
ORIGINAL PAPER

P. N. Watton Æ N. A. Hill Æ M. Heil

A mathematical model for the growth of the abdominal
aortic aneurysm

Received: 12 December 2003 / Accepted: 14 July 2004 / Published online: 25 September 2004
� Springer-Verlag Berlin Heidelberg 2004

Abstract We present the first mathematical model to
account for the evolution of the abdominal aortic aneu-
rysm. The artery is modelled as a two-layered, cylindrical
membrane using nonlinear elasticity and a physiologically
realistic constitutive model. It is subject to a constant
systolic pressure and a physiological axial prestretch. The
development of the aneurysm is assumed to be a conse-
quence of the remodelling of its material constituents.
Microstructural ‘recruitment’ and fibre density variables
for the collagen are introduced into the strain energy
density functions. This enables the remodelling of colla-
gen to be addressed as the aneurysm enlarges. An axi-
symmetric aneurysm, with axisymmetric degradation of
elastin and linear differential equations for the remodel-
ling of the fibre variables, is simulated numerically. Using
physiologically determined parameters to model the
abdominal aorta and realistic remodelling rates for its
constituents, the predicted dilations of the aneurysm are
consistent with those observed in vivo. An asymmetric
aneurysm with spinal contact is also modelled, and the
stress distributions are consistent with previous studies.

1 Introduction

This paper is concerned with the modelling of the
abdominal aortic aneurysm (AAA), which is character-

ised by a bulge in the abdominal aorta. Development of
the AAA is associated with a weakening and dilation of
the arterial wall and the possibility of rupture; 80–90%
of ruptured aneurysms will result in death (Wilmink
et al. 1999). Surgery to remove the aneurysm is an op-
tion, but it is a high-risk procedure with a 5% mortality
rate (Raghavan and Vorp 2000). The aims of mathe-
matical modelling of aneurysms are to lead to a greater
understanding of the pathogenesis of the disease and
improved criteria for the prediction of rupture.

The evolution of an aneurysm is assumed to be a
consequence of the remodelling of the artery’s material
constituents. The microstructural characteristics of the
artery need to be incorporated into the model so that
tissue remodelling can be addressed. The abdominal
aorta is a large artery of elastic type (Holzapfel et al.
2000; Humphrey 1995). It consists of three layers, the
intima, media and adventitia. The intima is the inner-
most layer, the adventitia the outermost. The media is
sandwiched between these two layers and is separated
from them by the internal elastic lamellae, which are thin
elastic sheets composed of elastin. A substantial part of
the arterial wall volume consists of an intricate network
of macromolecules consitituting the extra-ceullular
matrix (e.c.m.). This matrix is composed of a variety of
versatile proteins that are secreted locally, by fibroblast
cells, and assembled into an organized meshwork in
close association with the surface of the cell that created
them. The e.c.m. determines the tissue’s structural
properties. For an artery it consists primarily of elastin,
collagen, smooth muscle and ground substance; a
hydrophilic gel within which the collagen and elastin
tissues are embedded. Elastin and collagen are the main
load bearers. Collagen is the stiffer and most nonlinear
of the two materials, but at low strains elastin bears
most of the load. This is because at physiological strains
the collagen is tortuous in nature, and is crimped in the
unstrained artery (Shadwick 1999; Raghavan et al.
1999). The elastin gives rise to the artery’s isotropic and
rubber-like behaviour for small deformations whereas
the collagen gives rise to the anisotropy and high
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nonlinearity at larger deformations. For modelling
purposes, the mechanical contribution from the smooth
muscle is ignored (Holzapfel et al. 2000). Dilation of an
aneurysm is accompanied by a loss of elastin and a
weakening of the arterial wall (He and Roach 1993). As
the wall dilates, strains in the elastin and collagen in-
crease. Elastin is a stable protein with a long half-life
(Alberts et. al. 1994), whereas collagen is in a continual
state of deposition and degradation (Humphrey 1999)
with a considerably faster turnover. The highly nonlin-
ear tensile nature of the collagen implies that collagen
remodelling is necessary to account for the large dila-
tions observed in aneurysms. Without remodelling, even
if all the elastin degraded, the strains in the collagen, and
thus the dilation of the wall, would not have to increase
significantly for the total load to be borne.

