of Hill & Häder (1997).

Fig. 1 shows the spatial distribution of the population of walkers at
t = 100 for the four data sets. It is clear that the different data sets produce
a slightly different spatial distribution after a fixed time. It is immediately
noticable that data sets C1:a and C4:a produce a larger spread, while the
linear reorientation model (C4:a and C4:b) appears to produce a much larger
average drift in the preferred direction. This latter result is confirmed in
Fig. 2, that shows the mean position in the preferred direction for the four
data sets, Hy(t) (the average position in the non-preferred direction, Hx(t),
is zero). This can be explained by recalling (14) and (15), where it is clear
that the linear reorientation model will always produce a larger reorientation
back to the preferred direction at each turning event. There is a very good
match between all the asymptotic solutions and the simulation results, while
the mean position is quantitatively similar when comparing C1:a with C1:b,
and C4:a with C4:b.

Fig. 3 compares the spread about the mean position in each direction,
σ2

x(t) and σ2
y(t), for all four data sets. Again, there is a very good match

between the asymptotic solutions and the simulation results. As observed in
Fig. 1, it is clear that data sets C1:a and C4:a produce a larger spread than
C1:b and C4:b respectively. It is also interesting to note that, in data sets
C1:a and C1:b, σ2

x(t) ≈ σ2
y(t), but in data sets C4:a and C4:b, σ2

x(t) > σ2
y(t).

In general, as the random walk becomes more like a straight line in the
preferred direction (y), the spread about the mean position will be less in
the preferred direction than in the non-preferred direction (x). This effect
is explained in Sec. 8.2 and in more detail in Codling (2003), and the effect
can be seen in Fig. 1.

8.2. The effect of the reorientation parameters on the approximate
steady-state solutions

We have seen that our asymptotic solutions are a very good match to sim-
ulated results for parameter values that are observed experimentally. It is
also useful to study the effect of a range of values of the reorientation para-
meters on the approximate steady-state solutions for the spatial statistics.
The following simulations have been completed for non-dimensionalised ve-
locity jump processes where we have used λ = τ = s = 1, and we have
considered the spatial statistics at t = 100, the approximate steady-state
solutions.

Fig. 4 shows plots of the theoretical asymptotic solution and simulated
results for the mean position in the preferred direction at t = 100, Hy(100),
for both the sinusoidal and linear reorientation models. For both reorienta-
tion models, Hy(100), increases as the parameter κ increases, although the
rate of increase also slows down as κ increases. As κ → ∞, Hy(100) tends
asymptotically to the maximum possible displacement, Hy(100) = st = 100,
which corresponds to movement in a straight line in the preferred direction.
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The average position is larger for larger values of dτ , and the linear reorien-
tation model produces a larger average position than the sinusoidal model
for the same reorientation parameters. There is a very good match between
the theoretical asymptotic solutions and the simulation results, both qual-
itatively and quantitatively. However, if larger values of dτ are used, and
the random walk is no longer approximately smooth, then the asymptotic
solutions start to break down.

Fig. 5 shows plots of the theoretical asymptotic solution and simulated
results for the spread about the mean position in the non-preferred direction
at t = 100, σ2

x(100), for both the sinusoidal and linear reorientation models.
The simulated results are quite noisy but there is a good qualitative match
with the asymptotic solutions.
If there is no bias and dτ = 0 then the spread increases as κ increases. In
this case the mean position will always be the origin as there is no preferred
direction, and as κ →∞ the motion of the population will become more like
a wave spreading out from the origin and σ2

x(100) will tend asymptotically
to the maximum possible value, s2t2/2 = 5000.
If bias is present then this is no longer true — in this case σx(100) initially
increases as κ increases and then reaches a maximum value before starting
to decrease. In general, σx(100) is less if dτ is larger. Consider a random
walk where dτ 6= 0 and κ → ∞: as long as there is some bias present then
by increasing κ the motion of the population becomes more like a straight
line in the preferred direction rather than a wave spreading out from a
central point. As κ → ∞, the walkers will tend to have a mean position
of H(100) ≈ (0, 100), and thus D2

x(100) → 0, D2
y → 10 000 and σ2

x → 0.
For the same parameter values, the linear model has less spread in the
non-preferred direction than the sinusoidal model.

