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In this work the dynamics of liquid crystal ordering in a cylindrical geometry are
considered. We study a system with liquid crystalline properties that exhibits
translational symmetry along the cylinder axis and, therefore, the problem is effec-
tively two-dimensional. The orientation of liquid crystals is described by a ten-
sorial order parameter and the dynamics are governed by a balance between the
dissipation and the rate of change of free energy, which includes the elastic, ther-
motropic and surface energy terms. The evolution of the þ2 defect differentiating
first into two þ1 disclinations and subsequently into four þ1=2 defects is ana-
lysed. Different boundary conditions, namely strong and weak or no anchoring,
have been considered and the critical value for the anchoring strength, at which
þ1=2 defects are very close to escaping through the boundary but still remain there
at equilibrium, has been identified.
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INTRODUCTION

Existing, new and emerging electro-optic technologies have focused the
efforts of many engineers, physicists and chemists on the applications
of liquid crystals in flat-panel displays. It is the susceptibility of liquid
crystals to external (electric or magnetic) fields [1–3] combined with
the discovery of polymer-dispersed liquid crystal materials [4–6] that
suggested the applications of spherical liquid crystal droplets in display
technologies. A great deal of current studies on liquid crystals are now
centred around this theme and a good historical overview including the
avenues of present research in that area can be found in [7].

Commercial use of liquid crystals is not the only interest for scien-
tists and academic curiosity in these ubiquitous, versatile materials
led them to explore other areas of research as well. For instance, some
biological tissues have liquid crystal structures and many biologists,
medical researchers and pharmacists are now also studying and
exploiting liquid crystals. Studies into the astonishing properties (for
example, growth [8]) of liquid crystals can even provide an under-
standing into the origin of life.

Rich and intriguing physical phenomena of ordering and defects in
liquid crystals confined to curved geometries also attracted consider-
able attention. Systems with simple cylindrical symmetry were
employed to study the elastic properties of liquid crystals. Details on
various aspects of dislocation theory can be found in [9].

Different nematic director fields of liquid crystals constrained to
cylindrical environments have been studied [10–14]. Homeotropic
(perpendicular) boundary conditions were applied on the cylindrical
walls. The escaped radial-director-field configuration, possibly form-
ing a point defect on the cylinder axis, was found to be of lower energy
than the planar radial-director-field predicted earlier. Defects occur
often in liquid crystals and they can be of different strength [15]; how-
ever, much of the attention has been given to nematics with a þ1 type
of disclination.

In this work, the dynamics of liquid crystal ordering with the initial
director configuration prescribed by a þ2 planar defect placed in the
centre of a cross-section of a circular cylinder are considered. We study
the model system with liquid crystalline properties that exhibits
translational symmetry along the central axis of the cylinder and,
therefore, the problem is effectively reduced to two dimensions. And
though we have not constrained the system, no escape into the third
dimension, along the cylinder axis, takes place due to the relatively
small length scale (radius) and possibly due to the high speed of defect
separation compared to escape.
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The liquid crystal orientation is described by a second rank tensor
order parameter and the dynamics are governed by a balance between
the dissipation and the rate of change of free energy. The total free
energy considered includes the elastic energy of distortion of the struc-
ture, the thermotropic energy that dictates a preferred phase, and the
surface energy representing the interaction between the bounding
surface and adjacent liquid crystal molecules. To solve the governing
equations, a programme using a finite element method has been
employed.

First we look at the short time behaviour of the unstableþ2 defect.
The decay occurs in a cascade going from two plus;1 disclinations to
four þ1=2 defects. The mechanism underlying the dynamics of this
disclination topology is discussed. Secondly, after the final division
into four þ1=2 disclinations, the defects either travel to their equilib-
rium positions and stay there, or they escape through the boundary.
Their destination will be dictated by the nature and strength of
anchoring the nematic at the bounding surface.