The remodelling of arteries in response to changes in
their external environment is a recognised phenomenon
and has been considered by, for example, Fung et al.
(1993), Rachev and Meister (1998) and Rodriguez et al.
(1994). However, their analyses were phenomenologi-
cally based, the remodelling driven, for example, by
changes in the thickness, opening angle or compliance of
the arterial wall, rather than explicitly associated with
adaptations of its microstructural architecture. More
recently, Humphrey (1999) has proposed a microstruc-
turally based model which addresses the remodelling of
collagen in altered configurations and considers the
simple case of remodelling at extended and contracted
lengths for a uniaxial model in which the fibres attach
with zero strain. This idea is employed in this work;
however, here it is assumed that the collagen fibre
attaches and configures itself such that its strain at
systole is a constant, ea>0. This remodelling process may
be advantageous for the artery because it adapts so that
the load is primarily borne by the elastin during the
cardiac cycle, and the collagen adapts such that it acts
only to prevent large strains occurring in the arterial wall.

The abdominal aorta is modelled as a cylindrical tube
subject to an axial pre-stretch and a constant internal
systolic pressure. The distal and proximal ends of the
abdominal aorta are fixed to simulate vascular tethering
by the renal and iliac arteries. The constitutive equations
proposed by Holzapfel et al. (2000) to model the arterial
wall are developed to include microstructural features of
the structure of the collagen, namely fibre recruitment
and density variables; these enable the remodelling of
collagen to be simulated. The development of aneurysm
is modelled as the deformation that arises as the material
constituents of the artery remodel whilst it is subject to a
constant pressure. Where possible we have based
parameter values on those from the literature, however,
some may be coarsely estimated/assumed and further
experimental research is required to accurately deter-
mine values.

The systolic blood pressure is 16 KPa whilst the peak
wall shear stress is 2.5 Pa (Cheng et al. 2002), thus
mechanically the shear stress has a negligible effect on
the deformation. However, the permeability of the

intima is dependent on the magnitude of the shear stress
(Lever 1995). As the aneurysm develops, the dynamics
of the fluid flow will change. Consequently, the magni-
tudes of the shear stress exerted on the intima, and the
permeability of the intima will change. The permeability
of the intima may play an important role in the bio-
chemical processes that lead to the destruction of the
elastin, thus the fluid mechanics may be an important
aspect of aneurysm development. However, there is little
data on the temporal and spatial degradation of elastin,
let alone the physiological processes linking this to the
uptake of substances from the bloodstream. Conse-
quently, we have decided to ignore the fluid dynamical
effects and simply prescribe the degradation of elastin.

As the aneurysm develops in size, the naturally
occurring process of fibre turnover acts to restore the
strain in the fibres. This is desirable mechanical behaviour
as it shifts the load bearing back to the more compliant
elastin. In our model, we introduce recruitment variables,
which define the factors by which the tissue must be
stretched with respect to the undeformed configuration,
for the collagen to begin to bear load. This allows us to
simulate the gross mechanical effects of fibre turnover in
altered configurations. As the material constituents re-
model, the new equilibrium displacement field for the
arterial wall needs to be calculated. The wall is treated as a
membrane and so a variational equation over a two-
dimensional domain governs the ensuing deformation
and evolution of the aneurysm. A finite element method is
employed to solve the resulting equations. We obtain
realistic rates of dilation for physiologically realistic
geometric,material and remodelling parameters.Dilation
rates are seen to increase in hypertensive conditions. To
further test the consistency of our model we compare the
predicted stress distributions with those predicted by
previous mathematical models of developed aneurysms.

2 The recruitment variable

An integral part of this work is defining recruitment
variables, which define the factors by which the tissue
must be stretched, for the collagen fibres to bear load.
This enables key aspects of the naturally occurring
physiological process of collagen fibre deposition and
degradation in the altered configuration to be modelled.
Consider a specimen of homogeneous arterial tissue,
with the collagen fibres arranged parallel along its length
(Fig. 1a). If the tissue is stretched parallel to the axis of

Fig. 1 a Collagen fibres are recruited, i.e. begin to bear load, when
unstrained tissue is stretched by a factor r. b The uni-axial model.
In the unstrained state, the collagen is crimped and the length of
elastin is L. A constant force is applied to both ends. In the initial
equilibrium state the strain in the collagen is ea
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the collagen fibres, then beyond a critical stretch, the
fibres will be recruited, and begin to bear load. The
factor the tissue must be stretched for this to occur is
defined by the recruitment variable r. In fact, at the
microscopic level, the fibres are distributed with a range
of waviness (Armeniades et al. 1973) and here r relates to
those fibres that are recruited first. Once recruitment
begins, the collagen bears a load and the subsequent
mechanical behaviour of the whole population of fibres
can be modelled (Armentano et al. 1991).

