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Axisymmetric Bioconvection in a Cylinder
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In three-dimensional bioconvection, the regions of rising and sinking fluid are dissimilar. This
geometrical effect is studied for axisymmetric bioconvection in a cylindrical cell with stress-
free (i.e. normal velocity and tangential stress vanish) lateral and top boundaries, and rigid
bottom boundary. Using the continuum model of Pedley et al. (1988, J. Fluid Mech.195,
223-237) for bioconvection in a suspension of swimming, gyrotactic microorganisms, the
structure and stability of an axisymmetric plume in a deep chamber are investigated. The
system is governed by the Navier—Stokes equations for an incompressible fluid coupled with
a microorganism conservation equation. These equations are solved numerically using a

conservative finite-difference scheme.
bioconvection.

Comparisons are made with two-dimensional
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1. Introduction

Bioconvection is the term used to describe the
phenomenon of spontaneous pattern formation
in suspensions of microorganisms such as
bacteria and algae (Pedley & Kessler, 1992). In
all cases, the microorganisms are up to 10%
denser than water and on average they swim
upwards (although the reasons for up swimming
may be different for different species). Micro-
organisms respond to certain stimuli by swim-
ming, on average, in particular directions. These
responses are called taxes, examples being
gravitaxis, phototaxis and gyrotaxis. Gravitaxis
indicates swimming opposite to gravity, whereas
phototaxis denotes swimming towards or away
from light. Gyrotaxis is swimming directed by the
balance of torques due to gravity acting on a
bottom-heavy cell and shear flow. We consider
gyrotaxis in this paper.
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Cells swim randomly but, for example, if a
neutrally buoyant cell is bottom-heavy (i.e. its
centre of gravity is posterior to its centre of
buoyancy), the cell will tend to swim vertically
upwards in the absence of any other stimuli
resulting in gravitaxis (Kessler, 1985). Such cells
are also gyrotactic in that a local velocity
gradient will produce viscous torques on
the cell’s body tending to tip it away from the
vertical. If the cells do tend to swim upwards, the
top layer of the suspension becomes denser than
the layer below. When the governing parameters
are above critical values, this leads to convective
instability and formation of convection patterns.
This phenomenon is known as ‘“‘bioconvection”,
it has some similarity with Rayleigh—Bénard
convection, but is driven solely by the swimming
of the microorganisms.

For simplicity, algal cells such as Chlamydo-
monas (whose shapes closely approximate a
spheroid) are idealized here as spheres of radius
a. Let the unit vector p point in the swimming
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direction of the cell. The torque balance equa-
tion leads to the following equation for the
reorientation rate (Hinch & Leal, 1972);

1 1
P=75 [k—(k-p)p]+§omp, (1)

where k points opposite to gravity, @ is the
vorticity, and B is the gyrotactic orientation
parameter. The unit vector p is specified by Euler
angles 0, ¢ so that

p = (sin 0 cos¢, sin 0 sin¢, cos 0)

referred to axes through the geometric centre of
the cell. Simplification of eqn (1) gives

do sinf (

e . 2

dz 2B 2 @
where (=g is the horizontal vorticity
component.

Previous numerical studies of bioconvection
were carried out in two dimensions only.
Harashima et al. (1988) solved the equations of
bioconvection numerically for purely up-swim-
ming cells (i.e. 0 = 0) in a two-dimensional layer
of finite depth and width, and studied the
evolution of bioconvection from an initially
uniform state. They proposed minimum potential
energy as a principle for determining the steady-
state roll size for a given value of Rayleigh
number and a given box size. Their computa-
tional domain had a width/height ratio of 8. In
contrast, Ghorai & Hill (1999, 2000a) investi-
gated the stability of a two-dimensional gyro-
tactic plume in deep chambers. The top and the
bottom of the chambers were stress free and
rigid, respectively. In one study (Ghorai & Hill,
1999), the side walls were stress free and, in the
other case (Ghorai & Hill, 2000a), they were
periodic. In deep chambers, the meandering
instability always dominates the varicose in-
stability for stress-free side walls, but either can
be dominant for periodic side walls, depending
on the parameter values. Ghorai & Hill (2000b)
also investigated the horizontal wavelengths of
the gyrotactic plumes in wide chambers. Here,
the steady-state wavelength, in contrast to
Harashima et al (1988), is not determined by
the minimum potential energy. Recently, Hop-
kins & Fauci (2002) simulated two-dimensional

bioconvection using point particles rather than a
continuum model and examined the general
effects of a variety of different responses by the
microorganisms, including gyrotaxis and chemo-
taxis, although they did not make specific
comparisons with any particular biological
system.

