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Abstract

Bioconvection patterns are usually observed in the laboratory in shallow suspen-
sions of randomly, but on average upwardly, swimming micro-organisms which are
a little denser than water, but have also been found in situ in micropatches of zoo-
plankton (Kils 1993). The mechanism of upswimming differs between bottom-heavy
algae and oxytactic bacteria. Rational continuum models have been formulated and
analysed in each of these cases for low cell volume fraction. These will be described,
as will new theoretical and experimental developments, including nonlinear analysis
of the patterns, dispersion in shear flows, measurements of algal cell swimming be-
haviour, and new attempts to set up a model for more concentrated suspensions. The
paper will review all work in this area since 1992, the year of the publication of the
article “Hydrodynamic phenomena in suspensions of swimming micro-organisms”
by T.J. Pedley & J.O. Kessler (1992b) in the Annual Review of Fluid Mechanics.
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1 Introduction

Bioconvection patterns are observed in shallow suspensions of randomly, but
on average upwardly, swimming micro-organisms which are a little denser than
water. Excellent images of typical bioconvection patterns formed by suspen-
sions of single-celled algae and bacteria can be found in the article by Pedley
& Kessler (1992a). The basic mechanism is analogous to that of Rayleigh–
Bénard convection, in which an overturning instability develops when the up-
per regions of fluid become denser than the lower regions. The reason for
the upswimming however depends on the species of micro-organism: certain
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biflagellate algae are bottom-heavy, and therefore experience a gravitational
torque when they are not vertical; certain oxytactic bacteria, such as Bacillus
subtilis, swim up oxygen gradients that they generate by their consumption of
oxygen (Kessler 1985a; Pedley & Kessler 1992a; Platt 1961; Wager 1911).

Two micro-organisms that are commonly used in bioconvection experiments
are the bottom-heavy alga, Chlamydomonas nivalis which is found in snow
fields and is active when the snow is melting, and the common soil bacterium
B. subtilis. The cell bodies of C. nivalis are slightly-prolate spheroids about
10µm in diameter. They have two flagella about 15µm in length at the anterior
end of the cell which are moved in a breast-stroke-like fashion to enable the
cells to swim at speeds of up to 10 body lengths per second. Figure 1 in Pedley
& Kessler (1990) gives images of the alga C. nivalis, which clearly show the
flagella. An example of a B. subtilis cell is shown in Fig. 1 in this review. The
cells are rod-like and typically 2 to 4µm in length. They have many flagella
which wind together to form a helical flagellar bundle that rotates to propel
the cell forward. Again they can reach speeds of over 10 body lengths per
second. Populations of both species contain cells of a variety of ages, sizes and
swimming speeds.

Rational (i.e. systematically-derived from scientific data as opposed to ad hoc)
continuum models have been formulated and analysed in each of these cases, on
the assumption that the cell volume fraction φ is low enough for hydrodynamic
or other cell-cell interactions to be neglected (φ ≤ 0.1%) (Hillesdon et al 1995;
Pedley & Kessler 1992b). Another sort of pattern-formation (“whorls and jets”)
is observed in very concentrated, very shallow cultures of swimming bacteria
(Kessler & Hill 1997; Kessler & Wojciechowski 1997; Mendelson et al 1999). Here
upwards swimming is not required but cell-cell interactions are crucial; how-
ever it is not clear how to derive an appropriate macroscopic model that is con-
sistent with the laws of mechanics at the cellular level. In this review, we shall
concentrate primarily on research in bioconvection for dilute suspensions pub-
lished since the major review by Pedley & Kessler (1992b). The main themes
have been: (a) further developments of the new continuum model introduced
by Pedley & Kessler (1990); (b) modelling of bioconvection in suspensions of
oxytactic bacteria; (c) numerical solutions of the continuum equations; and (d)
experimental studies of both algal and bacterial bioconvection. The layout of
the review is as follows. In Section 2, the basic continuum and linear stablility
theory is reviewed and the developments for oxytactic bacteria and chemo-
taxis in a shear flow are described. Nonlinear extensions to these models, are
described in Section 3. An overview of numerical solutions for bioconvection is
given in Section 4, followed in Section 5 by a review of experimental work. The
review concludes with comments on the progress in modelling concentrated
suspensions of micro-organisms in Section 6, and with a brief discussion of
future challenges in Section 7.
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Fig. 1. Electron micrograph of the oxytactic bacterium Bacillus subtilis. The picture
shows a cell about to divide into two. Clearly visible are the multiple flagella, which
coalesce to form the ‘flagellar bundle’ when the cell swims. The scale bar is 1 µm.
Platinum was evaporated at a shallow angle on a dried sample and then imaged
using a transmission electron microscope. Image kindly provided by C. Dombrowski,
J.O. Kessler & D. Bentley, University of Arizona.
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2 Continuum models for dilute micro-organism suspensions

2.1 General

In a continuum model one assumes that volume elements, which are small
compared with the scale of the flow or the container, contain very many cells,
so that variables can be represented by their averages over the volume element.
These averages can be represented as functions of spatial position x and time
t, e.g. the concentration (number density) of cells, n(x, t). The averaging of
some quantities may not be straightforward, because cells typically swim in
random directions.