Fig. 6 shows similar results: if dτ = 0 then σ2
y(100) increases asymptot-

ically as κ increases, up to the maximum possible value of s2t2/2 = 5000,
while if there is bias and dτ 6= 0 then σ2

y(100) reaches a maximum value
and then starts to decrease as κ increases, for the same reasons as described
previously. For small values of the reorientation parameters there is a good
qualitative match between the asymptotic solutions and the simulated re-
sults, but at large values the theoretical model clearly breaks down as it is
not possible to have ‘negative spread’. As was the case previously, σ2

y(100)
is smaller if dτ is larger, and smaller for the linear reorientation model when
compared to the sinusoidal model for the same parameter values.

Simulations have been used to investigate larger parameter values where
the underlying random walk is no longer approximately smooth and the as-
ymptotic solutions break down (Codling, 2003), but these parameter values
are not realistic to describe the motion of swimming micro-organisms using
a continuously turning random walk model and results are not presented in
this paper.
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9. Discussion

We have presented a new application of the velocity jump process model
introduced by Othmer et al. (1988) that describes the motion of swimming
micro-organisms and other animals or cells that move with a directed mo-
tion. The velocity jump model is more realistic than simple diffusion models
as the speed of movement is fixed, but it is not possible to derive an equa-
tion for the underlying spatial distribution of such a process directly (Hillen,
2002). Our random walk model includes the sinusoidal and linear reorienta-
tion models observed by Hill & Häder (1997) in experiments on swimming
algae. In contrast to the particular case of the ‘random walk in external
field’ in Othmer et al. (1988), our reorientation kernel, T (θ, θ′) includes the
effects of bias and correlation in one probability distribution that has two
parameters κ and dτ , and we do not need to make a superposition of two
separate distributions.

The reorientation parameters, κ and dτ , can be measured directly from
simple experimental observations (Hill & Häder, 1997; Codling & Hill, 2004).
Using a transport equation (see Hillen, 2002; Hillen & Othmer, 2000; Oth-
mer & Hillen, 2002) and various moment closure assumptions we have de-
rived and solved a system of differential equations for the spatial statistics
and higher moments. These asymptotic solutions are a very good match to
simulated random walks for realistic parameter values.

As discussed in Sec. 3.1, our choice of µδ(θ′) in the reorientation kernel,
T (θ, θ′), violates assumption T4, (8), in the general theory of velocity jump
processes given in, for example, Hillen & Othmer (2000) and Hillen (2002).
Thus, many of their general results may not be applicable to our model. The
reorientation models in (14) and (15) from Hill & Häder (1997), implicitly
assume that the preferred direction is fixed and bias is spatially independent
and only introduced through the dependence of the mean turning angle on
the previous direction of movement. This assumption is reasonable if move-
ment is due to, for example gyrotaxis (Kessler, 1986) or phototaxis where
the distance to the light source is large compared to the scale of movement
(Hill & Vincent, 1993). However, (14) and (15) are not appropriate if the
preferred direction is likely to change (e.g. random walkers moving towards
a point source), or if the level of the introduced bias changes with spatial po-
sition (e.g. walkers moving up a chemical gradient). In Codling et al. (2004),
we simulate reef fish larvae orientating back to a circular reef by adapting
(14) and (15) to allow for a changing preferred direction, and allowing κ and
dτ to be spatially dependent, but in this example the asymptotic solutions
in Sec. 6.4 and Sec. 7.3 are not valid.