Although it is easy to solve the two-dimen-
sional problem, bioconvection is intrinsically
three dimensional. The bioconvection pattern,
for example, has polygonal cells (e.g. squares,
pentagons and hexagons) each with a narrow
descending central core surrounded by a broad
column of rising fluid. Rayleigh (1916) noted
that we may regard the hexagon ‘“‘as deviating
comparatively little from the circular form™. The
work by Rayleigh was an attempt to examine
theoretically the results of the Benard’s experi-
ment on a layer of fluid heated from below. In
contrast to bioconvection, fluid in Rayleigh—
Bénard convection rises along the central core
and descends at the boundary between a poly-
gonal cell and its neighbours. Axisymmetric
convection in a cylindrical cell provides the
simplest three-dimensional configuration: if fluid
rises along the perimeter and sinks along the
central axis, there is an asymmetry between the
upward and downward moving regions. On
the other hand, bioconvection in two dimensions
assumes the cells to be infinitely long rolls where
fluid ascends and descends along infinite parallel
horizontal lines. This differs from the experi-
mental findings where polygonal cells were
observed. We have therefore investigated axi-
symmetric bioconvection confined between
stress-free sidewalls, on which the normal
velocity and tangential stress vanish.

2. Mathematical Formulation

Consider the motion of a viscous suspension
of fluid within a vertical cylinder of height H and
diameter L. As in Pedley et al. (1988), we assume
that a monodisperse cell population can be
modelled by a continuous distribution. Each cell
has a volume 3 and density p + dp, where p is the
constant density of water in which the cells swim,
and dp <p. The suspension is dilute, so that the
volume fraction of the cells is small and cell—cell
interactions are negligible.



AXISYMMETRIC BIOCONVECTION 139

2.1. GOVERNING EQUATIONS

We adopt cylindrical polar coordinates (7, ¢, z)
with the z-axis vertical. For axisymmetric
bioconvection, we constrain the flow to be
independent of the azimuthal angle ¢. Then

u=(u,0,v), =(0,£,0) (3)

and, from the continuity equation, we introduce
stream function i such that

_ oy
_?< %% ) @)

Conservation of cells requires that the number of

cells per unit volume, n(r,z, ), satisfies the
equation
on
—=-V.J, 5
” (5)

where the flux of the cells is
J=@W+ W,p)n— DVn. (6)

The third term in eqn (6) represents the random
component of the cell locomotion. The diffusion
coefficient D is assumed to be homogeneous,
isotropic and independent of the other para-
meters of the problem. The second term in
eqn (6) arises due to the average swimming of the
cells: W.p is the average swimming velocity
relative to the fluid and W, is assumed to be
constant. Here, p represents the average orienta-
tion of the cells.

The vorticity evolves according to the
equation
ol
w2
0 0’ g9dpom
[5%5u@ }+f;5;<ﬂ

where v is the kinematic viscosity. Equation (7)
is derived under the Boussinesq approximation,
neglecting all effects of the cells on the fluid,
except their negative buoyancy, because the
suspension is dilute.

The equations are scaled using the diameter L,
the time scale L?/D and the mean concentration

7i. The resulting system of coupled equations is
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3. (10)

For convenience, we have kept the same nota-
tion for dimensional and dimensionless vari-
ables. Here, S, =v/D is the Schmidt number,
V.= W.L/D is the scaled swimming speed and
R is a Rayleigh number defined as
Sépgn L3

pvD

The definition of R is non-standard in that it is
based on the width rather than the height of the
chamber. The conventional Rayleigh number
increases with an increase in the height of the
chamber, whereas ours remains constant. We use
our definition so that the height of the chamber
can be varied independently of the other para-
meters. The boundary conditions are applied at

r=0,1/2 and z=0,1,

R=

where 2= H/L is the aspect ratio of the
chamber.

The values of the non-dimensional numbers
are calculated from the estimates of typical
parameters given in Table 1 (Kessler, 1986).
However, the non-dimensional numbers are
sensitive to the estimated parameter values.

2.2. CALCULATION OF THE MEAN DIRECTION

The unit vector p in the direction of swimming
is given by

p = (p;, p:) = (sin 6, cos ),

where 0 is the solution of eqn (2).
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TABLE 1
Estimates of typical parameters for a suspension
of alga C. nivalis (Kessler, 1986)

Cell radius a 1073 cm

Cell volume 9 5% 1071%cm?
Cell density ratio dp/p 5x 1072

Cell diffusivity D 5x 104 cm?s™!
Gyrotactic parameter B ~34s
Swimming speed W, 10-2cms™!
Mean concentration il 10% cm—3
Kinematic viscosity v 1072 cm? 57!

If the shear is sufficiently small so that
[B{|<1, then the steady-state orientation is
obtained by setting the left-hand side of eqn (2)
equal to zero. When |B{|< 1, we find that

p=np) = (B0 -F17), IB<L (D

where § = B{. If the vorticity is large (|lB{|>1),
the cell tumbles but swims on average in a fixed
direction to the vertical. In this case, the
swimming direction p is approximated by
integrating the swimming direction over the
tumbling period (Ghorai & Hill, 1999). If =
B{>1, then

p=np) = (F-1F-1"%0) (12
and similarly, if § = B{< — 1, then
b= = (B+1F - 1" 0).  (13)

Equations (11)—(13) determine the average
swimming direction of the cells for any value
of {. After scaling, f = G{, where G = BD/L?
is the dimensionless gyrotaxis number, which
represents the ratio of the reorientation time due
to gyrotaxis to the diffusion time.

