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Using the generic model of Vincent and Hill �J. Fluid Mech. 327, 343 �1996�� for phototaxis in a
suspension of swimming algae, we investigate two-dimensional phototactic bioconvection in a
suspension confined between a rigid bottom boundary, and stress-free top and lateral boundaries.
Phototaxis denotes swimming towards �positive� or away �negative� from light. The model of
Vincent and Hill also incorporates the effect of shading where microorganisms close to the light
source absorb and scatter light before it reaches those further away. The system is governed by the
Navier–Stokes equations for an incompressible fluid coupled with a microorganism conservation
equation. These equations are solved numerically using a conservative finite-difference scheme.
Convection driven by phototactic microorganisms, which are slightly denser than water, has been
investigated in a series of numerical experiments. The solutions show transition from steady state to
periodic oscillations, and periodic oscillations to steady state to periodic oscillations again, as the
governing parameters are varied. The mechanism driving the oscillatory solution just above the
critical parameter values is explained. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1947807�

I. INTRODUCTION

Bioconvection is the name given to spontaneous pattern
formation in suspensions of microorganisms due to swim-
ming of the microorganisms.1,2 In all cases the microorgan-
isms are slightly denser than water and on average they swim
upwards �although the reasons for upswimming may be dif-
ferent for different species�. Microorganisms respond to cer-
tain stimuli by tending to swim in particular directions.
These responses are called taxes, examples being gravitaxis,
gyrotaxis, and phototaxis. Gravitaxis indicates swimming in
the opposite sense to gravity and gyrotaxis is swimming di-
rected by the balance between the torque due to gravity act-
ing on a bottom-heavy cell and the torque due to viscous
forces arising from local shear flows. Phototaxis denotes
swimming towards or away from light. This paper is con-
cerned with phototaxis only.

Experimental observations have shown that bioconvec-
tion patterns in suspensions of single-celled algae are modi-
fied by illumination.3–5 Strong light destroys steady patterns
in suspensions of microorganisms or prevents formation of
patterns in well-stirred cultures. Light can also modify the
shape or size of the pattern. The possible reasons for the
changes in bioconvection pattern due to light intensity are
the following. First, the microorganisms are strongly photo-
tactic. Most phototactic microorganisms are positively pho-
totactic, i.e., they swim towards the light source, when the
light intensity I is below a critical value, Ic, and are nega-
tively phototactic when I� Ic.

6 Possible mechanisms by
which the cells detect light and interpret the signal that they

receive are discussed in Refs. 7–9. Thus cells tend to accu-
mulate at optimal places in their environment where I� Ic.
The second reason for pattern change arises due to shading.
Turbidity in the water column causes I to decrease with
depth in the natural environment, but cells also absorb and to
some extent scatter light, which decreases I further. This lat-
ter effect is called self-shading and is the dominant effect in
laboratory cultures. In this paper we have considered self-
shading only. Self-shading determines the position in the sus-
pension where I= Ic. If the volume fraction of cells in the
suspension is small and the scattering of light by the cells in
the suspension is weak, then the light intensity I�x ,y ,z� re-
ceived by an algal cell at position �x ,y ,z� is given by the
Lambert–Beer law:10,11

I�x,y,z� = Is exp�− ��
�

nds� . �1�

Here � is the straight line segment joining �x ,y ,z� to the
source of light intensity Is, � is the extinction coefficient, and
n is the concentration of cells. All the effects of multiple
scattering have been neglected, so an algal cell detects light
that is reaching to it in a direct line from the source. When
the suspension is uniformly illuminated from above, the
mean swimming direction is given by

	p
 = T�I�ẑ , �2�

where ẑ is the unit vector in the vertical direction. T�I� is the
phototaxis function such that
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T�I���0 if I � Ic

�0 if I � Ic.
� �3�

T�I� depends on the light intensity I reaching the cell and the
exact functional form of T will depend on the species of
microorganisms. The expression for 	p
 in Eq. �2� is based
on the assumption of purely phototactic cells which receive
light from the source directly above. Thus any nonzero hori-
zontal component in the mean swimming velocity, due to the
nonuniform horizontal concentration distribution and balance
between viscous and gravitational torques, has been ne-
glected. The effects of the polarization and wavelength of
light are not considered either. This simple model is a valid
limiting case to consider to understand the complexities of
phototactic bioconvection before proceeding to more com-
plex models.