For a dilute suspension of cells, the volume fraction of cells is small, i.e. nυ =
φ � 1 (where υ is the average volume of a cell). In that case the bulk velocity
field u(x, t) satisfies the continuity and Navier–Stokes equations subject to the
Boussinesq approximation, in which the variation in suspension density with
n is negligible except in the gravitational (negative) buoyancy term:

ρ
Du

Dt
= −∇pe − nρg′k +∇.Σ (1)

∇.u = 0. (2)

Here pe is the pressure excess over hydrostatic, g′ is the reduced gravity (=
g∆ρ/ρ, where ρ is water density and ρ + ∆ρ is mean cell density), k is the
vertical (upward) unit vector, Σ is the deviatoric stress tensor, and D/Dt is the
material time derivative (Du/Dt ≡ ∂u/∂t+(u.∇)u). For a dilute suspension,
Σ is approximately equal to its Newtonian value, and it was shown by Pedley
& Kessler (1990) that the first correction for swimming algae would be due
to the average stresslet strength of the swimmers, Σs, not to the ‘Batchelor’
suspension stresses (Batchelor 1970). Thus

Σ ≈ µ
(
∇u +∇uT

)
+ Σs, (3)

where µ is the viscosity of the fluid and the second term is neglected for the
remainder of this section.

The other key equation of the model is the equation of conservation of cells.
Neglecting birth or death processes, for which the time-scale is much longer
than that of the bioconvective flows, and neglecting gravitational sedimen-
tation, because the terminal sinking speed of a cell is much smaller than its
swimming speed, this equation is

Dn

Dt
=

(
∂

∂t
+ u.∇

)
n = −∇. (nVc − D.∇n) . (4)
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Here the terms on the right hand side both represent the effect of cell swim-
ming; Vc is the average cell swimming velocity (due to gravitaxis, chemotaxis,
etc) and −D.∇n is the flux due to random cell swimming motions, modelled
as a diffusive process with diffusivity tensor D. See Kessler & Hill (1997) for
data on typical swimming speed distributions. The specification of these terms
depends on the type of cells being considered, and the next subsection deals
with gyrotactic (bottom-heavy) algae. The modelling of chemotactic bacteria
is described later.

2.2 Gyrotactic algae

The biflagellate algae which form bioconvection patterns in Kessler’s (1985a)
experiments (with n ∼ 106 ml−1), Chlamydomonas nivalis, have been observed
to perform random walks in otherwise still fluid, and these have been quantified
by Hill & Häder (1997) and by Vladimirov et al. (2000, 2004). From the
measured velocity distributions of the cells, it can be seen that the cells swim
upwards on average. The reason for this has been shown by Kessler (1985a) to
be that the cells are bottom heavy; their centre of mass is displaced from the
centre of buoyancy in a direction opposite to the direction of cell swimming.

A cell’s instantaneous swimming velocity can be written Vsp, where Vs is the
swimming speed and p is a unit vector in the swimming direction. The random
swimming can be represented in terms of a probability density function (pdf)
for p, f(p), and another for Vs, assuming p and Vs are independent random
variables. For clarity we will ignore the variability of Vs and treat it as a
constant. Then the ensemble average of a quantity is defined by

< ·· >=
∫

S2

· · f(p)d2p, (5)

where the integral is over p-space, i.e. the unit sphere S2. Thus the average
swimming velocity in the absence of fluid motion is

Vc = Vs < p > . (6)

The accurate representation of D is more complicated (Bees et al 1998; Hill & Bees 2002);
Pedley & Kessler (1990, 1992b) used the following approximation:

D = sym
[∫ ∞

0
< Vrel(t)Vrel(t− t′) > dt′

]
≈ V 2

s τ < (p− < p >)(p− < p >) >,

(7)
where Vrel = Vsp − Vc and τ is a fixed correlation time. Here sym is the
symmetric part of the tensor.

To complete the model set of equations it is necessary to find a way of deter-
mining f(p), preferably theoretically since particle-tracking experiments are
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extremely time-consuming. Some early models (Childress et al 1975; Pedley et al 1988)
were inconsistent, postulating a deterministic cell swimming direction but still
incorporating cell diffusion. Pedley & Kessler (1990) proposed a more rational
model, treating the suspension of swimmers as analogous to a suspension of
colloidal particles subjected to Brownian motion. Thus they proposed that the
random walks (assumed Markovian) would imply that f(p, t) should satisfy a
Fokker–Planck equation in (p, t)-space:

∂f

∂t
+∇p.(ṗf) = Dr∇2

pf, (8)

where Dr is a rotational diffusivity, assumed isotropic, to represent the ran-
domising process in the cells’ swimming behaviour, and ṗ is the rate of change
of p as a result of deterministic reorientation arising from the inertia-free bal-
ance between gravitational and viscous torques (gyrotaxis). If the cells are
spheroidal, it can be shown that

ṗ =
1

B
[k− (k.p)p] +

1

2
ω ∧ p + α0p.E.(I− pp), (9)

where ω is the local vorticity, E is the rate of strain tensor, I is the identity
tensor, and α0 = (a2− b2)/(a2 + b2) is the eccentricity of a spheroid with semi-
major axis a and semi-minor axis b. B ∝ µ/ρgh is a time-scale for gyrotactic
reorientation, h being the distance from the centre of the spheroid to its centre
of mass. If the time-scale for the bulk bioconvective motions is much larger
than B, then the first term in (8) will be negligible and f(p) will be quasi-
steady. This has been generally assumed (Bees & Hill 1998; Pedley & Kessler
1990, 1992b), but more for convenience than for validity.

The solution of (8) in still fluid, for which ω and E = 0 in (9), is simply found
to be the Fisher distribution:

f(p) = µ exp (λk.p), (10)

where λ = (BDr)
−1 and µ = λ/(4π sinh λ) is a normalisation constant. The

experimental data can be used to test this prediction and a value of λ ≈ 2.2
was deduced by Pedley & Kessler (1992b) from the data of Hill & Häder
(1997).