2.3. INITIAL AND BOUNDARY CONDITIONS

We impose rigid, no-slip boundary conditions
at the bottom wall and assume that the other
boundaries are stress free, so that

Yy=0 atr=0,1/2 and z=0,4, (14a)
%:O at z=0 (14b)
0z

(=0 atz=4 and r=0,1/2.  (l4c)

The boundary condition on # is that there be no
flux of cells through the walls, thus

d
(u+ ch,,)n—a—,:: 0 atr=0,1/2, (15a)

6_11_0 at z=20, /.

—= (15b)

v+ Vepon—

The initial conditions are that of a uniform
state together with a small perturbation to the
uniform concentration of cells:
=0, (=0 and n=1+ ¢gcos(nr), (16)
where ¢ = 107>, The perturbation is applied, so

that the plume forms along the central axis of the
cylinder.

3. Numerical Procedure

The governing eqns (8)—(10) are discretized
using a conservative finite-difference scheme
(Ghorai, 1997) on a staggered mesh with the
stream function and vorticity stored on one set
of nodes and the concentration stored on
another set of nodes. The grid is chosen so that
the concentration nodes lie in the interior only,
whereas those of the stream function and
vorticity lie in the interior and also on the
boundary of the domain. The advantage of the
staggered mesh is that the no-cell flux boundary
condition can be satisfied immediately when
discretized, without further approximation. We
know that a plume is concentrated along the
central axis and that there are boundary layers at
the top and bottom walls due to the large cell
concentration and the presence of the rigid wall,
respectively. In order to resolve these gradients
accurately, a non-uniform coordinate mesh is
used. The transformations proposed by Roberts
(1970) are taken to transform a non-uniform
mesh to a uniform mesh.

An expression for the vorticity boundary
condition can be obtained by expanding the
stream function near the bottom surface using
a three-term Taylor series expansion and by
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making use of no-slip condition:

_% 3 O lpnw

Z:w = > . m;

(17)

where ¥, {,,,, are the values of ¥, { at the near-
wall node (adjacent to the wall), r,, is the radial
distance and An is the non-dimensional distance
of the near-wall node from the wall.

An implicit scheme with Euler backward
differencing in time and central differencing in
space is used to obtain the transient solutions. A
line-by-line tridiagonal matrix algorithm with
relaxation is used to solve the nonlinear dis-
cretized equations. Usually an overrelaxation
and an underrelaxation are used for the dis-
cretized stream function and vorticity equations,
respectively. For the concentration equations,
the type of relaxation depends on the parameter
values. The iteration in the implicit scheme
at a fixed time is terminated based on the
tolerances in the vorticity and concentration.
For this let

T olé‘ = max
l’.]

k k—1
- o7
and

Tol* = max

‘ k k-1
ij

=N

b

where k denotes the iteration count and i,; vary
over the grid points. If Tolé‘ and Tol* are less
than the prescribed tolerances, then iteration is
terminated and the same process is repeated for
the next time step. The term due to time
discretization is inversely proportional to time
step At and it increases the magnitude of the
diagonal entries. Thus, the tridiagonal matrices
become diagonally dominant for small values of
At. A diagonally dominant tridiagonal matrix
has good convergence properties. The numerical
scheme converges for the experiments reported
in this paper.

Some of the results were run with different
numbers of grid points to check the grid
independence of the solutions. If the swimming
speed is zero then the equations of bioconvection
are similar to those of the heat convection
problem. To validate the code, written in terms
of stretched coordinates, the code has been run

for the axisymmetric heat convection problem.
The computed results are compared with those
of Liang et al. (1969) and Jones et al. (1976) and
the agreement with their results is good.

4. Results

Equations (8)—(10) possess a static solution
with = { =0 and an equilibrium exponential
concentration profile

V. Aexp(V,z)

exp(V.2) — 1 (18)

”p(Z) =

If the governing parameters are above the
critical values, the concentration profile develops
from the initially uniform state towards eqn (18),
but bioconvection begins before the profile
develops fully. In the following discussions, we
consider physically relevant parameter values
based on a chamber diameter of approximately
0.5cm using data from Table 1.

4.1. EFFECT OF THE ASPECT RATIO

To study the effect of the depth on plume
formation, the governing parameters R, S., G, V.
are kept constant at

R =500, S, =20, G=0.01, V.=10, (19)

and the aspect ratio is varied from small to large
values. The same parameter values were used for
two-dimensional bioconvection (Ghorai & Hill,
1999) with the same width of approximately
0.25cm for a convection cell.