The strain in the collagen is defined with respect to
the configuration in which it is recruited, whilst the
strain in the elastin is always defined with respect to the
initial reference configuration. Consider Fig. 1b, which
depicts a parallel arrangement of elastin and collagen.
The length L denotes the length of the unstrained tissue
and x its extension. In unstrained tissue, the strain in the
elastin is taken to be zero, and thus the strain in the
elastin is measured with respect to the undeformed
configuration. The Green’s strain in the elastin is

eE ¼
ððLþ xÞ=LÞ2 � 1

2
: ð1Þ

Collagen fibres are recruited when the unstrained tissue
is stretched by a factor r. Hence, the strain in the col-
lagen, eC, is defined with respect to onset of collagen
recruitment, i.e.

eC ¼
½ðrLþ yÞ=rL�2 � 1

2
; y ¼ Lþ x� rL: ð2Þ

Combining Eqs. 1 and 2 gives

eC ¼
eE þ ð1� r2Þ=2

r2
: ð3Þ

The significance of this relationship, i.e. Eq. 3, is that r
can remodel to maintain the strain in the collagen to
some equilibrium value, whilst the strain in the elastin
increases as the aneurysm dilates.

To model the deformations that occur as the elastin
degrades and collagen remodels, it is necessary to define
an equilibrium level of strain for the fibres, which the
collagen attempts to maintain by remodelling. However,
the choice of this equilibrium strain is not straightfor-
ward. In the physiological range of strains, collagen
contributes partly to the load bearing of the arterial
wall. As strains in the arterial wall increase, collagen
becomes the main load bearer and, due to its highly
nonlinear mechanical behaviour, quickly prevents
strains becoming excessive. Consequently, to account
for the large dilations observed in aneurysms, remodel-
ling of collagen must be occurring. Thus, it is hypothe-
sized: collagen remodels to maintain an equilibrium level
of strain in its fibres.

This is consistent with the fact that collagen fibres are
in a continual state of degradation and deposition
(Humphrey 1999), and that the fibres attach in a state of
strain (Alberts et al. 1994). In this work, the equilibrium
strain, ea, is defined to be the strain in the collagen at

systole. The justification for this definition of ea is based
on the following reasoning.

– The fibroblasts work on the collagen they have
secreted, crawling over it and tugging on it—helping
to compact it into sheets and draw it out into cables,
i.e. they act to attach the collagen fibres to the e.c.m in
a state of strain (Alberts et al. 1994, p 984). Therefore,
it may be hypothesized that there is a maximum
attachment strain that the fibroblasts can achieve.

– We assume that the time taken for the fibroblasts to
configure the collagen fibres is much longer than the
duration of a pulse, so that the maximum fibre
attachment strain will occur at the systolic (peak)
strain of the cardiac cycle. This implies the peak strain
in the fibres is equal to the peak attachment strain.

– Fibres that achieve maximum attachment strains are
the first to be recruited as the tissue is strained. Thus
the definition of a maximum attachment strain is
consistent with the definition of r, which relates to
those fibres that are recruited first. Other fibres with
lower levels of attachment strain are recruited at a
later stage, which is accounted for by the proposed
stress functions to model the gross mechanical
behaviour of the population of collagen fibres.

Note, not all fibres attach with the maximum
attachment strain. There would be a distribution of
attachment strains achieved; this is consistent with the
variability in waviness of a population of collagen fibres.
In this work, we assume that the recruitment distribu-
tion function is unchanged throughout the remodelling.
This is unlikely, as changes in the distribution of the
population of collagen fibres may occur, and could be
an important aspect of the remodelling. However, this
would lead to added complexity, and at this stage, more
insight may be gained with a simpler model—so here we
assume that the mechanical behaviour of a population
of collagen fibres is fixed throughout the remodelling.
However, such features could be included in later
developments.