For a suspension of finite depth illuminated from above,
there is a basic, horizontally uniform, state in which there is
a balance between phototaxis coupled with suspension shad-
ing and diffusion due to the random component of the cell’s
swimming motions. This results in a horizontal concentrated
layer of microorganisms �the sublayer�, the position of which
depends on the light intensity. Only the region below the
sublayer is gravitationally unstable; the region above is
stable. Therefore, if the whole fluid layer becomes unstable,
the fluid motions in the unstable layer must penetrate the
upper stable layer. This is an example of penetrative convec-
tion which occurs in a wide variety of convection
problems.12

Given the need to photosynthesize, many motile algae
are strongly phototactic and thus it is necessary to include
phototaxis in realistic models of their behavior. Bioconvec-
tion in a suspension of phototactic algae was examined by
Vincent and Hill.13 They performed a linear stability analysis
of the basic equilibrium solution and found stationary and
oscillatory modes of disturbance at the onset of instability.
Note that the basic equilibrium solution derived by Vincent
and Hill was wrong although the conclusions of the article
are still valid qualitatively. The correct solution is given be-
low in Sec. IV B. There have been numerical simulations on
bioconvection due to gravitaxis by Harashima, Watanabe,
and Fujishiro14 and due to gyrotaxis by Ghorai and Hill.15–18

Recently, Hopkins and Fauci19 simulated two-dimensional
bioconvection using point particles rather than a continuum
model and examined the general effects of a variety of dif-
ferent responses by the microorganisms, including gyrotaxis
and chemotaxis, but they did not make specific comparisons
with any particular biological system. No numerical experi-
ments have been carried out on a suspension of phototactic
microorganisms to date. Therefore, we examine phototactic
bioconvection in two dimensions using a continuum model.

We study two-dimensional phototactic bioconvection in
a layer confined by rigid bottom, and stress-free top and
lateral boundaries in the nonlinear regime. The mathematical
formulation of the continuum model is described first fol-
lowed by a brief description of the computational method.
The code is validated by comparing the critical Rayleigh
number computed using the present code with the linear sta-
bility results. This is followed by the numerical results.

II. MATHEMATICAL FORMULATION

The geometry considered consists of a two-dimensional
rectangular region of width L and height H referred to Car-
tesian coordinates �x ,z� with the z axis pointing vertically
upwards. Thus the flow is confined to the xz plane and inde-
pendent of y.

A. Governing equations

In common with the previous models of bioconvection,1

we assume a monodisperse cell population which can be
modeled by a continuous distribution. The suspension is di-
lute so that the volume fraction of the cells is small and
cell-cell interactions are negligible. Each cell has a volume �
and density �+	�, where � is the density of the water in
which the cells swim and 	� /�
1. u is the average velocity
of all the material in a small volume �V and n is the cell
concentration. Supposing that the suspension is incompress-
ible and introducing stream function � and vorticity , we
get

u = �u,v,0� = � ��

�z
,−

��

�x
,0�,  = − �2� . �4�

Neglecting all forces on the fluid except the cell’s negative
buoyancy, ng�	� per unit volume where g is the accelera-
tion due to gravity, the momentum equation under the Bouss-
inesq approximation leads to the vorticity equation

�

�t
+ � · �u� = ��2 −

	�g�

�

�n

�x
. �5�

Here � is the kinematic viscosity of the suspension which is
assumed to be that of the fluid.

The equation for cell conservation13 is

�n

�t
= − � · J , �6�

where J is the flux of cells. J can be written as

J = nu + nWc	p
 − D � n . �7�

Here the first term is the flux due to advection of the cells by
the bulk fluid flow. The second term in Eq. �7� arises due to
the average swimming of the cells: Wc	p
 is the average
swimming velocity relative to the fluid and Wc is assumed to
be constant. 	p
, given by Eq. �2�, represents the average
orientation of cells. The diffusive flux, which represents the
random component of the cell locomotion, is given by the
third term on the right-hand side of Eq. �7�. The diffusion
coefficient D is a constant which is based on the assumption
that the diffusion tensor is a constant isotropic tensor. In
principle, the diffusion tensor should be a function of light
intensity and should be calculated from a swimming velocity
autocorrelation function using generalized Taylor dispersion
theory,20,21 but no complete theory exists for all flows, and
this simplification is needed to make realistic computational
progress. Experience with bioconvection driven by
gyrotaxis15–18 suggests that essential features of the flow will
be captured. Assuming that the suspension is uniformly illu-
minated from above, Eq. �1� for light intensity becomes
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I�x,z� = Is exp− ��
z