Since the governing parameters are above the
critical values, the concentration profile initially
develops towards eqn (18), but bioconvection
begins before the profile develops fully. Figure 1
shows an example of the initial evolution of cell
concentration in the vertical z-direction with
time and also the solution given by eqn (18). At
t = 0, the concentration is uniform and n =1
approximately. As time increases, the concentra-
tion profile tends to the exponential profile given
by eqn (18). Since the parameters are above the
critical values, a plume begins to form (the
solution becomes function of r also) at the top
along the central axis before the equilibrium
exponential profile is achieved.
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FiG. 1. Evolution of the cell concentration, n(z), in the
axis of the cylinder, for an ultimately unstable suspension at
an early stage for 4 = 1. The values of the other parameters
are given in eqn (19), and n,(z) is the static equilibrium
profile.

Figure 2 shows the evolution of the plume at
various times from the uniform state. In this
figure, we have plotted the contours of the cell
concentration. Figure 2(a) shows a plume devel-
oping along the axis of the cylinder and
beginning to descend [Fig. 2(b)]. The plume has
hit the bottom of the cylinder at #~0.6. The
plume becomes almost steady at t=0.74
[Fig. 2(d)], which can be seen from the variation
of concentration at the mid-height (along the
axis) of the chamber (Fig.3). In Fig. 3, the
large value at fr~0.5 is the concentration at
the head of the plume when it passes through the
mid-point. The final steady-state cell con-
centration and streamlines of the plume are
plotted in Fig. 4. The solution is qualitatively
similar to the two-dimensional results of Ghorai
& Hill (1999).

For aspect ratio A=2, the evolution of
concentration is similar to the 4 =1 case. The
plume becomes steady rapidly as can be seen
from the variation of the central concentra-
tion against time (see Fig. 5). The evolution of
solution for A =2 is distinct from the two-
dimensional case for the parameter values given
by eqn (19). In the case of two-dimensions, a
small “blob” (varicose instability) appears, only
to ultimately disappear in the final steady state.
As a result, the two-dimensional plume takes
longer to become steady for 4 = 2 than 1, for the
parameter values in eqn (19). On the other hand,
the axisymmetric plume becomes steady almost

t=0.40 t=0.50
1l —— L ///-"-
N 05 4 ~o05 [ .
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© ; (d) .

Fi1G6. 2. Gyrotactic plume formation for the suspension
shown in Fig. 1 for aspect ratio A = 1. The concentration
n(r, z) at different times is plotted as contours. The contour
lines take values of 0.1,0.2,...,0.9 of the maximum
concentration n,,,,.. The values of the n,, are 9.2,19.6,
11.6,12.2, respectively.
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FiG. 3. Variation of concentration at the mid-height in
the axis of the cylinder for aspect ratio 4 = 1.

in the same time for both aspect ratios. The final
steady state is plotted in Fig. 6. The solutions in
the mid-region of the plume are almost indepen-
dent of z, which is similar to the two-dimensional
case.
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FiG. 4. Steady-state axisymmetric plume for aspect
ratio 2= 1: (a) concentration and (b) streamlines. The
contour levels of the concentration and stream lines are
0.1,0.2,...,0.9 of the maximum n (n,, = 12.17) and
minimum ¥ (i,,;,, = —0.31) respectively.
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Fi1G6. 5. Variation of concentration at the mid-height in
the axis of the cylinder for aspect ratio 4 = 2.
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FiG. 6. Steady-state axisymmetric plume for aspect
ratio 4 =2: (a) concentration and (b) streamlines. The
contour levels of the concentration and stream lines are
0.1,0.2,...,0.9 of the maximum n (7, = 12.19) and
minimum ¥ (... = —0.35) respectively.

min

When the aspect ratio is increased to A =5,
the axisymmetric plume again becomes steady
rapidly. In contrast in two dimensions, the
solution becomes periodic with a ‘“‘blob” con-
vecting along the plume. When this blob hits
the bottom of the chamber, another blob starts
descending from the top of the chamber. For the
axisymmetric plume, the steady-state concentra-
tion and streamlines are plotted in Fig. 7.

From Fig. 7, it is clear that the solution in the
mid-region of the plume is independent of z.
If the solution is independent of z, then the
equations of bioconvection in the steady state
simplify to

u=20, v=uo(r), (20)
d[1d/ dv dn
d—[?(d—ﬂ =RE @D

and
dn _
5 - cpr n (22)

where in eqn (22), the condition of no cell flux
through the side walls is used. To determine
the solution of eqns (20)—~(22), the additional
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FiG. 7. Steady-state axisymmetric plume for aspect
ratio 4 =5: (a) concentration and (b) streamlines. The
contour levels of the concentration and stream lines are
0.1,0.2,...,0.9 of the maximum n (7,4, = 13.41) and
minimum ¥ (,,;,, = —0.34), respectively.
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boundary conditions are

%:o at r=0, 1/2, (23)

1/2
/ v(r)rdr=20 (24)
0

and

/
/l 2[U(r) + Vepn(r)rdr=0. (29)
0

Equation (23) is due to stress-free side walls, and
eqns (24) and (25) are due to zero fluid flux and
cell flux across any cross-section. The boundary
value problem given by eqns (20)—(22) and (23)—
(25) can easily be solved using iteration e.g.
by the Newton—Raphson method. In Fig. 8,
we compare the solution obtained using the
Newton—Raphson method (solid line) with the
numerical solution of the axisymmetric biocon-
vection (data points marked by triangles) at z =
2.5. It shows that there is good agreement
between the axial velocity v(r,2.5) and concen-
tration n(r,2.5).