TENSOR ORDER PARAMETER

The concept of an order parameter defining the amount of orienta-
tional order is not new and details on the scalar or tensor order para-
meter can be found in [17]. The tensor order parameter is used to
remove problems [18] with the degeneracies of the Euler angles and
to be able to investigate the dynamics of defects. For that purpose, a
symmetric traceless tensor of second rank

Q ¼ S1 n� n� 1

3
I

� �
þ S2 m �m � 1

3
I

� �
ð1Þ

is introduced, where S1 and S2 are two scalar order parameters asso-
ciated with order about two directors n and m respectively, and I is the
identity tensor.

The use of a traceless tensor means that the isotropic state is repre-
sented by Q ¼ 0, which makes the expansion of the free energy about
the isotropic state relatively simple. The directors n and m are two
perpendicular vectors (the third direction of symmetry is determined
automatically from these two as n�m) that fully define the orien-
tation of a liquid crystal in the most general nematic state that corre-
sponds to biaxial phase. Note also that the form of the tensor order
parameter (1) reflects the nematic symmetry, i.e., the physical
equivalence of n and �n as well as of m and �m.
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Both vectors n and m are of unit length and they can be described
(Fig. 1) in terms of the Euler angles u; h;w as follows:

n ¼ ðcosu cos h; sinu cos h; sin hÞ;
m ¼ ðsinu cosw� cosu sin h sinw;

� sinu sin h sinw� cosu cosw; cos h sinwÞ:
ð2Þ

The director n is determined by the two angles u and h, while the
director m needs only the additional variable, the Euler angle w, to
describe it as well. w is measured from the direction in the x1x2-plane,
ðsinu;�cosu; 0Þ, that is also perpendicular to n. Here the Euler angles
u; h; w have their standard meaning with respect to laboratory frame
of reference with axes x1; x2; x3.

In fact, both vector variables nðx; tÞ and mðx; tÞ and scalar variables
S1ðx; tÞ and S2ðx; tÞ depend on the spatial coordinates x and time t.
Thus, there are only five separate dependent variables

uðx; tÞ; hðx; tÞ; wðx; tÞ; S1ðx; tÞ; S2ðx; tÞ; ð3Þ

and that fact is reflected in the tensor order parameter (1) as well; it
has also five independent components. It is convenient to rewrite the
traceless tensor Q in the form

Q ¼
q1 q2 q3

q2 q4 q5

q3 q5 �q1 � q4

0
@

1
A; ð4Þ

FIGURE 1 Surface plot for the scalar order parameter S1. The directors n
and m in terms of the Euler angles u; h;w. The axes x1; x2; x3 from the labora-
tory frame of reference.
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where

q1 ¼ S1 cos2 h cos2 uþ S2ðsinu coswþ cosu sinw sin hÞ2 � 1

3
ðS1 þ S2Þ;

q2 ¼ S1 cos2 h sinu cosu

� S2ðcosu cosw� sinu sinw sin hÞðsinu coswþ cosu sinw sin hÞ;
q3 ¼ S1 sin h cos h cosu� S2 sinw cos hðsinu coswþ cosu sinw sin hÞ;

q4 ¼ S1 cos2 h sin2 uþ S2ðcosu cosw� sinu sinw sin hÞ2 � 1

3
ðS1 þ S2Þ;

q5 ¼ S1 sin h cos h sinuþ S2 sinw cos hðcosu cosw� sinu sinw sin hÞ:

Restating the problem in terms of five variables qi ði ¼ 1 . . . 5Þ avoids
difficulties due to the multivaluedness of the Euler angles, and the use
of the components qi removes the degeneracy when h ¼ p=2.

DISSIPATION AND FREE ENERGY

The dynamical equations for a nematic liquid crystal with the tensor
order parameter can be determined from a variational principle orig-
inally put forward by Rayleigh [19]. In a conservative system this prin-
ciple asserts that the dissipation of energy evolves at a minimum rate
relative to all virtual values it could develop due to variations d _qqi. That
requirement results [20] in the balance of energy variations given as

dRþ d _FF ¼ 0; ð5Þ

in which R is the Rayleigh dissipation function and _FF is the rate of
change of free energy.