H

n�x,z�dz� . �8�

B. Boundary conditions

We impose a rigid, no-slip boundary condition on z=0
and require that both the normal velocity and tangential
stress vanish on z=H. Also there is no flux of cells through
z=0,H. Hence

� � = 0 and J · ẑ = 0 at z = 0,H

��

�z
= 0 at z = 0,  = 0 at z = H � . �9�

We require that both the normal velocity and tangential stress
vanish on the side walls and no flux of cells through them,
thus

� = 0,  = 0, and J · x̂ = 0 at x = 0,L . �10�

C. Scaling of the equations

Length is scaled on the depth H, velocity on D /H, time
on the diffusive scale H2 /D, and the cell concentration on
the mean cell concentration n̄. In terms of the nondimen-
sional variables, the bioconvection equations become

u = �u,v,0� = � ��

�z
,−

��

�x
,0�,  = − �2� , �11�

�

�t
+ � · �u� = Sc�

2 − ScR
�n

�x
, �12�

and

�n

�t
= − � · J , �13�

where the flux of cells is

J = nu + nVc	p
 − � n . �14�

Here Sc=� /D is the Schmidt number, Vc=WcH /D is the
scaled swimming speed, and

R =
n̄�	�gH3

��D

is the Rayleigh number. Also 	p
=T�I�ẑ with I given by

I�x,z� = Is exp− ��
z

1

n�x,z�dz� , �15�

where �=�n̄H measures the strength of the absorption.
To estimate the various nondimensional parameters, we

assume that we are dealing with a purely phototactic micro-
organism, otherwise similar to Chlamydomonas. Typical val-
ues of these parameters are given in Table I based on esti-
mates given by Kessler.22 The estimate for the extinction
coefficient � is not available at present. However, the nondi-
mensional parameter � is proportional to �. Thus the effect
of � can be studied by taking different values of �.

Equations �11�–�14� have to be solved in the regions 0
�x�� and 0�z�1, where �=L /H is the normalized width
of the domain. These equations are subject to the boundary
conditions

� � = 0 and J · ẑ = 0 at z = 0,1,

��

�z
= 0 at z = 0,  = 0 at z = 1 � , �16�

and

� = 0,  = 0, and J · x̂ = 0 at x = 0,� . �17�

The boundary conditions �16� and �17� mean that the gov-
erning equations need only be solved over half of the full
convection cell that extends from x=0 to x=2�; the solutions
show mirror symmetry about the planes x=0 and x=�. Simi-
lar boundary conditions were used in numerical experiments
on two-dimensional Rayleigh–Bénard convection by Moore
and Weiss.23 These boundary conditions enforce no horizon-
tal movement at x=0 and x=�. Greater generality could be
obtained by computing solutions in the full convection cell
with periodic boundary conditions at x=0 and x=2�, but use
of the boundary conditions �16� and �17� also allows us to
use finer meshes at high Rayleigh numbers since the compu-
tations are being carried out on half of the solution domain.

The initial conditions are that of a uniform state together
with a sinusoidal perturbation to a uniform concentration of
cells of the form

� = 0,  = 0, n = 1 + � cos��x/�� , �18�

where �=10−5. The perturbation is applied for computational
convenience to ensure that one convection cell develops ini-
tially in the domain. Note that even if we do not apply a
perturbation, rounding errors generate perturbations which
initiate a single convection cell solution at an early stage,
whenever the system is unstable.

III. NUMERICAL PROCEDURE

The governing Eqs. �11�–�14� are discretized using a
conservative finite-difference scheme24 on a staggered mesh
with the stream function and vorticity stored on one set of
nodes and the cell concentration stored on another set of
nodes. The grid is chosen so that the concentration nodes lie
in the interior only, whereas those of the stream function and
vorticity lie in the interior and on the boundary of the do-
main. The advantage of the staggered mesh is that the no-cell
flux boundary condition can be satisfied immediately when

TABLE I. Estimates of typical parameters for a suspension of Chlamydomo-
nas.