Both the evolution and final state of the plume
for the set of parameter values given by eqn (19)
are different from those of the two-dimensional
plume. The parameter values in eqn (19) are
chosen to compare the solutions of the axisym-
metric problem with those of the two-dimen-
sional problem (Ghorai & Hill, 1999). For these
values, the axisymmetric solutions become stea-
dy rapidly for aspect ratio A = 1-5. On the other

n(r,2.5)
v(r,2.5)

Fi6. 8. Comparison between the solution of eqns (20)—
(25) (solid line) and the numerical axisymmetric bioconvec-
tion problem (triangles) at z = 2.5.

hand, the solutions for the two-dimensional case
become steady more slowly as A increases from
A = 1-4. For values of 4 higher than 4, the final
state of the solution is periodic.

However, there are ranges of parameter values
for which the evolution and final states of the
plume are similar for both the axisymmetric and
two-dimensional plumes. For example, we con-
sider the following parameter values:

R =300, S, =20, G=0008, V.=20. (26)

The variation of the central concentration, for
aspect ratios 4 =2 and 4, at the mid-height of
the chamber is shown in Fig. 9. We see that the
plume with higher aspect ratio becomes unstable
more rapidly. This is due to the fact that the
chamber with the smaller aspect ratio is shal-
lower and requires a higher Rayleigh number to
become unstable. In the case of A =2, a small
“blob” develops which ultimately disappears in
the final state. The fluctuations in the concentra-
tion in Fig. 9 are due to the passing of the blobs
through the mid-height of the chamber. For A =
4, the blobs convect along the plume periodi-
cally. Thus for the parameter values given by eqn
(26), the evolution of the plume from the initial
uniform state is similar to the two-dimensional
case.

In the numerical experiments, the width of the
chamber was kept fixed and the aspect ratio 4
was varied from small to large values. The
number of horizontal intervals was kept fixed at
26, and the numbers of vertical intervals taken
were 26,46, 64 and 76 for aspect ratios 1,2,4 and
5, respectively. Some of the runs (especially those

T
Aspect ratio 4

30 i
EA— Aspect ratio 2
= 15 |
0 "
0.1 0.3 03

FiG. 9. Variation of concentration at the mid-height in
the axis of the cylinder for two different values of aspect
ratio A. The parameter values are given by eqn (26).
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with periodic blob convection) were run with
finer mesh sizes to check their accuracy.

4.2. EFFECTS OF THE PARAMETER VALUES

In this section, we investigate the dependence
of the final state of the plume on the gyrotaxis
number, G, and the cell swimming speed, V., for
a large aspect ratio 4 = 6 of the chamber. We fix
the following parameter values:

R=250, S§.=20 and A=6. (27)
The parameter values given by eqn (27) are
derived from a cell swimming diffusion coeffi-
cient D=5x10"*cm?s™! and a chamber
diameter L = 0.5cm (see Table 1). The value of
G=BD/L? based on B=34s (Pedley &
Kessler, 1992) is approximately 7 x 1073, The
value of V.,=W.L/D based on W,=
102cms™!' is 10. Thus, we vary G from
2x 1073 to 1.1 x 1072 and V. from 5 to 20 to
cover a range of physically relevant values. The
initial conditions are given by eqn (16). The
solutions tend to the final steady state rapidly for
some parameter values and slowly for the others.

We consider four representative values of both
the V, and G. The values of V, are 5, 10, 15 and
20. The values 0.002, 0.005, 0.008 and 0.011 are
chosen for G. We fix a value of one parameter,
say V., and G is varied over the above values.
The details of the calculations are presented for
the case V, = 15.

The variation of the concentration at a point
on the central axis of the plume is shown in
Fig. 10. Since the length of the plume is not same

50
— G=0.002
--- G=0.005
- G=0.008
g 25 | G=0.011
=S
0
0

FiG. 10. Variation of concentration at height % in the
axis of the cylinder for different values of G. The aspect
ratio is 6 and the value of / is different for different values
of G.

(see below) for the four values of gyrotaxis
number, the point on the central axis is taken at
different heights for different values of G. It
shows that for a fixed value of V., the time to
reach the instability stage decreases with an
increase in the value of G. The fluctuation in the
concentration values are appearance of ‘““‘blobs”
(varicose instability), which disappear leading to
the final steady state. The amplitude of the
fluctuations diminishes for the highest value of G.