In order to investigate bioconvection, the equilibrium cell concentration distri-
bution n0(x) has to be calculated first, using equations (4), (6), (7) and (10).
In an unbounded medium n0 is uniform, while in a shallow layer it depends
exponentially on the vertical coordinate z. Then the linear instability of that
equilibrium is investigated by postulating a small initial disturbance of general
form, separated into Fourier modes in the horizontal plane, and calculating
whether the disturbance will grow or not. If every such disturbance dies away,
the original state is stable; if at least one mode grows, the state is unstable.
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When some modes grow, the one that grows most quickly is likely to be the
one initially observed. Such linear theory has been applied to both uniform
(Pedley & Kessler 1990) and shallow (Bees & Hill 1998) suspensions of C. ni-
valis. In both cases the most unstable disturbance was predicted to have a
horizontal lengthscale of around 9mm. This is considerably larger than the
2mm observed in approximately steady-state bioconvection patterns; however,
observation has also shown that the initial length scale of 4–7mm is consid-
erably larger than the final one (Bees & Hill 1997; Wager 1911), presumably
as a consequence of nonlinear effects.

Bees et al. (1998) derived general expressions for the approximation (7) for D
for spheroidal cells in both two-dimensional flows and three-dimensional flows
with no vertical component of vorticity. The solutions were found by expanding
the Fokker–Planck equation (9) in terms of spherical harmonic functions. The
resulting system of equations was truncated and then solved using computer
algebra. These results were used by Bees & Hill (1998) to re-examine the linear
stability of a suspension of finite depth. They found the predicted wavelengths
(≈ 1 mm) for the onset of bioconvection to be smaller than observed values (≈
4–7 mm) for their best estimates of parameter values. However, the predictions
are sensitive to choices of B and τ , and good agreement can be obtained by
tuning these parameters within realistic bounds. Independent measurements of
B and τ are needed to resolve this issue. They also showed that a distribution
of swimming speeds increases the diffusivity due to swimming.

2.3 Oxytactic bacteria

The other species of swimming micro-organism for which Kessler has recorded
reproducible and interestingly intricate bioconvection patterns (with n ∼ 108

ml−1) is the bacterium Bacillus subtilis (Kessler & Hill 1995; Kessler et al 1994).
These small (∼ 4 µm) organisms consume oxygen and are active swimmers
when the ambient oxygen concentration exceeds a (small) critical value (a
process known as chemokinesis). Moreover, on average, they swim up oxygen
gradients (chemo- or oxy-taxis). In a chamber whose upper surface is open to
the atmosphere, so that it is supplied with oxygen at a given concentration,
the consumption of oxygen gives rise to an oxygen concentration gradient, up
which the cells swim. Since they, too, are denser than the culture medium, a
bioconvective instability can and does occur.

A continuum model has been developed and analysed for a dilute suspension of
these bacteria (dilute because, even with n ≈ 108 ml−1, the volume fraction nυ
is only around 3×10−3) (Hillesdon et al 1995). The momentum and continuity
equations are again (1) and (2), Σ is given by (3) with Σ(s) = 0, and the cell
conservation equation is still (4), with the cell diffusivity tensor being assumed
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isotropic. However, the average cell swimming velocity arises as a result of
chemotaxis, and it was assumed that this was directly proportional to the
gradient in oxygen concentration C, as proposed by Keller & Segel 1971):

Vc = χ∇C, (11)

where χ is a constant. This then requires a further equation for C, which also
diffuses and is advected by the flow, and is consumed by the bacteria. Thus
the C-equation is taken to be

DC

Dt
= Dc∇2C −Kn, (12)

where Dc is the oxygen diffusivity which is usually very different in magnitude
to the cell diffusivity.

The equilibrium cell distribution was analysed in (Hillesdon et al 1995) —
this is not as simple as for algae because if the chamber is deep enough,
cells lower down run out of oxygen before they ‘know’ there is a gradient to
swim up, and this can lead to a sharp interface between such dormant cells
and the region just above from which the cells have swum upwards. Such an
interface has frequently been observed experimentally. The linear instability
of the equilibrium was analysed in (Hillesdon & Pedley 1996) and a weakly
nonlinear analysis in (Metcalfe & Pedley 1998), leading to a prediction of the
form of the convection pattern (hexagonal) that agrees with observations.
Fully nonlinear computations have not been made for this system, and the
observed patterns in experiments where the bacterial-cell concentrations are
considerably higher than the critical value for pattern formation can be very
complex and unsteady (Kessler 1996).

The theoretical understanding of bioconvection provided by the continuum
models is on the whole satisfactory but, especially in the bacterial context,
there are two worrying deficiencies. One is shared by the algal system, and is
a doubt about the validity of the dilute-suspension assumption. In the dense,
downflowing plumes of a nonlinear bioconvection pattern, the cell concentra-
tion becomes significantly higher than its initial value and cell-cell interactions
must begin to be important. Concentrated suspensions are briefly discussed
in the next section.

The other worry about the bacterial model is that the chemotaxis term (11)
takes no account of the reorientation of cell swimming trajectories by shear
in the ambient flow; there is no chemo-gyrotactic torque balance analogous
to (9) (Kessler 1986). Nor is there explicit analysis of the probability density
function of swimming direction, as led to (8) for the algae.

8



2.4 Chemotaxis in a shear flow

Part of the difficulty is that, as far as we are aware, there have been no detailed
measurements of the swimming trajectories of B. subtilis cells in a well-defined
oxygen gradient, even in a still fluid. We do not know the mechanism for
chemotaxis in that species, though we can be fairly certain that it does not
consist of a balance of mechanical torques.

The only bacterial species for which the mechanism of chemotaxis is well
understood is the familiar Escherichia coli. This performs run-and-tumble
swimming, in which the cell swims in a straight line while its flagella ro-
tate in one sense (anti-clockwise), but every now and then they reverse the
sense of the rotation, the flagella fly apart, and the cell tumbles randomly
so that when it starts swimming forwards again all directions are equally
likely (Berg & Brown 1972). Chemotaxis is achieved because the tumbling
frequency, or stopping rate, decreases if the cell finds itself swimming up a
gradient of chemo-attractant (not oxygen for E.coli), and vice versa.