Cell radius a 10−3 cm

Cell volume � 5�10−10 cm3

Cell density ratio 	� /� 5�10−2

Cell diffusivity D 5�10−4 cm2 s−1

Swimming speed Wc 10−2 cm s−1

Mean concentration n̄ 106 cm−3

Kinematic viscosity � 10−2 cm2 s−1
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discretized without further approximation. We have used the
well-known Woods’ formula25 for the vorticity value on the
boundary. This is obtained by expanding the stream function
near the rigid surface using a three-term Taylor-series expan-
sion and the no-slip condition

w = −
nw

2
−

3�nw

�	n�2 , �19�

where nw and �nw are the values of � and  at the near-wall
node �adjacent to the wall�, and 	n is the nondimensional
distance of the near-wall node from the wall.

An implicit scheme with Euler backward differencing in
time and central differencing in space is used to discretize
the governing equations. A line-by-line tridiagonal matrix al-
gorithm with relaxation is used to solve the discretized equa-
tions. Some of the results were run with different numbers of
grid points to check the grid independence of the solutions.

IV. LINEAR STABILITY OF THE BASIC EQUILIBRIUM
STATE

A. Basic equilibrium solution

Equations �11�–�14� possess a steady solution in which
�==0 and the concentration profile np�z� is independent of
x and satisfies

dnp

dz
− VcT�I�np = 0. �20�

Equation �20� is supplemented by the cell conservation rela-
tion

�
0

1

npdz = 1. �21�

In terms of the new variable

� = − �
z

1

npdz ,

Eq. �20� becomes

d2�

dz2 − VcT�I�
d�

dz
= 0, �22�

with boundary conditions

�� + 1 = 0 at z = 0

� = 0 at z = 1
� . �23�

Here I is given by

I = Is exp���� .

Equations �22� and �23� constitute a boundary-value problem
which is solved numerically using a shooting method.

Figure 1 shows two typical taxis functions of different

FIG. 2. Neutral curve �solid line for the stationary mode and dashed line for
the oscillatory mode� at the onset of bioconvection for the system whose
equilibrium solution is plotted in Fig. 1. The solutions obtained from the
bioconvection code are marked on the lines using solid squares.

FIG. 1. �a� Typical taxis functions, and �b� the corresponding equilibrium concentration profile for Vc=10, Is=0.5, and �=1.0. The taxis functions are
generated by superimposing sine functions �see Eq. �24��.
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critical intensities and the corresponding concentration pro-
files. The taxis functions were generated by superimposing
the following sine functions:

T�I� = 0.8 sin3�

2
��I�� − 0.1 sin�

2
��I�� , �24�

where ��I�= I exp���I−1��. The value of critical intensity is
related to the parameter �. When Ic= Is, i.e., the critical in-
tensity occurs at the upper surface, the cells accumulate at
the top of the domain. This is similar to the gravitactic cells.
As Ic decreases, the maximum concentration decreases and
the location of the maximum concentration shifts towards the
midheight of the domain. The maximum concentration is
smallest when the maximum is located at the middle of the
domain. As Ic decreases further, the maximum concentration
increases and shifts towards the bottom of the domain.

B. Analytic equilibrium solution for weak absorption

Vincent and Hill13 considered the “weak-absorption”
case in which 0��
1 and I is close to Ic throughout the
domain. Thus T�I� is approximately a linear function of I,

T�I� = − ��I − Ic� .

For comparison with the solutions in Ref. 13, we take the top
and bottom boundaries at z=0 and z=−1, respectively. If the
critical intensity Ic occurs at position z=−C �0�C�1� for

the vertically uniform concentration profile n=1, then

T�I� = �Ic���
z

0

ndz − C� .

In this case the steady-state cell concentration satisfies13

dnp

dz
− dnp�

z

0

npdz − C� = 0, �25�

subject to the cell conservation condition

�
−1

0

npdz = 1. �26�

Here d=Vc�Ic� is a new constant. The unique solution of
Eq. �25� can be obtained analytically as

np�z� =

K2

2d
��K2/d2� − C2�sech2�Kz/2�

��K/d� + C tanh�Kz/2��2 , �27�

where K is a constant determined �using Eq. �26�� from the
equation

�K2

d2 + C − C2�tanh�K

2
� −

K

d
= 0. �28�

The concentration profile in Eq. �27� is different to that of
Vincent and Hill13 because the location of the maximum of
the equilibrium concentration and thus the depth at which I
= Ic are not at z=−C �as assumed in Ref. 13�; they are both
located above z=−C if 0�C�1/2 and below z=−C if
1 /2�C�1. This can be understood as follows. Lack of
symmetry in the concentration profile for C�1/2, as it de-
velops from the uniform state, leads to a difference in the
diffusive flux above and below the line on which I= Ic. This
causes the line on which I= Ic to move to a different depth.
The solutions in Ref. 13 are correct only for C=0, 1 /2, and
1. For C=0 and 1, the location of the line on which I= Ic

TABLE II. Critical Rayleigh numbers and critical wavelengths at the onset
of linear instability for Vc=10 and Is=0.8: �a� �=0.5 and �b� �=1.0.