The steady states of the plumes for different
values of G are shown in Fig. 11. As the value of
the gyrotaxis number G increases, the concen-
tration along the central axis increases and
concentration at the top decreases. This is for
the following reason. Higher values of G increase
the effect of gyrotaxis which causes more cells to
focus along the axis of the cylinder. This in turn
leads to more vigorous downwelling along the
axis and draws more cells from the top of the
chamber. The combined effect of cell swimming
and gyrotaxis is weaker for smaller values of G
and in such cases the plumes extend only to a
fraction of the chamber’s depth.

Now, we consider the results for the two-
dimensional case with the same parameter
values. The variation of the concentration at a
point is shown in Fig. 12. The time to reach the
instability stage decreases with an increase in the
value of G, which is similar to the axisymmetric
case. The fluctuations in the concentration
values are appearance of ‘blobs” (varicose
instability), which ultimately disappear leading
to the final steady state for G = 0.002 and 0.005.
On the other hand, they remain for G = 0.008
and 0.011, leading to periodic solutions. The
amplitude of the fluctuations diminishes for the
highest value of G.

Snapshots of the plumes for different values of
G are shown in Fig. 13. As the value of gyrotaxis
number G increases, the concentration along the
central axis increases and concentration at the
top decreases. This is similar to the axisymmetric
case. On the other hand, the final states of the
plume for G = 0.008 and 0.011 are periodic, but
these are steady for the axisymmetric case. Thus,
the final states of the plume are steady in
axisymmetric case, but these are either steady
or periodic in two dimensions for the values of G
considered when V. = 15.
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F1G6. 11. Snapshots of concentrations for V.= 15 for the axisymmetric case. The contour lines take values of
0.1,0.2,...,0.8 of the maximum concentration n,,,,. The values of n,,,, are 84.0,53.0,38.0 and 30.0, respectively. All the

solutions are steady.
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FiG. 12. Variation of concentration at height / in the
two-dimensional case for different values of G. The aspect
ratio is 6 and the value of / is different for different values
of G.

For the other values of V., we summarize the
results in Table 2. The plume extends to a
fraction of the chamber depth for the smaller
values of G or V., but it extends to the full depth
of the chamber for larger values of both the G
and V.. From Table 2, it is clear that axisym-
metric solutions are periodic only for G = 0.011
and V. = 15, whereas two-dimensional solutions
are periodic for a greater number of G and V.
values. At the highest values of G =0.011 and
V. = 20, the solutions again become steady and
the concentration at the bottom of the chamber
becomes large for both the axisymmetric and

two-dimensional case. Similar behaviour was
observed for other parameter values (not listed)
too.

For G =0.011 and V, =20, the plume ex-
tends to the full depth of the chamber and the
bottom boundary layer becomes strong. For
these values of G and V., a 32 x 86 mesh was
used in the horizontal and vertical directions. In
all the other cases, a 32 x 76 mesh was used in
the numerical experiments. Solutions for G =
0.008, V. =20 and A =6 were tested on 26 x
56,26 x 66 and 46 x 76 meshes and the results
were in agreement with each other.

5. A Case Study

In this section, we take the parameter values
for which both the axisymmetric and two-
dimensional calculations give periodic solutions
and then we compare the numerical results with
the observational data. The parameter values
chosen are

R=400, G=8x1073,
) =6. (28)

S. = 20,
V.=20 and
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FiG. 13. Snapshots of concentrations for V, =15 for the two-dimensional case. The contour lines take values of
0.1,0.2,...,0.8 of the maximum concentration n,,,,. The values of n,,, are 43.0,30.0,22.0 and 18.0, respectively. The
solutions shown in (a) and (b) are steady while in (c) and (d) are periodic.

TABLE 2
Summary of results for the variation of G and V..
Here, As and A, denote, respectively, the steady
and periodic solutions for the axisymmetric
problem. Similar notations, Ty and T,, are used
for the two-dimensional case

Ve
G 5 10 15 20
0.002 AT, AT, AT, AT,
0.005 As/Tv Ax/Ts AS/Tx Ax/T[’
0.008 AT, AT, AT, AT,
0.011 A,/ T, AT, A,/T, AT,

The parameter values in eqn (28) are based on
a chamber approximately 1cm wide. In the
numerical experiments, 32 x 96 meshes were
used in the axisymmetric and two-dimensional
calculations.

The variation of the central concentration at
the mid-height of the chamber against time is
shown in Fig. 14. Both the two-dimensional and
axisymmetric solutions are periodic. The periods
of oscillation are approximately 0.02 and 0.08 (in

30 T

Axisymmetric
Two-dimensional

n(0,3)

FiG. 14. Variation of the central concentration for
axisymmetric and two-dimensional bioconvection. The
parameter values are given by eqn (28).

non-dimensional units) for the axisymmetric and
two-dimensional bioconvection, respectively.
Assuming that the diffusion coefficient D = 5 x
10-*cm? s ! and the width L = 1 cm, the time-
scale for the flow is L?/D = 2 x 10%s. Thus, in
dimensional terms, the periods are 40 s and 2 min
40s for the axisymmetric and two-dimensional
bioconvection, respectively.