We outline here an analysis by Bearon & Pedley (2000) and Bearon (2001)
of run-and-tumble chemotaxis in an ambient shear flow. We again assume the
cells to be spherical so that only the vorticity of the ambient flow has an effect
on their orientation.

Let Ψ(p,x, t) be the number density of cells with swimming direction p, posi-
tion x and time t. Let λ(p) be the tumble rate and let Vs be the cell swimming
speed (assumed constant). Then

∂Ψ

∂t
= −∇.[(u+Vsp)Ψ]−(ω∧p).∇pΨ−λΨ+

∫
λ(p′)T̃ (p,p′)Ψ(p′) d2p′ (13)

where T̃ (p,p′) is the transition probability, that a bacterium that was swim-
ming in direction p′ prior to tumbling swims in direction p afterwards, c.f. Alt
(1980). If we assume this to be isotropic, as is suggested by the above discus-
sion but is not borne out by careful observation (Berg 1983), then T̃ = 1/4π.
We also assume that

λ = λ0(1− α∇C.p) (14)

where ∇C is the O2-concentration gradient, α is an O(1) constant and δ � 1.
Now define n =

∫
Ψ d2p, the volume concentration of cells, and J =

∫
Ψp d2p,

the cell flux vector.

Non-dimensionalise, and integrate equation (13) to obtain its zeroth and first
moments:

1

T

∂n

∂t
= −Γu.∇n− 1

X
∇.J (15)

1

T

∂J

∂t
= −Γu.∇J +

1

X
(α∇C −∇).

∫
ppΨ d2p− ω ∧ J, (16)
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where T (� 1) is the ratio of time-scale of density variation to 1/λ0, a typical
run duration, X(� 1) is the ratio of length-scale, h, (e.g. chamber depth) to
Vs/λ0, a typical run displacement, and Γ = U/λ0h, U being a fluid velocity
scale. Equation (15) is just the cell conservation equation (4) again, while (16)
is the equation from which J should be determined. However, this equation
depends on the second moment of Ψ in p-space, the equation for the second
moment depends on the third moment, etc. Some form of closure is required. In
general it is not possible to reduce the equations to a single partial differential
(advection-reaction-diffusion) equation for n(x, t).

A simple closure is possible for weak chemotaxis and weak flow, as follows.
Define 1/T = Γ � 1 and 1/X = α � 1 and let |∇C| = O(1). Then to
leading order, equations (15) and (16) give the standard Keller–Segel equation
(Keller & Segel 1971)

Γ

(
∂n

∂t
+ u.∇n

)
= −α2

3
∇.[n∇C −∇n]. (17)

Here the diffusivity and the chemotaxis constant appear the same (α2/3) only
because of the non-dimensionalisation. The ambient flow comes in only at the
next order:

Γ

(
∂n

∂t
+ u.∇n

)
= −α2

3
∇.[(1+Γω∧)(n∇C−∇n)]+

α2Γ

3
∇.

[(
∂

∂t
+ u.∇

)
(n∇C −∇n)

]
.

(18)
Thus rotation of the flow has an effect, both directly (Γω∧) and through its
interaction with chemotaxis (the last term). Note, however, that if the shear
flow is strong enough for Γ not to be small, it is not possible to reduce the
equations to a single partial differential equation for n. Thus, even for a dilute
suspension, the model is not as simple as previously supposed.

3 Developments of and extensions to the continuum theory

3.1 Nonlinear analysis

Nonlinear analysis of gyrotactic bioconvection given by equations (1)–(9) was
carried out by Bees and Hill (1999) for a deep layer. They considered long-
vertical-wavelength disturbances to an initially uniform suspension in an infi-
nitely deep layer. In the absence of any vertical variation, a weakly nonlinear
analysis shows that the bifurcation to instability is supercritical, which gives
some justification for the use of linear stability theory to predict initial bio-
convection pattern wavelengths. Fully nonlinear, stable and travelling wave
solutions were also found for the case of no vertical variation. These predict
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the long plume-like solutions that are routinely observed in deep suspensions
of C. nivalis. They were also able to predict the speed of long vertical wave-
length instabilities of these plumes. Metcalfe & Pedley (2001) have derived
asymptotic solutions for a steady plume in a suspension of oxytactic bacteria.

Yannacopoulos & Rowlands (1999) calculated the effective drift velocity and
diffusivity for gyrotactic algae swimming in a weak, periodic external flow, as-
suming that the suspension is sufficiently dilute that there is no bioconvection.
Because the flow is inhomogeneous, Vc and D in (4) are spatially dependent,
and a multiple-scales expansion is used to evaluate their spatial averages. It
was found that both effective transport coefficients can be enhanced or reduced
depending on the parameter values and the shape of the cells.

For bacterial suspensions, Lega and Mendelson (Mendelson & Lega 1998; Lega
& Mendelson 1999) demonstrated that patterns derived from a generic Swift–
Hohenberg equation can provide a descriptive model of bioconvection patterns
and showed numerical results for the development of a phase-unstable pattern
behind a moving front, as shown in experiments. They did not, however, de-
rive the Swift–Hohenberg equation from the governing equations so it is not
possible to compare their parameter values with experimental data.

3.2 Taylor dispersion of swimming cells in a shear flow

Prior to the publication of the papers by Hill & Bees (2002) and Manela
& Frankel (2003), all the calculations of diffusion resulting from the random
swimming of micro-organisms included the effects of the local velocity gra-
dients on the orientation of the cells, but neglected the effects of transport
and dispersion by the flow. Hill & Bees applied generalised Taylor dispersion
theory (Frankel & Brenner 1991) to a dilute suspension of gyrotactic cells in
an unbounded linear shear flow.