Ic Rc �c

�a� 0.66 317 2.88

0.63 1159 2.0

�b� 0.52 391 2.0

0.50 639 2.0

FIG. 3. Basic equilibrium concentration profiles for Vc=10 and Is=0.8: �a� �=0.5 and �b� �=1.0. The concentration profile becomes steeper for a higher value
of �.
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remains at the top and bottom of the domain, respectively.
When C=1/2, the symmetry in the concentration profile
causes the line I= Ic to stay at the middle of the domain.

C. Code validation

To validate the bioconvection code, we now perform a
linear stability analysis of the basic equilibrium solution. We
introduce a small perturbation to the equilibrium solution �
==0 and n=np�z� and the perturbed quantities are substi-
tuted into the governing equations and boundary conditions.
Linearizing about the equilibrium state and resolving the per-
turbed quantities into normal modes produce linear stability
equations. The linear stability equations are solved using a
fourth-order finite-difference scheme, supplied by Cash and
Moore,26 that iterates using the Newton–Raphson–
Kantorovich algorithm. We compute the critical Rayleigh
number as a function of the wavelength using the present
bioconvection code and compare the results with those of the
linear stability analysis. The numerical solutions �using the
present code� were obtained in a uniform mesh of sizes 	x
=0.025 and 	y=0.025 in the following way. First, a solution
for a single convection cell was established. This solution is
one-half of the periodic solution of wavelength twice the
domain width. Then the value of the Rayleigh number was
decreased by 5% and the new solution was allowed to settle
to its steady state. The critical Rayleigh number was taken to
be approximately the value at which the final steady state is
first equal to the equilibrium state. The critical Rayleigh
number computed from the bioconvection code lies within
±1% of the value computed from the linear stability prob-

lem. Figure 2 shows the neutral curves for Vc=10, Is=0.5,
and �=1.0 for two different critical intensities. The most
unstable mode is stationary in both cases and the agreement
between the linear stability analysis and the numerical results
is satisfactory.

V. RESULTS

We have systematically investigated the effect of varying
the Rayleigh number keeping the other parameters Sc, Is, Ic,
Vc, and � fixed. Due to a large number of parameters, it is
difficult to obtain a comprehensive picture across the whole
parameter domain. Thus we take a discrete set of fixed pa-
rameter values to study their effect on the solution. The val-
ues of Sc=20 and Is=0.8 are kept fixed throughout. Is is the
highest value of I and the lowest value of I in our simulations
is about 0.3; for this range of values of I, T�I� is monotoni-
cally decreasing �see Fig. 1�. We take Vc=10,15,20 as the
representative parameter values for the swimming speed. For
a given value of Vc we take two values �=0.5,1.0 of the
absorption coefficient. Then for a given value of � we con-
sider two values of critical intensity Ic such that the location
of the maximum static equilibrium concentration occurs
around z=3/4 and z=1/2, respectively. The critical Rayleigh
number Rc and wavelength �c are calculated for the given
values of the parameters Vc, �, and Ic by solving the linear
stability equations for the basic equilibrium solution given
by Eqs. �22� and �23�. The normalized width of the domain is
set as �=�c /2 and the Rayleigh number is varied in the
range Rc�R�100Rc to study penetrative phototactic bio-

FIG. 4. Streamlines of steady solutions for Vc=10, �=0.5, and Ic=0.66. The peak of the basic equilibrium concentration profile for these parameters is near
the three-quarter height of the domain �see Fig. 3�a��.
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convection. The details of the computations are described
below.

A. Vc=10

The representative values of Ic and the corresponding
static equilibrium concentration profiles are shown in Fig. 3.
It shows that the concentration profile becomes steeper for
the higher value of � when other parameter values are kept
constant. Table II shows the critical Rayleigh numbers and
the wavelengths for these values of Ic.