It is assumed that the rate of dissipation, R, is a functional
invariant of _QQ and, therefore, it can be written approximately in the
positive-definite quadratic form leading to

R ¼
Z
V

RdV ¼
Z
V

c tr _QQ
2
dV; ð6Þ

where c is related to the rotational viscosity of the nematic liquid
crystal and V is a volume in space. The variation of the dissipation
function can be determined easily from the expression (6), and its
density reads

@R

@ _qqi
d _qqi ¼ 2 c tr _QQ

@Q

@qi

� �
d _qqi; ð7Þ

where the summation over repeated indices is used.
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The free energy considered here includes the elastic energy of
distortion of the structure, the thermotropic energy that dictates a
preferred (isotropic or nematic) state, and the surface energy repre-
senting the interaction between the bounding surface and adjacent
liquid crystal molecules. Thus,

F ¼
Z
V

ðFd þ FtÞdV þ
Z
S

Fs dS; ð8Þ

where the energy densities Fd; Ft; Fs correspond to the terms named
above respectively, S is the bounding surface of the volume V. It is
assumed further that the densities for the surface energy and for the
thermotropic energy are functions of the elements of Q only, so that

Fs ¼ FsðqiÞ; Ft ¼ FtðqiÞ;

whereas the elastic (or distortional) energy density is also dependent
on all first order spatial derivatives of Q, i.e.,

Fd ¼ Fdðqi;rqiÞ:

Higher order differentials of Q are neglected here as the distortions
of Q are regarded as small.

The density of the variation of free-energy rate-of-change may be
given using the Euler–Lagrange theorem as

@Ft

@qi
þ @Fd

@qi
� @

@xj

@Fd

@qi;j

� �� �
d _qqi; ð9Þ

where a comma denotes differentiation with respect to a spatial coor-
dinate. Since variations d _qqi are arbitrary and V may be any chosen
volume, then relations (5), (7) and (9) can be restated in the form

@R

@ _qqi
þ @Ft

@qi
þ @Fd

@qi
� @

@xj

@Fd

@qi;j

� �
¼ 0 ði ¼ 1 . . . 5Þ; ð10Þ

and these constitute the governing equations for the components of the
tensor order parameter at every point of space. The system (10) is com-
plemented by boundary conditions on the bounding substrate of the
liquid crystal:

@Fs

@qi
þ nj

@Fd

@qi;j
¼ 0 ði ¼ 1 . . . 5Þ; ð11Þ

where m is the outward normal to the substrate.
The form of thermotropic energy density is taken [21] as

an expansion in a Taylor series about Q ¼ 0 and only the first five
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terms (note that tr Q ¼ 0) are included which are sufficient to
enable the isotropic and nematic states to be simultaneously stable.
Thus,

Ft ¼ F0 þ a trQ2 þ 2b

3
trQ3 þ c trQ4; ð12Þ

where F0 is the energy density of the isotropic state and the coeffi-
cients a; b; c are in general temperature dependent. It is, however,
usual to approximate these coefficients by assuming that b and c are
independent of temperature whilst a ¼ aðT � T�Þ where a > 0 and T�

is the fixed temperature at which the isotropic state becomes unstable.
The elastic or distortional energy density of a liquid crystal is

derived from the energy induced by distorting Q in space. As noted
earlier, the elastic energy density depends on all spatial first-order
derivatives of Q. However, frame indifference and invariance over
rotation or translation mean that not all combinations of Q derivatives
are allowed. Taking that into account, the elastic energy density may

FIGURE 2 Surface plot for the scalar order parameter S1. Equilibrium
positions of two þ1=2 defects are reached. W >> 1.
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be expressed [23] as