We have presented a new approach to modelling the directed movement
of animals and micro-organisms using a velocity jump process where bias
is introduced through the dependence of the mean turning angle on the
absolute angle with the sinusoidal or linear reorientation models. Using a
combination of asymptotic results, experimental observation and simula-
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tions, similar models can be used to model many biological systems where
there is a similar directed motion.
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APPENDICES

A. Sinusoidal reorientation model

A.1. System of differential equations

Using the same method as in Sec. 6.3 we arrive at the following leading
order system of differential equations for the higher moments of the spatial
distribution:

dH
dt

= V = s(F1, Y1), (82)
(

Ḟ1

Ḟ2

)
=

(−λ11 −â1

b̂1 −λ2

)(
F1

F2

)
+

(
â2A3(w)

−b̂1A3(w) + b̂2(1 + A4(w))

)
, (83)

(
Ẏ1

Ẏ2

)
=

(−λ12 −â1

b̂1 −λ2

)(
Y1

Y2

)
, (84)

dD2
1

dt
= 2sG1,

dD2
2

dt
= 2sZ1, (85)

(
Ġ1

Ġ2

)
=

s

2

(
1 + F2

F1 + A3(w)

)
+

(−λ11 −â1

b̂1 −λ2

) (
G1

G2

)

+
(

â2A3(w)
−b̂1A3(w) + b̂2(1 + A4(w))

)
x̄1, (86)

and (
Ż1

Ż2

)
=

s

2

(
1− F2

F1 −A3(w)

)
+

(−λ12 −â1

b̂1 −λ2

)(
Z1

Z2

)
, (87)

where

λ2 = λ
(
1− (1− d2

τ )A2(κ)
)
, λ12 = λ

(
1− (1− 3d2

τ/8)A1(κ)
)
,

b̂1 = λdτA2(κ), b̂2 = λd2
τA2(κ)/2, (88)

and â1 and â2 are as defined in (46).

Note that, due to the way the differential equations are derived, (82)
and (85) are the same for all reorientation kernels, T (θ, θ′). These differen-
tial equations are the same for both our sinusoidal and linear reorientation
models, and are the same as differential equations (74) and (76) in Othmer
et al. (1988) which were derived for a different reorientation model.
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This is because, when deriving these equations using the method de-
scribed in Sec. 6.3, the term in the transport equation (1) that includes the
reorientation kernel T (θ, θ′) is not multiplied by a term dependent on θ.
The integral term then takes the form

∫

R2

∫ π

−π

∫ π

−π

T (θ, θ′)p(x, θ′, t)dθ′dθ dx = N0, (89)

and thus the differential equation derived is always the same as long as the
reorientation kernel used is only dependent on the direction of movement.
Further details of how the differential equations are derived are given in
Codling (2003).

A.2. Solutions

As the differential equations given in Appendix A.1 are all linear with con-
stant coefficients they are straightforward to solve; see Codling (2003) for
full details.

The solutions for V(t) and H(t) are given in (47) and (48) in the main
text and the coefficients in the solutions are defined in Appendix A.3.

The solutions for the spread about the origin in each direction, D2
1(t)

and D2
2(t), are

D2
1(t) = 2s2

(
(Af1 + Bf1)2

2
t2 + Ag1

(
t− 1

φ1
(1− e−φ1t)

)

+ Bg1

(
t− 1

φ2
(1− e−φ2t)

)
− Cg1

φ1

(
te−φ1t − 1

φ1
(1− e−φ1t)

)

− Dg1

φ2

(
te−φ2t − 1

φ2
(1− e−φ2t)

)

+ Eg1

(
1
φ1

(1− e−φ1t)− 1
φ2

(1− e−φ2t)
))

, (90)

and

D2
2(t) = 2s2

(
(Az1 + Bz1)t− 1

φ3
(Az1 + Cz1 + Dz1)

(
1− e−φ3t

)

− 1
φ4

(Bz1 + Ez1 + Fz1)
(
1− e−φ4t

)
+

1
φ1

(Cz1 + Ez1)
(
1− e−φ1t

)

+
1
φ2

(Dz1 + Fz1)
(
1− e−φ2t

))
, (91)

where the coefficients in the solutions are defined in Appendix A.3.
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A.3. Coefficients in the final solutions