1. Absorption coefficient �=0.5

When Ic=0.66, the maximum of the equilibrium concen-
tration occurs at around z=3/4. For R=1.5Rc we observe a
steady-state solution with a single convection cell with the
higher cell concentration �plume� along the left wall �see Fig.
4�a��. This is an anticlockwise solution and by symmetry
there also exists a clockwise single convection solution with
the plume located along the right wall. As R is increased this

single convection solution is no longer preferred, instead we
observe a two-cell convection solution with plume in the
middle of the domain. This solution is shown for R=5Rc in
Fig. 4�b� and it persists as R is increased to 10Rc. As the
value of R is increased further, weak counter-rotating cells
appear on top of the two main convection cells just de-
scribed. One such solution is shown for R=20Rc �see Fig.
4�c�� which is perfectly symmetric with respect to the verti-
cal midline. These weak counter-rotating cells become stron-
ger with an increase in the value of R. This symmetric two-
cell convection solution with counter-rotating cells on top
persists for values of R up to 40Rc. When R reaches 50Rc,
this solution loses its symmetry as seen in Fig. 4�d�, and this
asymmetric solution persists as R is increased to 60Rc. All
the solutions for R=1.5Rc–60Rc are steady. When R is in-
creased further, the final state of the solution becomes peri-
odic. One cycle of the oscillation for R=70Rc is shown in
Fig. 5. Two, three, and four convection cells appear in turn at

FIG. 5. One cycle of the oscillation for Vc=10, �=0.5, Ic=0.66, and R=70Rc. The basic equilibrium concentration profile is shown in Fig. 3�a�. The
instantaneous streamlines are plotted at equal intervals of time and the period is approximately 0.17 in nondimensional units.
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the bottom of the domain in one oscillation cycle. The
counter-rotating cells on the top disappear and reappear
again during the cycle.

Next we consider Ic=0.63. In this case the maximum of
the equilibrium concentration occurs near the midheight of
the domain. As in the previous case, a single convection cell
solution is observed for R=1.5Rc �see Fig. 6�a��. As the value
of R is increased to 5Rc, the preferred solution is two-cell
convection with weak counter-rotating cells at the top layer.
This two-cell convection solution with counter-rotating cells
at the top persists as R is increased to 30Rc. The counter-
rotating cells at the top grow in size with the increase in the
Rayleigh number. At R=40Rc, we observe that another set of
counter-rotating cells appears on top of the previous counter-
rotating cells �see Fig. 6�c��. All the solutions from R=5Rc to
R=40Rc possess symmetry with respect to the midvertical
line. But this symmetry no longer exists for R=50Rc, as
shown in Fig. 6�d�. At R=60Rc we observe a periodic solu-
tion that persists as R is increased to 100Rc. The periodic
solution is similar to the periodic solution observed for Ic

=0.66 and R=70Rc �see the previous paragraph�. During one
cycle of the oscillation, two and three convection cells ap-
pear in turn at the bottom of the domain.

2. Absorption coefficient �=1.0

For Ic=0.52, all the solutions are steady for R in the
range from 1.5Rc to 90Rc. For R=1.5Rc and 5Rc we find a
single convection cell solution. For 10Rc�R�70Rc, the
steady-state solutions consist of two-cell convection with
counter-rotating cells near the top layer. The solutions for
10Rc�R�70Rc are symmetric about the vertical midline.
For R=80Rc and 90Rc the steady solutions are not symmetric
about the vertical midline. The solution becomes periodic
when R is increased to 100Rc.

For I=0.50, all the solutions for R in the range from
1.5Rc to 50Rc are steady. A single convection cell solution is
observed for R=1.5Rc. For R=5Rc–40Rc, the solutions con-
sist of two-cell convection with counter-rotating cells near
the upper surface. When R becomes 50Rc or higher the so-
lution becomes periodic.

B. Vc=15 and Vc=20

When Vc=15 and �=0.5, the solutions are similar to
those of �=0.5 and Vc=10. However, some differences ap-
pear when Vc=15 and �=1.0. We start with Vc=15, �=1.0,
and Ic=0.51 for which the location of the maximum concen-

FIG. 6. Streamlines of steady solu-
tions for Vc=10, �=0.5, and Ic=0.63.
The peak of the basic equilibrium con-
centration profile for these parameters
is near the midheight of the domain
�see Fig. 3�a��. New counter-rotating
cells appear with an increase in the
value of R prior to the periodic state.
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tration occurs around z=3/4. When R=1.5Rc we observe a
periodic solution instead of a steady solution observed in the
previous cases.