If collagen is recruited when the tissue has been
stretched by a factor r, and if a systolic stretch is
achieved when tissue has been stretched by a factor ks,
then from Eq. 3 the attachment strain is

ea ¼
k2s � r2

2r2
: ð4Þ

Other definitions may be proposed for this parameter.
Further experimental work is needed to clarify the nat-
ure of the attachment of collagen fibres in altered con-
figurations as the aneurysm develops, and test the
validity of these assumptions.

We now consider a conceptual one-dimensional
model to gain insight into the mechanical aspects of the
remodelling. Consider Fig. 1b, which illustrates a par-
allel arrangement of elastin and collagen, subject to a
constant force F0. The force balance equation is

AEðtÞrEðeEÞ þ ACðtÞrCðeCÞ � F0 ¼ 0; ð5Þ
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where AE (t) and AC(t) represent cross-sectional areas,
and rE(eE) and rC(eC) the Piola–Kirchhoff stresses for
the elastin (E) and collagen (C), respectively. Initially,
the system (t=0) is assumed to be in equilibrium, and
thus the strain in the collagen is ea. If the elastin de-
grades then, since a fixed axial force is acting, the system
will stretch and the strain in the collagen will increase so
that eC>ea. If the strain in the collagen deviates from the
equilibrium strain, it is hypothesized that a remodelling
process acts to restore the strain to ea. If it is assumed
that the population distribution of fibres remains the
same, then for the collagen to restore its strain to ea, two
processes can occur:

– The recruitment variable r can increase in value until a
new equilibrium configuration is achieved.

– The collagen can thicken. This will act to contract the
uniaxial system and restore the strain in the collagen.
This is achieved by remodelling the cross-sectional
area, AC(t), of collagen. An increase in AC(t) is con-
sistent with the fact that an increase in the collagen
content is observed in aneurysms (He and Roach
1993). This may be seen as a desirable remodelling
response to the development of the aneurysm for it
limits the rate, and extent of the dilation. In this work
we attribute the thickening of the collagen to an in-
crease in the density of collagen fibres whilst the
dimensions of individual fibres remain the same.
However, it may be that it is the number of fibres that
remain constant and thicker fibres are laid down.
Experimental work is needed to clarify this matter so
that more suitable remodelling mechanisms can be
proposed.

The remodelling of the recruitment variable is subtle
and it is helpful to consider its mechanical effects, in a
conceptual one-dimensional model before analysing the
more complex geometry of an aneurysm. When elastin
degrades, the system will stretch, an increased load will
be borne by the collagen, and the compliance will de-
crease. If the collagen fibres are in a continual state of
deposition and degradation then this turnover will cause
the tissue to stretch yet further until a new equilibrium is
restored. This will shift some of the load-bearing back to
the elastin and reduce the load borne by the collagen,
and the strain of the fibres, thus increasing the compli-
ance. Figure 2 considers the effects of fibre deposition
and degradation, on the scale of the collagen fibres, for a
tissue that is stretched and held at fixed length whilst
remodelling occurs, and illustrates that this physiologi-
cal process can be simulated by remodelling the
recruitment variable r.

3 Mathematical description of the deformation

The strain field through the thickness of the normal
arterial wall is approximately uniform about the physi-
ological range of strains (Fung and Choung 1986). If it is
assumed that the mechanism by which collagen fibres

attach to the artery, is independent of the current con-
figuration of the artery, then this process may naturally
maintain a uniform strain field (in the collagen)
throughout the thickness of the arterial wall as the
aneurysm develops. The deformations at a constant
systolic pressure are considered. Thus for the purposes
of studying the deformations that arise as the aneurysm
develops it is sufficient to consider only the strains in the
midplane, and this is the approach we adopt; we have
modelled the arterial wall as a membrane, using a geo-
metric nonlinear membrane theory (see e.g. Wempner
1973; Heil 1996).