The solutions given in Sec. 6.4 have been left in a general form. The coeffi-
cients in (47) and (48) are defined as follows:

φ1 =
1
2

(
λ11 + λ2 −

√
(λ11 − λ2)2 − 4â1b̂1

)
, (92)

φ2 =
1
2

(
λ11 + λ2 +

√
(λ11 − λ2)2 − 4â1b̂1

)
, (93)

Af1 =
λ2 − φ1

b̂1φ1(φ2 − φ1)

(
b̂1Cf1 − (λ2 − φ2)Cf2

)
, (94)

Bf1 =
−(λ2 − φ2)

b̂1φ2(φ2 − φ1)

(
b̂1Cf1 − (λ2 − φ1)Cf2

)
, (95)

Af2 =
1

φ1(φ2 − φ1)

(
b̂s1Cf1 − (λ2 − φ2)Cf2

)
, (96)

Bf2 =
−1

φ2(φ2 − φ1)

(
b̂s1Cf1 − (λ2 − φ1)Cf2

)
, (97)

where the terms Cf1 and Cf2 correspond to the constant terms in the sys-
tems of differential equations (83) and (86) and are given by

Cf1 = (â1 + â2A3(w)) (98)

Cf2 =
(
b̂2(1 + A4(w))− b̂1A3(w)

)
(99)

and all other constant terms are as defined in (46) or (88).
The coefficients in (90) and (91) are defined as follows:

Ag1 = −2A2
f1

φ1
−Af1Bf1

(
1
φ1

+
1
φ2

)
+

(λ2 − φ1)
2φ1(φ2 − φ1)

(1 + Af2 + Bf2)

− (λ2 − φ1)(λ2 − φ2)

2b̂s1φ1(φ2 − φ1)
(Af1 + Bf1 + A3(z)) , (100)

Bg1 = −2B2
f1

φ2
−Af1Bf1

(
1
φ1

+
1
φ2

)
− (λ2 − φ2)

2φ2(φ2 − φ1)
(1 + Af2 + Bf2)

+
(λ2 − φ1)(λ2 − φ2)

2b̂s1φ2(φ2 − φ1)
(Af1 + Bf1 + A3(z)) , (101)

Cg1 = A2
f1 +

(λ2 − φ1)

2b̂s1(φ2 − φ1)

(
Af1(λ2 − φ2)−Af2b̂s1

)
, (102)

Dg1 = B2
f1 −

(λ2 − φ2)

2b̂s1(φ2 − φ1)

(
Bf1(λ2 − φ1)−Bf2b̂s1

)
, (103)
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Eg1 = −
(λ2 − φ1)

(
b̂s1(φ2Bf2 − 2Cf1Bf1)−Bf1(λ2 − φ2)(φ2 − 2Cf2)

)

2φ2b̂s1(φ2 − φ1)2

+
(λ2 − φ2)

(
b̂s1(φ1Af2 − 2Cf1Af1)−Af1(λ2 − φ1)(φ1 − 2Cf2)

)

2φ1b̂s1(φ2 − φ1)2
,

(104)

and

φ3 =
1
2

(
λ12 + λ2 −

√
(λ12 − λ2)2 − 4âs1b̂s1

)
, (105)

φ4 =
1
2

(
λ12 + λ2 +

√
(λ12 − λ2)2 − 4âs1b̂s1

)
, (106)

Az1 =
(λ2 − φ3)

2b̂s1φ3(φ4 − φ3)

(
b̂s1(1−Af2 −Bf2)

−(λ2 − φ4)(Af1 + Bf1 −A3(z))
)
, (107)

Bz1 = − (λ2 − φ4)

2b̂s1φ4(φ4 − φ3)

(
b̂s1(1−Af2 −Bf2)

−(λ2 − φ3)(Af1 + Bf1 −A3(z))
)
, (108)

Cz1 =
(λ2 − φ3)

2b̂s1(φ3 − φ1)(φ4 − φ3)

(
b̂s1Af2 + (λ2 − φ4)Af1

)
, (109)