The pdf P (R,p, t|R′,p′) of finding a cell at position R with orientation p at
time t > 0, given that it was at position R′ with orientation p′ at time t = 0
is assumed to satisfy the Fokker–Planck equation

∂P

∂t
+∇R.J +∇p.j = 0, (19)

where
J = [V(R′) + (R−R′).G + Vsp] P (20)

is the physical-space flux density and

j = ṗP − dr∇pP (21)

is the orientational-space flux density. Here G = (∇RV)T is the fluid velocity

11



gradient tensor and dr is the constant rotational diffusivity. Note that there
is no translational Brownian diffusion in this model. The algae are too large
for Brownian effects to be significant, and thus the dispersion occurs entirely
because of the random swimming of the cells. In the far field P decays to zero
and to ensure that integrals of the moments of P converge, we require that

(P,J, j)|R−R′|m → 0 as |R−R′| → ∞ for m = 0, 1, 2, . . . . (22)

The goal of this theory is to calculate the orientational average pdf

P(R, t|R′) =
∫

S2

P (R,p, t|R′,p′) d2p, (23)

which satisfies the Fokker–Planck equation

∂P

∂t
+∇R.J = 0, (24)

where
J =

[
V(R′) + (R−R′).G + U

]
P− D.∇RP (25)

is the asymptotic long-time leading order flux of P. U and D are the phe-
nomenological mean swimming velocity and effective diffusion. Generalised
Taylor dispersion theory shows that these exist, provided that real parts of
the eigenvalues of G are zero so that the fluid motion alone does not lead to
exponentially diverging particle trajectories. U and D are defined in terms of
codeformational derivatives of the moments of P :

U + V(R′) = lim
t→∞

δM1

δt
≡ lim

t→∞

(
dM1

dt
−M1.G

)
, (26)

D = lim
t→∞

1

2

δ

δt
(M2−M1M1) ≡ lim

t→∞

1

2

[
d

dt
(M2 −M1M1) + (M2 −M1M1).G− GT .(M2 −M1M1)

]
(27)

and
Mm ≡

∫
R∞

∫
S2

(R−R′)mP d2p d3R for m = 0, 1, 2, . . . . (28)

Hill & Bees (2002) show that

U =
∫

S2

P∞
0 (p)Vsp d2p and D = Vs

∫
S2

P∞
0 (p)sym[Bp] d2p. (29)

Here P∞
0 is the steady long-time pdf for the orientation of the cells which

satisfies
∇p.(ṗP∞

0 − dr∇pP∞
0 ) = 0 (30)

and B(p) is the long-time limit of the difference between the average position
of a particle, given that its instantaneous orientation is p, and its average
position averaged over all values of p. B(p) is the solution of

∇p.[ṗP∞
0 B− dr∇p(P∞

0 B)]− P∞
0 B.G = P∞

0 (Vsp−U). (31)
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High values of local vorticity can cause gyrotactic cells to tumble (Kessler 1986),
and Hill & Bees (2002) give an example of dispersion of spherical cells in a
linear shear flow and show e.g. that, as the vorticity tends to infinity, the
effective diffusivity in the shear plane tends to zero due the more and more
rapid tumbling of the cells. Manela & Frankel (2003) extend this theory to
axisymmetric micro-organisms so that the local rate-of-strain as well as the
local vorticity influences the orientation of the cells (c.f. equation 9). They also
provide an important critique of the various approaches to the calculation of
dispersion in suspensions of gyrotactic cells.

Bearon (2003) extended this theory to suspensions of run-and-tumble chemo-
tactic bacteria. The key mathematical difference between her theory and that
of Hill & Bees is that the bacteria execute discrete velocity jumps whereas the
algae follow a continuous random walk so that P (R,p, t|R′,p′) satisfies

∂P

∂t
+∇R.J +∇p.(ṗP ) = −λP +

1

4π

∫
S2

λ(p)P (p) d2p (32)

instead of (19), where J is again given by (20). λ is the turning rate and is
a function of the local chemoattractant gradient. Bearon gave an example of
recruitment to a biofilm and showed that the rate of attachment is significantly
reduced by the dispersion.

3.3 Modelling phototaxis

Phototaxis, i.e. motion towards or away from a light source depending on
its intensity, is a fundamental behaviour common to most swimming algae
because they depend upon photosynthesis and need to move to and remain
in places in their environment where the light intensity is optimal. Indeed
C. nivalis are both gyrotactic and phototactic (gyrophototactic). A generic
description of phototaxis was given by Vincent & Hill (1996) who supposed
that the cells’ mean swimming velocity could be written as

Vc = Vs < p >= VsT (I)k. (33)

The ‘taxis’ function, T (I), depends on the light intensity I(x, t) and is such
that

T (I) =

≥ 0 if I(x, t) ≤ Ic

< 0 if I(x, t) > Ic,
(34)

where Ic is the optimal (or critical) light intensity. The unit vector k is vertical,
since the light comes from above in natural bodies of water. Vincent & Hill
examined the onset of bioconvection patterns using linear stability theory
for a dilute suspension in a shallow layer of infinite horizontal extent. The
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suspension is initially homogeneous and illuminated uniformly from above.
Cells are shaded from the light by those vertically above them. This is modelled
by the Lambert–Beer law for weak scattering so that the light intensity at a
point x in the fluid is

I(x) = Is exp
(
−α

∫ r

0
n(r′) dr′

)
, (35)

where Is is the intensity of the source, α is the extinction coefficient, and r is
the vector from the cell to the light source. If the parameter values are such
that I = Ic at a depth Hc within the layer, then cells below Hc will swim
upwards while those below will swim downwards leading to a concentrated
horizontal layer of cells in the interior of the fluid. The suspension below this
layer is unstable while the suspension above is stable. When a critical Rayleigh
number is exceeded, bioconvection occurs and the flow ‘penetrates’ into the
stable upper layer. In common with other examples of penetrative convection,
oscillatory modes are predicted in certain parameter ranges.