The evolution of central concentration, nmid

=n�3/4 ,1 /2�, at the midpoint of the domain is shown in Fig.
7�a�. The equilibrium solution becomes unstable around t
=3. After some transient oscillations, the solution becomes
periodic. The fluctuation of nmid in 6� t�10 �see Fig. 7�a��
corresponds to the periodic solution. The reason for observ-
ing this periodic solution is that the most unstable mode at
the critical Rayleigh number is overstable, i.e., oscillatory
�see Fig. 7�b��. The oscillatory mode at the critical state per-
sists at R=1.5Rc, and in Fig. 8 we show one cycle of oscil-
lation of this solution.

The mechanism of the oscillations is explained as fol-
lows. If the Rayleigh number is near the threshold, the con-
centration contours will be horizontal with the maximum
concentration located near z=3/4. Thus the region above the
maximum concentration level will be stable and the region
below will be unstable. Since R=1.5Rc is above the threshold
value, the convection in the unstable region penetrates the
upper stable region. Figure 8�a� shows a clockwise convec-
tion cell extending throughout the domain. As a result of
clockwise convection the concentration in the right half of
the domain is higher than that in the left half of the domain.
The position of the greatest concentration shifts up in the

right half and vice versa. The location of the maximum con-
centration in the right and left halves changes accordingly.
Thus in the unstable region of the right half domain the
convection and vertical cell flux oppose each other. The con-
vection acts to bring cells downward whereas the vertical
cell flux pushes the cells upward. As a result the strength of
the convection decreases. Meanwhile, in the left half of the
domain, the cells accumulate due to the downward move-
ment of the cells and cells carried by convection from the
right half. The accumulated cells in the left half generate an
anticlockwise convection cell in the bottom left corner and
the reduced convection strength in the right half no longer
penetrates the whole layer. The clockwise convection cell
moves to the top right corner and it reinforces the left anti-
clockwise convection cell. Thus the left half convection cell
grows in magnitude and ultimately fills the whole domain.
The same cycle is again repeated in the left half of the do-
main and the periodic solution results.

The results for some other values of R in this case also
are different from the previous cases. Here for R=5Rc the
solution is the two-cell convection and when R=10Rc the
preferred solution consists of two-cell convection with
counter-rotating cells at the top. A three-cell convection so-
lution with counter-rotating cells at the top is observed for
R=20Rc and R=40Rc. When R equals 50Rc, the preferred
solution consists of four-cell convection with counter-

FIG. 7. �a� Variation of the central
concentration, nmid=n�3/4 ,1 /2�, with
time for R=1.5Rc and �b� the corre-
sponding neutral curve �solid line for
the stationary mode and dotted line for
the oscillatory mode� at the onset of
bioconvection. The other parameter
values are Vc=15, �=1.0, and Ic

=0.51.

FIG. 8. One cycle of the oscillation
for Vc=15, �=1.0, Ic=0.51, and R
=1.5Rc. The peak of the basic equilib-
rium concentration profile for these
parameters develops around three-
quarter height of the domain. The in-
stantaneous streamlines and concen-
tration are plotted using solid and
dotted lines respectively. The values
on the concentration contours increase
as we move towards the inner
contours.
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rotating cells at the top. The last solution persists when R
becomes 100Rc. Also all the solutions mentioned in this
paragraph are steady. In the previous cases, the preferred
solutions at a higher Rayleigh number are either steady two-
cell convection with counter-rotating cells or periodic solu-
tions. Here we see that the number of convection cells in-
creases from two to four and all of them are steady. Figure 9
shows representative solutions in this case.

When Vc=20, �=0.5, and Ic=0.64, the location of the
maximum concentration occurs around z=3/4. The solution
at R=1.5Rc is periodic. This is due to the overstability at the
critical Rayleigh number and is similar to the case when Vc

=15 and �=1.0. The other solutions are similar to those
when Vc=15.