Dz1 =
(λ2 − φ3)

2b̂s1(φ3 − φ2)(φ4 − φ3)

(
b̂s1Bf2 + (λ2 − φ4)Bf1

)
, (110)

Ez1 = − (λ2 − φ4)

2b̂s1(φ4 − φ1)(φ4 − φ3)

(
b̂s1Af2 + (λ2 − φ3)Af1

)
, (111)

Fz1 = − (λ2 − φ4)

2b̂s1(φ4 − φ2)(φ4 − φ3)

(
b̂s1Bf2 + (λ2 − φ3)Bf1

)
, (112)

where φ1, φ2, Af1, Bf1, Af2, and Bf2 are as defined in (92) — (97), and
all other constant terms are as defined in (46) or (88).
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B. Linear reorientation model

B.1. System of differential equations

For simplicity, we can write the first system as




Ḟ1

K̇1

Ṁ1

Ḟ2

K̇2

Ṁ2




= A




F1

K1

M1

F2

K2

M2




+




0
λ
−2λ

0
−λ/2
λ/2




, (113)

where the coefficients in the matrix A are dependent on λ, dτ and κ, and
are given below. Similarly, we can write the other system as




Ẏ1

L̇1

Ṅ1

Ẏ2

L̇2

Ṅ2




= B




Y1

L1

N1

Y2

L2

N2




, (114)




Ġ1

Ṗ1

Ṙ1

Ġ2

Ṗ2

Ṙ2




= A




G1

P1

R1

G2

P2

R2




+




0
λ
−2λ

0
−λ/2
λ/2




x̄1 +
s

2




1 + F2

K2

M0 + M2

F1 + F3

K1 + K3

M1 + M3




, (115)

and 


Ż1

Q̇1

Ṡ1

Ż2

Q̇2

Ṡ2




= B




Z1

Q1

S1

Z2

Q2

S2




+
s

2




1− F2

K2

M0 −M2

F1 − F3

K3 −K1

M1 −M3




, (116)

where the coefficients in the matrix B are also dependent on λ, dτ and κ, and
are given below, and the moments M0, F3, K3 and M3 are approximated
using the expected long-time angular distribution equation, (17), from Hill
& Häder (1997) in place of f(θ) (closure assumption 2 in Sec. 7.2).

The matrices in (113), (115) and (116) are

A =
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−λ




1−A1 −dτA1
1
2d2

τA1 0 0 0
1
2A1 1 + 1

2dτA1 − 1
4d2

τA1
1
2A2 dτA2 −d2

τA2

−4A1 −4dτA1 1 + 2d2
τA1 2A2 4dτA2 −4d2

τA2

0 0 0 1−A2 −2dτA2 2d2
τA2

− 3
2A1 − 3

2dτA1
3
4d2

τA1
3
4A2 1 + 3

2dτA2 − 3
2d2

τA2

2A1 2dτA1 −d2
τA1 −3A2 −6dτA2 1 + 6d2

τA2




,

(117)

and

B =

−λ




1−A1 dτA1
1
2d2

τA1 0 0 0
1
2A1 1− 1

2dτA1 − 1
4d2

τA1 −A2 2dτA2 2d2
τA2

−3A1 3dτA1 1 + 3
2d2

τA1 0 0 0

0 0 0 1−A2 2dτA2 2d2
τA2

3
4A1 − 3

4dτA1 − 3
8d2

τA1 A2 1− dτA2 −d2
τA2

2A1 −2dτA1 −d2
τA1 −4A2 8dτA2 1 + 8d2

τA2




,

(118)

where An = In(κ)/I0(κ).