Snapshots of the periodic solutions for the two
cases are shown in Fig. 15. In both cases, two
blobs are descending along the plume. The
formation of each blob takes place nearer to
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FiG. 15. Snapshots of the concentration at ¢ = 0.8 for
the (a) axisymmetric and (b) two-dimensional bioconvec-
tion, respectively. The parameter values are given by
eqn (28). The contour levels of the concentration are
0.1,0.2, ...,0.8 of the maximum concentration. The max-
imum concentrations are approximately 58 and 22 for
the axisymmetric and two-dimensional bioconvection,
respectively.

the top of the plume in two dimensions. As a
result, the wavelength of the varicose mode is
approximately 1 and 1.4 (in non-dimensional
units) for the axisymmetric and two-dimensional
bioconvection, respectively. Since the diameter is
approximately 1cm, the dimensional wave-
lengths are approximately 1 and 1.4cm.

Some observational data were given by
Kessler (1986) for gyrotactic focussing in a
cylinder of diameter 1.3cm. Initially, the cells
were focussed by imposing a downward Poi-
seuille flow of 0.1 cm s~!. Then the imposed flow
was stopped and the axial downward flow was
sustained by gyrotaxis. The distances between
the blobs were in the range 1.5-2cm (see Fig. 4
in Kessler, 1986). The central flow speed ug in a
self-sustained gyrotactic flow is approximately
1-1.5 times the speed W, of the cell. Since the
blobs are heavier, they sink with speed 2uy—5u
(Kessler, 1986). Based on the distance 1.5-2cm
and sinking velocity 2ug—5uy, the observed
periods of oscillation are approximately 20—
100s. The numerically calculated values of the
periods are 40s and 2min 40s for the axisym-
metric and two-dimensional bioconvection,

respectively. Thus, for the parameter values
given by eqn (28), the period of oscillation for
the axisymmetric case is much smaller than that
of two-dimensional case and is nearer to the
observational data. The wavelengths of the
varicose mode (i.e. distance between the blobs)
are close to observational data for both cases.

6. Conclusion

In the case of axisymmetric bioconvection, we
have seen two different states of the plume:
either steady or periodic. For axisymmetric
bioconvection, the plume becomes unsteady via
varicose instability. The other possible mean-
dering instability (seen in two-dimensional bio-
convection) does not appear due to the imposed
axisymmetry. Thus, to see the effect of mean-
dering type instability, we should consider
solutions which are functions of (r, ¢, z), 1.e. full
three-dimensional numerical simulations.

The effect of changing the aspect ratio has
been investigated by increasing the value of A
from small to large values. One set of fixed
parameter values is the same as in the two-
dimensional case (Ghorai & Hill, 1999). When
A=5, the final state of the plume is always steady
for any value of A for axisymmetric bioconvec-
tion, but periodic in the two-dimensional case.
The evolution of the plume for another set of
parameter values is similar to the two-dimen-
sional case. When the solution is steady, the
solution in the mid-region of the plume is
independent of the vertical coordinate z.

The effects of the G and V. on the plume
solution are investigated for a range of physi-
cally relevant parameter values. When the values
of either G or V., are small, the plumes do not
extend to the bottom of the chamber. The
varicose instability occurs in most of the runs.
The blobs disappear in certain cases leading to
steady states, or they remain in the final state in
other cases. As V. increases from small to large
values and G takes small to moderate values, the
duration of varicose instability increases, but
when G is much larger, the varicose instability
almost disappears.

Detailed comparisons between axisymmetric
and two-dimensional bioconvection have been
made. It was found that for the set of parameter
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values considered, the time period of the varicose
oscillation in axisymmetric bioconvection is
more realistic and smaller than that of the two-
dimensional bioconvection. The wavelengths of
the varicose mode are comparable for both the
axisymmetric and two-dimensional simulations,
and close to the experimental observations.
Similar results for the period and wavelengths
of the varicose mode have been observed in
other runs with different sets of parameter
values. The range of parameter values, for which
the final states of the plume are periodic, is much
smaller than in the two-dimensional case.
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Appendix

Validation of Axisymmetric Code

If the cell swimming speed is zero, then the
form of the equations of bioconvection reduces
to that of the thermal convection. Thus, the
axisymmetric bioconvection code, written in
stretched coordinates has been run for the
thermal convection problem. The computed
results are compared with those of Liang et al
(1969) and Jones et al. (1976).

The grid is staggered, with the nodes for the
stream function and vorticity lying on one set of
points and that of temperature on another set.
The grid geometry is modified slightly (from that
used in bioconvection) to incorporate the
boundary conditions into the discretized equa-
tions. Thus, the nodes for the temperature lie
laterally only in the interior, but vertically in
both the interior and on the boundary. The
details of the comparisons are given separately.