3.4 Developments in the Theory of Gyrotaxis

Jones et al. (1994) considered the swimming of a biflagellated, bottom-heavy
micro-organism such as Chlamydomonas in an unbounded shear flow. The
orientation of the cell is determined by gyrotaxis, i.e. the balance between
viscous and gravitational torques on the cell (c.f. equation (9)), but this is
the only work in which the flagella and their motion are explicitly modelled.
The motion of the flagella was idealised, based on the beat patterns of C.
reinhardtii, and the body of the cell was assumed to be a sphere. The velocity
of the fluid through which the flagella move was taken to be that due to the
flow around the spherical body. Gray & Hancock’s (1955) resistive-force theory
with Lighthill’s (1976) form of the coefficients was used to calculate the forces
and torques on the flagella. The model predicts realisitic swimming speeds
and demonstrates that the flagellar torque has a significant effect on the cell’s
angular velocity, which can be substantially over-estimated if the flagella are
ignored.

The orientation of gyrotactic spheroidal micro-organisms in a homogeneous
isotropic turbulent flow was studied by Lewis (2003) using kinematic numeri-
cal simulations for the flow, rather than much more time-consuming solutions
of the Navier–Stokes equations. Each cell in the simulations swam with a
constant speed, drawn from a normal distribution, in a direction determined
entirely by the gyrotactic balance given by equation (9). Parameter values
typical for C. nivalis were used. Over long times, the distribution of the ori-
entations of the cells were shown to be well approximated by the Fisher dis-
tribution (10) where λ = (BDeff)

−1, with the effective diffusivity Deff used
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as a fitting parameter. The estimated values of Deff are of the same order of
magnitude as the values of the intrinsic rotational diffusivity Dr (c.f. equation
(8) and Section 5.1 below), which suggests that it may be necessary to solve
the time-dependent Fokker–Planck equation (8) for f(p, t) in future work.

3.5 Bioconvection in porous media

A number of theoretical analyses of bioconvection of a suspension of gyrotactic
algae in a porous medium have been carried out by Kuznetsov and coworkers
(Kuznetsov & Avramenko 2002, 2003a, 2003b, 2003c; Kuznetsov et al. 2003;
Kuznetsov & Jiang 2002, 2003; Nield et al. 2004). The work is based on the
basic model of Pedley et al. in equations (1)–(4), (8) and (9) with equation
(1) replaced by

ρu = −κ∇pe − nρg′k, (36)

assuming D’Arcy’s Law for the flow in a porous medium with κ as the perme-
ability. The onset of bioconvection has been examined using linear stability
theory and there has been modelling of the clogging of the pores due to depo-
sition of the cells. However, so far no rational justification has been given for
the key assumption that on the continuum scale the swimming of the micro-
organisms can be adequately described by a simple gyrotactic balance law as
given in equation (8). Indeed, the local vorticity generated by flow through
the pores may cause the cells to tumble and drastically affect their ability
to reorient if the pore sizes are not significantly larger than the cells; nor is
it clear that the suspension would ever reach sufficiently high concentrations
for bioconvection to occur in practice. The common observation, as reported
by Pedley & Kessler (1992b, Section 5), is that cells accumulate in very high
volume fractions in the porous medium environments and do not drive bio-
convection flows.

4 Numerical simulations of bioconvection

In a series of papers in the last five years, Ghorai and Hill studied gyrotactic
bioconvection, using a vorticity-streamfunction formulation of the basic model
first introduced by Pedley et al. (1998), i.e. equations (1)–(6) with < p >≡ p,
the solution of equation (9), and D equal to a constant times the identity
tensor. The development and instabilities of a single, two-dimensional gyro-
tactic plume and a periodic array of such plumes were examined in (Ghorai
& Hill 1999, 2000b. In sufficiently deep chambers, the plume is always unsta-
ble to both varicose and meandering modes. Away from the top and bottom
of the chamber, the numerical results show that the horizontal flux of cells
due to diffusion balances the horizontal flux towards the axis of the plume
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Fig. 2. Example of two-dimensional bioconvection patterns computed by Ghorai
& Hill (2000a). The concentration n of cells is plotted at times t = 15 minutes
after initiation in chambers 5 cm wide and of depths 0.318, 0.460 and 0.723 cm. The
initial conditions consist of no flow and a uniform concentration of cells subject
to small random perturbations in concentration. The concentration is scaled with
respect to the background concentration (n̄ = 1.89 × 106 cells ml−1). The patterns
in the shallower chambers are steady, whereas the flow in the deepest layer is always
unsteady and ‘bottom-standing’ plumes are seen.

due to gyrotaxis. Based on this, a solution for an infinitely deep plume was
constructed and a linear stability analysis was performed. The linear stability
analysis predicts the growth rates of the varicose and meandering instabili-
ties, explains the mechanisms and is in good agreement with the numerical
results. A similar analysis for an axisymmetric plume was given by Ghorai
& Hill (2002). In Ghorai & Hill (2000b), the development of two-dimensional
bioconvection patterns in a chamber sufficiently wide to accommodate about
ten plumes was studied. In sufficiently deep chambers the final state is always
unsteady with individual plumes continually evolving and evanescing (Fig. 2).
This numerical work, albeit two-dimensional, provides the first evidence of the
‘bottom-standing’ plumes that are typically observed in algal bioconvection,
and suggests that these are always transient, which may explain the failure
to construct an analytical, self-consistent, steady solution for such a plume.
Ghorai & Hill (2004) have also developed their two-dimensional numerical
scheme to study phototaxis based on the model due to Vincent & Hill (1996)
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and found a rich variety of bioconvection patterns.