Fig. 2 Attachment of collagen fibres in altered configurations.
1 The reference state is the original undeformed configuration of
the tissue. In the undeformed state, the fibres have a characteristic
waviness. 2 The initial physiological state is such that the strain in
the collagen fibres is the equilibrium value. At systole, the strain in
the fibres is ea. The tissue is currently in equilibrium. Although the
fibres are in a continual state of degradation and deposition, new
fibres will attach with identical levels of strain to those that decay
and thus no changes occur in the mechanical properties of the
tissue. 3 Suppose the tissue is stretched further and, for the
purposes of this example, held at fixed length. New fibres attach to
the tissue so that at the new systolic configuration their strain is ea.
The old fibres decay, and the distribution of collagen fibres
changes. The naturally occurring turnover of the fibres, will
proceed to restore strain in all the fibres to equilibrium levels.
4 All of the old fibres have decayed and have been replaced by new
fibres of strain ea. The artery reaches a new equilibrium
configuration. 5 If the tissue is contracted back to the reference
configuration, the crimp of the collagen will have increased.
Equivalently, the factor the tissue must be stretched for the
collagen to be recruited has increased. Hence the effects of
deposition and degradation in altered configurations can be
captured by remodelling the recruitment variable r—which relates
to the waviness of collagen in the undeformed configuration
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In general, a body-fitted coordinate system is used to
describe the membrane with Lagrangian coordinates xa

(a=1, 2) parallel to the midplane and the x3 coordinate
perpendicular to it. The midplane is positioned at x3=0;
the upper and lower surfaces of the membrane have
coordinates x3=±h/2, where h is the thickness of the
membrane. Lower case letters refer to the undeformed
reference state, upper case to the deformed state. The
Einstein summation convention is used throughout. The
position of a material point on the midplane of
the membrane is given by q (x1, x2, x3=0)=q0 (x1, x2).
The covariant base vectors, which are tangent to the
coordinate lines, xa, on the midplane, are given by

aa ¼
@q0

@xa
¼ q0;a; ð6Þ

where the comma denotes partial differentiation with
respect to xa . The unit normal to the two midplane base
vectors is chosen as the third midplane base vector, i.e.

a3 ¼
a1 ^ a2

a1 ^ a2j j : ð7Þ

The covariant midplane metric tensors in the unde-
formed configuration are aij=ai Æ aj. During the defor-
mation a material point on the membrane’s midplane,
which was at a position = q

0 (xa), in the undeformed
reference configuration, is displaced to a new position

Q0ðxaÞ ¼ q0ðxaÞ þ vðxaÞ; ð8Þ

where v(xa) is the midplane displacement field. The
tangent vectors to the deformed midplane are thus

Aa ¼ Q0
;a ¼ aa þ v;a: ð9Þ

The normal to the midplane base vectors, A3, is chosen
as the third midplane base vector, with the magnitude
defined such that the incompressibility condition is sat-
isfied on the midplane, i.e.

A3 ¼
ðA1 ^ A2Þ a1 ^ a2j j

A1 ^ A2j j : ð10Þ

The covariant midplane metric tensors in the deformed
configuration are Aij=Ai Æ Aj (i, j=1, 2, 3). If it is as-
sumed that off-midplane strain field is equal to that of the
midplane then the Green’s strain tensor can be expressed
in terms of the difference of the midplane metrics,

eij ¼
Aij � aij

2
: ð11Þ

We now turn to the specific geometry of our model of
the aneurysm. The abdominal aorta is modelled as a thin
cylinder of undeformed radius R, length L, and thick-
ness h. The thicknesses of the media and adventitia are
denoted hM and hA respectively. It is subject to a phys-
iological axial pre-stretch, kz

0, and a constant systolic
pressure p0 (= 16 kPa) which causes a circumferential
stretch of kh

0. The initial in vivo configuration is thus a
cylindrical tube of length kz

0L, radius kh
0R, and thick-

ness h/kz
0kh

0. The ends of the initial deformed configu-
ration are fixed throughout the deformation to simulate
vascular tethering by the renal and iliac arteries. The
cylindrical polar Lagrangian coordinates, xi (i=1,2,3),
denote arc lengths in the axial, azimuthal and radial
directions, respectively. The vector to a material point
on the midplane before the deformation is thus

q0 ¼ R sin
x2

R

� �
;R cos

x2

R

� �
; x1

� �

for x1 2 ½0; L�; x2 2 ½0; 2pRÞ: ð12Þ

After the deformation, the material point on the mid-
plane is displaced to a new position,

Q0 ¼ ½ðRþ v3Þ sin hþ v2 cos h; ðRþ v3Þ cos h
� v2 sin h; x1 þ v1�; ð13Þ

where h=x2/R, and v1, v2, v3 denote the displacements in
the axial, azimuthal and radial directions, respectively.
The strain field for the midplane is calculated using
Eqs. 6, 7, 8, 9, 10 and 11.