Fd ¼ L1

2

@Qij

@xk

@Qij

@xk
þ L2

2

@Qij

@xj

@Qik

@xk
þ L3

2

@Qik

@xj

@Qij

@xk

þ L4

2
ElikQlj

@Qij

@xk
þ L6

2
Qlk þ

@Qij

@xl

@Qij

@xk
; ð13Þ

where the elastic parameters L1;L2;L3;L4;L6 can be related [23] to
the Frank elastic constants k11; k22; k33; k24; q0, and Elik is the Levi-
Civita alternating tensor. For a non-chiral liquid crystal L4 ¼ 0 as
is the case here. The term with the coefficient L6 ensures the map-
ping from the Q tensor to the Frank energy and allows k11 6¼ k33.
However, we assume that L6 ¼ 0 and k11 ¼ k33 (and this is more
accurate close to the nematic–isotropic transition temperature). Note
that there are other elastic terms that are of cubic order in Q which
could be included, but the equations become then extremely cumber-
some and only the L6 term in (13) is needed in order to break the
k11 ¼ k33 degeneracy.

FIGURE 3 Surface plot for the scalar order parameter S1. This shows the
two þ1 defect structure at �tt ¼ 0 :001. W ¼ 0 N=m.
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The form of surface energy density is determined by

Fs ¼
W

2
trðQ�QsÞ

2; ð14Þ

where Qs is the value of the tensor order parameter preferred by
the surface and W is the anchoring strength. The density Fs plays
an important role in the competition between the surface energy
and the bulk energy and it enters the dynamics through the boundary
conditions (11).

RESULTS AND DISCUSSION

To solve numerically the governing equations (10), (11), we use the
FEMLAB 3 programme, which uses a finite element method. Typical
coefficients for the expansion (12) have been assigned based on the
data in [22] for 5CB, which is one of the very few papers to give phy-
sical values for these parameters: a ¼ 0:13 � 106 N=Km2, (T � T� ¼
�5 K and, hence, a ¼ �0:65 � 106 N=m2), b ¼ �1:6 � 106 N=m2, c ¼

FIGURE 4 Surface plot for the scalar order parameter S1. The four þ1=2
defect structure at �tt ¼ 0:0056 is shown. W ¼ 0 N=m.
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3:9 � 106 N=m2. The elastic constants have been chosen for 5CB from
[23–27] and converted to: L1 ¼ 0:92 � 10�12 N, L2 ¼ 3:68 � 10�12 N,
L3 ¼ 0 N. The initial condition is set to tan 2u ¼ x2=x1 (for a þ2 defect),
h ¼ 0, w ¼ 0, S1 ¼ 0:613, S2 ¼ 0. Although this is not an exact solution,
it has the right topology to initiate a þ2 defect. The radius of the
cylinder is r ¼ 0:0316 mm; spatial coordinates, time, and the anchoring
strength are non-dimensionalised as �xxi ¼ xi=r, �tt ¼ t�103=2c, and
W ¼ Wr=L2 respectively; and c is usually of the order of 0:1 Pa s. All
figures show the surface plots for the scalar order parameter S1 apart
from Figure 7 which shows S2.

Different initial configurations for the director field – defects of
þ1=2; þ1; þ3=2 and þ2 type placed in the centre of the circular
cross-section of the cylinder – have been analysed. The preferred
alignment on the substrate is homeotropic (tanu ¼ x2=x1, h ¼ 0,
w ¼ 0, S1 ¼ 0:613, S2 ¼ 0) throughout. When strong anchoring

FIGURE 5 The free energy F computed (F0 ¼ 0 J, W ¼ 0 N=m) for three
structures increasing with the distance �dd from the centre, these are: a þ 2 dis-
clination at the centre, two þ1 defects (at time �tt ¼ 0:001), and subsequently
four þ1=2 defects (�tt ¼ 0:0056). Also shown is the free energy F calculated
for model director fields with four þ1=2 defects seeded at the same distance
�dd from the centre as the corresponding structures in full numerical simulation.
This shows that as the full numerical simulation evolves the free energy
associated with the two þ1 defects is lower than that of the four þ1=2 defects
at the intermediate time �tt ¼ 0:001 when �dd ¼ 0:09.
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(W >> 1) is applied, then the persistent leitmotif of the dynamics is two
þ1=2 disclinations repelling each other into equilibrium positions (Fig.
2) in a final static pattern.