VI. SUMMARY OF RESULTS

All the results presented in Sec. V are presented in Table
III below, and the following notation is used. The notations
m and m�s� represent m-cell convection and symmetric �with
respect to midvertical line� m-cell convection solutions, re-
spectively. The notations mm�s� and mm�ns� are used to rep-
resent symmetric m-cell convection with counter-rotating
cells at the top and asymmetric m-cell convection with
counter-rotating cells at the top. Finally, p stands for periodic
solution. Ic1 and Ic2 denote the critical light intensities such
that the maximum of the static equilibrium concentration lo-
cated near z=3/4 and z=1/2, respectively. The critical

FIG. 9. Streamlines of steady solu-
tions for Vc=15, �=1.0, and Ic=0.51.
The peak of the basic equilibrium con-
centration profile for these parameters
is near the three-quarter height of the
domain. The number of convection
cells increases with R in the range
from R=1.5Rc to R=50Rc and then re-
mains constant as R is increased to
100Rc.

TABLE III. Summary of the numerical results. See the text for the explanation of the notations. The critical wavelengths are shown in the last line of the table.

R /Rc

Vc=10 Vc=15 Vc=20

�=0.5 �=1.0 �=0.5 �=1.0 �=0.5 �=1.0

Ic1 Ic2 Ic1 Ic2 Ic1 Ic2 Ic1 Ic2 Ic1 Ic2 Ic1 Ic2

1.5 1 1 1 1 1 1 p 1 p 1 p 1

5 2�s� 22�s� 1 22�s� 2�s� 22�s� 2�s� 22�s� 2�s� 22�s� 2�s� 22�s�
10 2�s� 22�s� 22�s� 22�s� 22�s� 22�s� 22�s� 22�s� 22�s� 22�s� 33�s� 22�s�
20 22�s� 22�s� 22�s� 22�s� 22�ns� 22�s� 33�s� 22�s� 33�s� 22�s� 33�s� 22�s�
30 22�s� 22�s� 22�s� 22�s� p 22�s� 33�s� 22�ns� 33�s� 22�s� 33�s� 33�s�
40 22�s� 222

�s� 22�s� 22�s� p p 33�s� p 33�s� p 44�s� 33�s�
50 22�ns� 222

�ns� 22�s� p p p 44�s� p 33�s� p 44�s� 33�s�
60 22�ns� p 22�s� p p p 44�s� p p p 55�s� 33�s�
70 p p 22�s� p p p 44�s� p p p 44�s� 33�s�
80 p p 22�ns� p p p 44�s� p p p 44�s� 44�s�
90 p p 22�ns� p p p 44�s� p p p 55�s� 44�s�

100 p p p p p p 44�s� p p p 66�s� 44�s�
�c 2.88 2.0 2.0 2.0 2.8 1.94 3.0 1.86 2.9 1.86 3.2 1.8
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wavelengths �c for each set of parameter values are also
shown in the last line of Table III.

VII. CONCLUSIONS

A conservative finite-difference method was applied to
solve the phototactic bioconvection problem in two dimen-
sions. The bioconvection model is based on the continuum
model of Vincent and Hill13 which takes into account the
self-shading effect of the microorganisms. The results are
presented for a set of values of swimming speed and absorp-
tion coefficient when the Rayleigh number is varied from
1.5Rc to 100Rc. At a low Rayleigh number, the solutions are
steady except when the critical state is overstable. In that
case the solution is oscillatory at R=1.5Rc and a simple
mechanism for the oscillatory behavior was presented in Sec.
V B. Usually the overstability occurs when the static equilib-
rium concentration has maximum near three-quarters of the
height of the domain. The normalized width of the domain is
chosen to be half of the wavelength at the corresponding
critical number. Thus only one-cell convection is observed
when the Rayleigh number is near critical value, i.e., R
=1.5Rc. At higher Rayleigh numbers, the single convection
cell solution is not preferred, instead we observe multiple
convection cells with counter-rotating cells at the top. In all
of the simulation with lower absorption coefficient ��=0.5�,
the final state of the solution is periodic. In some cases with
higher swimming speed and absorption coefficient, the final
state might be steady. In that case usually the number of
convection cells increases with an increase in the value of the
Rayleigh number.

The experimental study of phototactic bioconvection
presents some difficulties and, to date, there are no quantita-
tive results. For comparison with our study, it will be neces-
sary to identify a suitable species of microorganisms that are
predominantly phototactic. Most species of algae are gyro-
tactic or gravitactic, in addition to being phototactic �Hill and
Häder,27 and Kessler, Hill, and Häder28�. Experiments to de-
termine taxis functions, extinction, and diffusion coefficients,
etc., will also be required. We await with interest experi-
ments on the fascinating phenomena revealed by these simu-
lations.
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