Recently Hopkins & Fauci (2002) constructed a combined Eulerian–Lagrangian
numerical scheme to simulate bioconvection in which the motion of individual
cells is tracked. The potential benefit of such an approach is that the swimming
behaviour of the cells can be computed directly without the need to describe
the mean swimming velocity and dispersion of the cells using a pdf and a
Fokker–Planck equation. However, present computer limitations mean that it
is only possible to track about 105 cells which is insufficient to make direct
comparisons with experiments. To date, there have been no three-dimensional
numerical studies of algal bioconvection, nor any on bacterial patterns.

5 Experimental studies

5.1 Swimming cells and their trajectories

Measurement of the swimming trajectories of individual algal cells were pio-
neered by Hill & Häder (1997), using a computer image-recognition system
that followed cells in real time and recorded their position at approximately
every 0.08 s. The cells were viewed through a microscope so that it was only
possible to follow cells for a few seconds before they swam out of the field of
view, and also there was limited focal depth. Despite these limitations, Hill &
Häder were able to analyse the directional data by measuring the statistics of
the turning angles δ, between the straight line segments joining data points,
as a function of the absolute direction θ. The means of the turning angles,
µδ(θ, τ), for C. nivalis were shown to be given by

µδ(θ, τ) = −d(τ) sin θ, (37)

where θ is the angle to the vertical and d(τ) is a turning amplitude that
is a decreasing function of the timestep τ between data points. The sinu-
soidal dependence on θ is exactly as originally predicted by Kessler (1985a)
for bottom-heavy cells. In contrast, for phototaxis in a horizontal layer, linear
dependence,

µδ(θ, τ) = −d(τ)θ, (38)

was found. The angular deviation σδ(τ) appears to be independent of θ. Apart
from collisions, the swimming trajectories of these cells appear to change di-
rection smoothly and so Hill & Häder modelled them as the continuous limit
of correlated, biased random walks and were able to derive the Fokker–Planck
equation (9) for the pdf of swimming directions, f(p, t). Explicit expressions
for the coefficients, ṗ and Dr, were given in terms of values of µδ(θ) and σδ

extrapolated from the data, in the limit as τ → 0. The swimming speeds were
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found to be independent of θ for gyrotaxis, but there was some evidence of
photokinesis. Theoretical support for the validity of extrapolating the data
in this way has recently been given by Codling & Hill (2005a, 2005b) who
analysed and simulated the spatial statistics of correlated, biased velocity-
jump processes.

Vladimirov et al. (2000, 2004) have since used the more sophisticated technique
of laser velocimetry to track a few hundred individual cells simultaneously.
They are able to follow the cells for much longer times, and were thus able to
show that there is considerable variation in swimming behaviour within the
population of cells. They found good agreement with Hill & Häder’s estimates
of 6 s for the gyrotactic reorientation time B (see equation (10)) but found
Dr to be between 0.018 s−1 and 0.07 s−1, which is much smaller than Hill &
Häder’s range of values of 0.4 s−1 to 2.2 s−1. The discrepancy may be due to
the lower resolution of Hill & Häder’s imaging system and to Vladimirov et
al. being able to follow much longer trajectories.

Kessler et al. (1998) studied the sedimentation of micron-sized particles and
the swimming of algae in a small chamber rotating about a horizontal axis,
motivated by clinostat experiments. To simplify the interpretation of data,
they introduced the concept of ‘gravitron diagrams’, in which the trajecto-
ries of particles or cells are obtained by integrating the actual velocity in the
stationary frame of reference minus the component of velocity that is due to
solid body rotation with the chamber. In gravitron diagrams, a sedimenting
sphere moves with a constant speed along a straight line in the direction of
the gravitational acceleration, and the trajectories of ‘ideal’ gyrotactic cells
are straight lines at an angle to the vertical. Kessler et al. conducted prelim-
inary experiments in which the trajectories of sedimenting spheres and the
gyrotactic alga Pleurochrysis carterae were observed. Gravitron plots of the
spheres’ trajectories at rotation rates of 1.0 rad s−1 were indeed straight lines,
but at an angle of 15o the vertical. The reasons for the discrepancy are not
clear, but may be due to wall effects or to hydrodynamic interactions with
other spheres. When the chamber rotated at 0.3 rad s−1, the gravitron trajec-
tories of the algae were found to be distributed about a mean direction at
angle to the vertical, as might be expected given the randomness seen in the
trajectories of swimming cells in the absence of rotation. Surprisingly, at ro-
tation rates of 1.0 rad s−1, Kessler et al. found that the cells’ trajectories were
predominantly straight lines tightly distributed around the direction of those
of the sedimenting spheres, which suggests that the cells’ orientations were in
some way controlled by the motion of the spheres. Further experiments are
needed to validate these results and could yield interesting information about
the behaviour of swimming cells.

Together, these experiments have provided a basis for a fully rational con-
tinuum model of algal bioconvection. As yet, there have been no compa-
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rable experiments on B. subtilis and current modelling assumes that they
perform a run-and-tumble velocity-jump process similar to that of E. coli
(Berg & Brown 1972).