B.2. Numerical coefficients in the asymptotic solutions

The solutions in Sec. 7.3 have the following values for the coefficients when
the parameters for data sets corresponding to linear reorientation due to
phototaxis (C4:a and C4:b from Table 1) are used, and τ̄ = 0.08 s (all solu-
tions are rounded to two decimal places):

C4:a

Hy(t) = 22.07t− 42.77 + 43.23e−0.53t − 0.35e−1.73t, (119)
σ2

x(t) = 9644.20t− 24065.69 + 9738.34e−0.53t − 177.78e−1.73t

+14818.34e−0.35t − 313.32e−1.31t + 0.01e−12.50t, (120)
σ2

y(t) = 4800.97t− 4853.70− 2983.67te−0.53t + 23.56te−1.73t

+6504.55e−0.53t + 178.77e−1.73t − 1859.88e−1.05t + 30.39e−2.25t

−0.12e−3.45t − 0.02e−12.50t. (121)

C4:b

Hy(t) = 20.81t− 12.07 + 12.18e−1.75t − 0.11e−5.07t, (122)
σ2

x(t) = 2807.70t− 2069.59 + 837.38e−1.75t − 16.92e−5.07t + 1281.15e−1.21t
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−31.89e−4.07t − 0.14e−12.50t, (123)
σ2

y(t) = 1494.26t− 497.07− 812.38te−1.75t + 7.95te−5.07t + 623.21e−1.75t

+19.68e−5.07t − 148.46e−3.51t + 2.73e−6.83t − 0.01e−10.15t

−0.07e−12.50t. (124)
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(a) C1:a at t = 100 (b) C1:b at t = 100

(c) C4:a at t = 100 (d) C4:b at t = 100

Fig. 1. Plots showing simulated position and spread at t = 100 for parameters
calculated from data set (a) C1:a; (b) C1:b; (c) C4:a; and (d) C4:b. The actual
parameter values used are given in Table 1. Legend: (—) population spread about

the mean position,
√

σ2(100), (· · ·) theoretical maximum displacement, st; indi-
vidual positions are marked by points.
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(a) Hy(t) for C1 (b) Hy(t) for C4

Fig. 2. Plots showing (a) Hy(t) for parameter values calculated from data set
C1:a and C1:b, and (b) Hy(t) for C4:a and C4:b. The actual parameter values used
are given in Table 1. Legend: (—) asymptotic solution, (· · ·) simulated results. In
(a) C1:a, and in (b) C4:a, are the plots with the largest value of Hy(100). Note
that the scale of each plot is different.
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(a) σ2
x(t) for C1 (b) σ2

y(t) for C1

(c) σ2
x(t) for C4 (d) σ2

y(t) for C4

Fig. 3. Plots showing (a) σ2
x(t) for C1:a and C1:b; (b) σ2

y(t) for C1:a and C1:b,

(c) σ2
x(t) for C4:a and C4:b; and (d) σ2

y(t) for C4:a and C4:b. In (a) and (b), σ2
x(t)

and σ2
y(t) are always larger for data set C1:a; in (c) and (d), σ2

x(t) and σ2
y(t) are

always larger for data set C4:a. Legend: (—) asymptotic solution, (· · ·) simulated
results.
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(a) Sinusoidal simulation (b) Sinusoidal theory

(c) Linear simulation (d) Linear theory

Fig. 4. Plots showing Hy(100) against κ for sinusoidal and linear reorientation
with dτ = 0 (—), dτ = 0.1 (· · ·), dτ = 0.2 (−−) and dτ = 0.3 (· − ·).
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(a) Sinusoidal simulation (b) Sinusoidal theory

(c) Linear simulation (d) Linear theory

Fig. 5. Plots showing σ2
x(100) against κ for sinusoidal and linear reorientation

with dτ = 0 (—), dτ = 0.1 (· · ·), dτ = 0.2 (−−) and dτ = 0.3 (· − ·).
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(a) Sinusoidal simulation (b) Sinusoidal theory

(c) Linear simulation (d) Linear theory

Fig. 6. Plots showing σ2
y(100) against κ for sinusoidal and linear reorientation

with dτ = 0 (—), dτ = 0.1 (· · ·), dτ = 0.2 (−−) and dτ = 0.3 (· − ·). Note that
in (d) the theoretical asymptotic solutions break down as they predict ‘negative
spread’.