Appendix A
Comparison with Liang et al.
In terms of the dimensionless stream function

Y, the vorticity { and the temperature 0, the
following equations are obtained:

1y a1y
= Eraly) e
0 0
a(uC)‘F&(WC)
R3O [o[10 0%
= port [a(m r@) +@} (A2
10 00\1 o Gl

where P and R are the Prandtl and Rayleigh
numbers, respectively. The lateral surface is
insulated (i.e. no flux of heat at r = 1) and is
assumed to be stress free. The top and bottom
surfaces are either stress free or rigid, and

0=1 atz=0 and 0=0 atz=1.
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The average Nusselt numbers, Ny and N;, are

defined by
1
N(),l = 2/ r
0

which due to energy conservation, should be
identical when the top and bottom surfaces are
either both rigid or stress free. In Liang et al.
(1969), the equations are formulated in non-
conservative form and, consequently, the com-
puted values of Ny and N, are not identical but
lie within 1% of one another. Here, we use the
conservative form of the eqns (A.1)-(A.3), and
hence Ny and N; are always equal.

o0

& dr,

z=0,1
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The properties of the solutions are compared
with the numerical solutions of Liang et al in
Table Al. We only compare the solutions for
constant viscosity (run nos. 3, 9 and 13 of Liang
et al). In Table Al, the results in Roman font
correspond to the solution of Liang et al. (1969)
and those in italics are the solutions using the
modified bioconvection code. The lower bound-
ary is solid. The quantities presented are the
maximum value of stream function |/, and
N = %(]\70 +N 1).

The solutions obtained using the modified
bioconvection code are in good agreement with
the results of Liang et al (1969). Figure Al
shows the contours of streamlines and isotherms

1.0 [Co128 \

00 L v v vy
0.0 0.2 0.4 0.6 0.8 1.0

@ —> radius

(0878 ’_T_’_/

0.0

0.0 0.2 0.4 0.6 0.8 1.0
(b) —> radius

FiGg. Al. Streamlines and isotherms (a) upflow at the centre (b) downflow at the centre for the thermal convection

problem solved using the modified bioconvection code.
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TABLE Al
Comparison between the numerical results of Liang et al. (roman font) and of
the modified bioconvection code (italics)

Mesh Upper R P [ N
Solid Free Upflow at Downflow at Upflow at Downflow at
centre centre centre centre
29 x29 x — 4000 100 0.0225 0.0225 1.836 1.836
0.0225 0.0225 1.843 1.843
19x19 x — 4000 1 2.151 2.136 1.784 1.777
2.156 2.156 1.799 1.799
29x29 — X 4000 100 0.0310 0.0322 2.353 2.414
0.0308 0.0317 2.329 2.381
TaBLE Bl

O
O

§oE

o

r r

Fic. Bl. Isotherms and streamlines profiles for P, = 6.8
and R =6R,, 20R., and 100R.. The contour lines are
equally spaced. The mesh sizes (vertical x horizontal) for
the numerical experiments are, respectively, 24 x 42, 48 x
74 and 48 x 56. The non-dimensional height is 1.

for the first set of runs i.e. R = 4000, P = 100
with solid top and bottom surfaces.

Appendix B

Comparison with Jones et al.

Axisymmetric Rayleigh—Benard convection of
a Boussinesq fluid was also investigated by Jones
et al. (1976), who studied the effect of Prandtl
number on heat flux. In terms of the dimension-
less stream function , the vorticity { and the

Nusselt number N as a function of the Rayleigh

number R and dimensionless radius /. Comparison

between the numerical results of Jones et al. (third

column) and of the modified bioconvection code
(fourth column)

R A N N

6R, 1.75 3.48 3.49
20R, 1.54 5.31 5.31
100R, 1.17 8.89 8.89

temperature 0, the following equations are

obtained:

LY
et
—rrsr, [?’(——(C)) 225] (B.2)

o0 10 o0 0 o0

where P, and R are the Prandtl and Rayleigh
numbers, respectively. The lateral surface is
insulated (i.e. no flux of heat) and is assumed
to be stress free. The top and bottom surfaces are
stress free and

0=1 atz=0 and 06=0 atz=1.
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Linear theory predicts the onset of instability
at R= R, =27n*/4 with dimensionless radius
A = 1.725. The modified bioconvection code was
run for the values of the Prandtl number and
Rayleigh numbers shown in the caption of
Fig. B1. Figure B1 is in agreement with that of
Jones et al. (1976) (see p. 375 of the reference).
The effectiveness of convection is measured by
the ratio of the total heat flux to the flux that
would have been carried in the absence of

convection: the Nusselt number

2 [ 00
N_?/o <w0—§>rdr,

which for a steady state is a function of R, P, and
A only. The calculated values of the Nusselt
number are compared with those of Jones et al.
(1976) in Table B1. The agreement between the
results is excellent.
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