5.2 Bioconvection patterns

Bees & Hill (1997) made the first quantitative study of the patterns formed
by concentrated suspensions of C. nivalis, O(106–107) cellsml−1, in shallow
layers up to 4mm deep. The patterns were analysed using two-dimensional
Fourier transforms of images taken from vertically above the suspensions. The
dominant wavelengths of the planforms were identified from peaks in the am-
plitude of the Fourier transforms, and it was demonstrated that the pattern
wavelength decreases as the patterns evolve towards their final state, and there
is a strong dependence on the layer depth. Statistical analyses of such pat-
terns were carried out by Taylor et al. (2001), who derived statistical measures
for the regularity of the pattern, and by Noever and coworkers (Noever et al
1994a, 1995), who also considered the use of bioconvection patterns as as-
says for external toxins (Noever et al 1992, 1994b). Yamamoto et al. (1992)
studied the effects of depth, concentration and the walls of the container on
bioconvection patterns in suspensions of C. reinhardtii, and Mendelson (1999)
compared multicellular organisation in Bacillus subtilis macrofibres, colonies
and bioconvection patterns.

The onset of bacterial bioconvection in suspensions of B. subtilis was examined
by Jánosi et al. (1998). They quantified the development of the patterns by
the standard deviation of the gray levels of the pixels comprising the image,
and studied the ‘delay time’, TD, from the end of mixing of the suspension
until pattern formation occurs. TD was found to be independent of the width
of the chamber and inversely proportional to the concentration for a depth of
1.57mm. This is explained by the time taken for the cells to swim upwards
and form a dense layer at the upper surface which becomes gravitationally
unstable. Czirók et al. (2000) showed later that the pattern wavelengths do
not depend strongly on the depth of the layer, in contrast to algal bioconvec-
tion, presumably due to the formation of a quiescent lower layer of cells as the
concentration of oxygen falls to a critical value. The consumption of oxygen
during bioconvection was compared with that of a continuously shaken sus-
pension by Jánosi et al. (2002). They found no significant differences despite
earlier suggestions that bioconvection would enhance the transport of oxygen
throughout the suspension allowing the bacteria to influence their environment
by collective motion.
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6 Concentrated suspensions

Mendelson et al. (1999) have conducted experiments with concentrated pop-
ulations of B. subtilis occupying a thin water film on top of an agar gel
which supplies nutrient to the cells. They observed an intricate bulk motion
of “whorls and jets” with length-scale that was between that of the individual
cells or cell spacing and the horizontal extent of the system (a video movie of
the motion can been seen on the web site given in their paper). The motion
appears to be quite random and invites a comparison with two-dimensional
turbulence. Kessler & Hill (1997) and Dombrowski et al. (2004) have also
observed such mesoscopic, random bulk motions in three-dimensional suspen-
sions of B. subtilis, particularly near an air interface (horizontal, vertical or
in a meniscus) (Kessler et al. 2000) where the oxygen concentration is high
and therefore so also is the cell concentration. Since these motions are not
gravitationally driven and are not observed in dilute suspensions, they must
be a consequence of cell-cell interactions, but the mechanism is not properly
understood. Lega & Passot (2003, 2004) have developed a two-phase model
for a concentrated suspension of bacteria on top of a gel, and they have shown
that small-scale random forcing can produce similar patterns to those seen in
experiments. In their work, Lega and Passot propose that the swimming of
the bacteria imposes a random external force on the fluid in which they swim,
but the thrust generated by the flagella of individual bacteria must balance
the drag as the cell moves through the fluid, since the motion occurs at a
very low Reynolds number. This appears to be a fundamental problem with
their theory, and it may be better to model the effects of the swimming of the
bacteria as a random distribution of stresslets.

Kessler (2000) observed superdiffusion of passive particles in concentrated
suspensions of bacteria in shallow layers. Related pioneering work by Wu &
Libchaber (2000) on the diffusion of micron-scale beads in a concentrated
suspension, or bath, of bacteria in a freely suspended soap film has found su-
perdiffusion of the beads at small times and normal diffusion at longer times.
This has led to a number of theoretical papers by Grégoire and coworkers
(Grégoire et al 2001a, 2001b, 2003; Grégoire & Chaté 2004) using a stochastic
model derived from Vicsek et al. (1995) in which random walkers attempt to
align themselves with their neighbours at each time step but are also sub-
ject to noise in their choice of new direction, and repulsive interaction forces.
These models reproduce Wu & Libchaber’s (2000) observations but they are
phenomenological and do not describe how bacteria interact hydrodynamically
with each other (Wu & Libchaber 2001).
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7 Discussion

Much progress has been made in the decade since Pedley & Kessler’s (1992)
review, especially in (a) the development of a quantitative, rational continuum
model for dilute suspensions of gyrotactic algae, and (b) the construction of a
rational theory for oxytactic bacteria. Such systems have become a paradigm
for the interaction between physics and biology. There is much more work to
be done, in particular to provide three-dimensional numerical simulations of
bioconvection, to give a rational account of the combined effects of gyrotaxis
and phototaxis for algae, to extend the experiments of Vladimirov et al. (2000,
2004) to other species of micro-organisms, and to obtain data on the trajec-
tories of bacteria. Perhaps the most significant, outstanding challenge is the
rational description of concentrated suspensions. Locally high cell concentra-
tions do occur in bioconvection plumes even when the mean concentration is
dilute. Also, another sort of pattern-formation (‘whorls and jets’) is observed
in very concentrated cultures of swimming bacteria. Here cell-cell interactions
are crucial, but it is not clear how to derive an appropriate macroscopic model
that is consistent with the laws of mechanics at the cellular level.

Acknowledgements

The authors gratefully acknowledge the many significant contributions to this
field by their colleagues and coworkers, in particular Professor J.O. Kessler
who first introduced us to bioconvection and who is a continuing source of new
ideas and inspiration, and R.N. Bearon, M.A. Bees, E.A. Codling, S. Ghorai,
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