This behaviour is determined by the homeotropic strong-anchoring
boundary condition that strives to conserve the topological defect of
þ1 strength within the domain. Although the escape of a þ1 defect
into the third dimension is not disallowed, it does not take place (so
that h � 0), as might be expected along the cylinder axis [10–14],
due to the relatively small radius (r << 1 mm) of the cylinder and
possibly due to the high speed of defect separation compared to the
escape process. It is the observed division of defects that leads to a very
interesting behaviour in this system in general and with the þ2 initial
defect in particular.

Defect Division

From our computational results, we observe that the þ2 disclination
is a high-energy, unstable structure, which reorganises into four

FIGURE 6 Surface plot for the scalar order parameter S1. This shows the
director field n for two þ1 defect structure at �tt ¼ 0: 001. W ¼ 0 N=m.
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þ1=2 defects. There exists, however, an intermediate stage (for any
value of W) when the þ2 defect undergoes a rapid differentiation into
two þ1 defects (Fig. 3), and only thereafter does the subsequent
division into þ1=2 defects take place (Fig. 4). From the Frank energy
description the energies of a single þ2, two þ1 and four þ1=2 defects
should relate to one another as 4 :2 :1. Thus, one would possibly expect
the þ2 disclination to go immediately into four þ1=2 defects, but that
does not happen.

There are two possible explanations for the mechanism of this cas-
cade division. First, the rate of separation into two þ1 disclinations
may be greater than that into four þ1=2 defects, so that it takes longer
to form the þ1=2 defect structure compared to the þ1 structure.
Secondly, the core energy of two þ1 defects may be lower than the
core energy of four þ1=2 defects at the same distance from the centre.
It is the second mechanism that we believe is the principal effect.

The calculated energy of two þ1 defects or four þ1=2 defects
depends on the distance from the centre. Figure 5 shows the free

FIGURE 7 Surface plot for the scalar order parameter S2. This shows the
director field m for two þ1 defect structure at �tt ¼ 0 :001. W ¼ 0 N=m:
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energy F computed for three structures (by dropping the term with F0

and taking W ¼ 0 N=m): a þ2 disclination in the centre, two þ1
defects that have emerged in a very short time (�tt ¼ 0:001), and
subsequently four þ1=2 defects soon (�tt ¼ 0:0056) after the final
division. The other set of energies shown are for two model director
fields that are deliberately seeded in the domain at fixed points
instead of the computed configuration. These have defect cores of
radius 0.02 and the core boundary condition is set to h ¼ 0, w ¼ 0,
S1 ¼ 0:480, S2 ¼ 0:286. These data are taken from the computed
dynamics. One director field has four þ1=2 defects each fixed symme-
trically at the separation distance �dd1 ¼ 0:09 from the centre (the same
distance as for the two þ1 defects in the computed dynamics) and the
other has four þ1=2 defects each fixed symmetrically at �dd1=2 ¼ 0:21
from the centre (the same distance as for the four þ1=2 defects in
the computed dynamics). On the core boundary (and also as initial con-
dition), the director field for one of the four þ1=2 defects in the first
model is given by tanð1=2Þu ¼ ðx2 � d1Þ=ðx1 þ d1Þ and similarly for

FIGURE 8 Surface plot for the scalar order parameter S1. The two �1 =2 and
four þ1=2 defect structure at �tt ¼ 0:022 is shown here. W ¼ 8:0.
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the others and for the defects in the second model. The energies were
calculated at times �tt ¼ 0:001 and �tt ¼ 0:0056 for the first and second
model respectively. The data in Figure 5 show that when the
separation distance is d1 the computed two þ1 defect state has a lower
energy compared to the four þ1=2 defects in the first model, but that
the computed four þ1=2 defect state has, as expected, almost the same
energy as that of the four þ1=2 defects in the second model at the dis-
tance d1=2 from the centre. The final division itself actually occurs just
before �tt ¼ 0:0056 near where the lines cross in Figure 5. This qualitat-
ive comparison suggests that the cascade division is more energeti-
cally favourable and that the separation into four þ1=2 defects is
inevitable.

Another interesting observation is the relationship between n and
m director fields in defect cores. Almost everywhere within the circu-
lar cross-section the nematic liquid crystal is uniaxial and S2 ¼ 0.
However, the structure around the centre of defects arranges biaxially
as S1 and S2 are different and non-zero. In the core of a planar þ1

FIGURE 9 Surface plot for the scalar order parameter S1. The four þ1=2
defects have migrated to the bounding surface ( �tt ¼ 0 :075). Wcr4 ¼ 2:9:
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defect, for instance, directors n and m may (usually do) form hedgehog
(star) and vortex (circular) patterns, whereas in the core of a planar
þ2 defect directors n and m have the structures that can be obtained
from each other simply by rotating a director field map by p=2 angle.
However, in our particular situation when the þ2 disclination has just
recently decayed into two planar þ1 defects, both directors n and m
form double vortex director fields (Figs. 6 and 7) that would match if
one of them were rotated by an angle of p=2.

Anchoring Effects

What happens to the four þ1=2 defects after division depends on the
boundary conditions. The dependence of specific director configura-
tions within a liquid crystalline material on the angle at which liquid
crystal molecules are anchored to the substrate was noticed [16] a long
time ago. In our study, homeotropic boundary conditions with strong
anchoring generate two �1=2 defects (Fig. 8) to counteract two of

FIGURE 10 Surface plot for the scalar order parameter S1. Two þ1 =2
defects have migrated to the bounding surface. Wcr2 ¼ 5:367.
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the four þ1=2 disclinations in order to ensure the topological charge of
þ1 within the whole circular cross-section on aggregate. As defects
with strengths that are of the same sign repel each other and those
with different sign are attracted, the two �1=2 and two þ1=2 defects
annihilate one another and only two þ1=2 defects will be left. How-
ever, that does not happen when the anchoring is sufficiently weak
(W � Wcr4;Wcr4 ¼ 2:9) and instead four þ1=2 defects migrate towards
the surface (Fig. 9) and disappear, although two very weak þ1=2
defects still remain at opposite poles.

The final destination of the remaining two þ1=2 defects in a final
static pattern may be either their equilibrium positions (as shown in
Fig. 2) at some distance from the boundary (Wcr2 < W) or right on
the bounding surface (Wcr0 < W � Wcr2, Wcr2 ¼ 5:367, Fig. 10). With
a particularly small anchoring strength (W � Wcr0;Wcr0 ¼ 0:815), the
defects escape from the boundary and a stable arrangement of
directors oriented in one particular direction will emerge. Equilibrium
positions of þ1=2 defects are controlled by the anchoring strength.

CONCLUSIONS

The dynamics of liquid crystal ordering considered here within the
circular cross-section of the cylinder are in contrast to the results in
[10–14] for the escaped-radial director field of hyperbolic type. A
cascade mechanism of defect division starting with the þ2 disclination
in the centre, then proceeding with two þ1 defects, and finally
reaching four þ1=2 defect structure is discovered. The critical non-zero
value of the anchoring strength when þ1=2 defects escape from the
picture is established. Although we appreciate the fact that it
is presumably very difficult to create a þ2 defect in a laboratory (as
the dimensions are too small, time is too short and a þ2 defect has
to be seeded somehow), some experimental confirmation of these
results is still desirable.

The tensor order parameter approach allows us to eliminate
problems with the multivaluedness of the Euler angles and to avoid
a singularity in the core of defects. Further numerical work on the
system with a wider length scale suggests that the nematic director
field might escape into the third dimension provided that the cross-
section of the circular cylinder were sufficiently large.
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[7] Crawford, G. P. & Žumer, S. (Eds.) (1996). Liquid Crystals in Complex Geometries,

Taylor & Francis: London.
[8] Lehmann, O. (1907). Die Scheinbar lebenden Kristalle, Esslingen.
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