4 Governing equations

The principle of virtual displacements,

dPstrain � dPload ¼ 0; ð14Þ

governs the deformation, where dPstrain is the variation
of the strain energy stored in the deformed aneurysm
wall and dPload is the work done by the pressure,
p, acting on the tube surface during a virtual displace-
ment, i.e.
Z
v

dw dv�
I
S

pðÂ3 � dQ0ÞdS ¼ 0; ð15Þ

where dQ0=d(q0+v)=dviai, dS=|A1 � A2| dx
1 dx2, and

Â3 ¼ ðA1 ^ A2Þ= A1 ^ A2j j: Here, we make the approxi-
mation that the virtual displacement of the upper and
lower surfaces is equal to that of the midplane and that
the area elements of the upper and lower surfaces are
equal to that of the midplane. The assumption that the
strain field in the aneurysm tissue is uniform through the
thickness of the arterial wall, i.e. the strain field of the
off-midplane is equal to that of the midplane, implies
that the strain energy density functions (SEDFs), w, are
independent of x3 . This enables an immediate integra-
tion yielding

Z2pR

0

ZL

0

½dðhMwMþhAwAÞ�pðA1^A2Þ �dviai�dx1 dx2¼ 0:

ð16Þ

Appropriate functional forms for the SEDFs for the
media, wM, and adventitia, wA, are required.
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5 Strain energy density functions for aneurysmal tissue

The aneurysm develops as the material constituents re-
model; thus it is important to use a constitutive model
that accounts for the microstructure of the artery. Hol-
zapfel et al. (2000) have recently proposed a general
constitutive model that explicitly accounts for the indi-
vidual contributions of the elastin and the collagen in the
arterial wall. It is assumed that the mechanical response
of the artery is due to the media and the adventitia,
i.e. the intima is not considered to contribute mechani-
cally. Each layer is modelled as a fibre reinforced com-
posite. The structure of the collagen was determined
experimentally. It was found that the fibres are arranged
in double helical structures of pitches ±cM in the media
and of pitches ±cA in the adventitia. The SEDF is split
into two parts, one for isotropic properties and the other
for anisotropic properties. It is supposed that the
mechanical response of the artery at low strains is gov-
erned by the non-collagenous constituents (elastin) that
respond isotropically. The mechanical response at high
strains is governed chiefly by the collagenous constitu-
ents that are anisotropic. A classical neo-Hookean
model is used to model the isotropic response in each
layer. An exponential functional form was used to de-
scribe the energy stored in the collagen fibres, so that the
strong stiffening effect that occurs at high pressures
could be captured. Holzapfel et al. (2000) propose
SEDFs for the media, wM, and adventitia, wA, given by

wM ¼ cMðe11 þ e22 þ e33Þ
þ

X
e2
Mp
�0;p¼�

kM exp axe
2
Mp

h i
� 1

� �
; ð17Þ

wA ¼ cAðe11 þ e22 þ e33Þ þ
X

e2
Ap
�0;p¼�

kA exp axe
2
Ap

h i
� 1

� �
;

ð18Þ

where

eJp ¼ e11 sin
2 cJp þ e22 cos

2 cJp þ 2e12 sin cJp cos cJp ; ð19Þ

is the Green’s strain resolved in the direction of a
collagen fibre which has an orientation of cJp to the
azimuthal axis. The subscript J takes values M and A,
referring to the media and adventitia respectively, and
p denotes the pitch ±cJ. For a more complete
description of this constitutive model see Holzapfel
et al. (2000). Note, Holzapfel et al. (2000) express (17)
and (18) in terms of the invariants of the deformation
and we have written them explicitly in terms of the
Green’s strain. The constants cM and cA are associated
with the non-collagenous matrix of the material, and
ax, kM and kA with the collagenous part. Previous
studies (Holzapfel 2000) have found that the neo-
Hookean elastic properties of the adventitia are an
order of magnitude lower than that for the media

(6–14 times depending on location) and thus they set
cA=cM/10. Holzapfel determined specific parameters
for the carotid artery of a rat and hence the actual
values of the material parameters are not of relevance
here. Note, the fibres are assumed to have no com-
pressive resistance, i.e. the contribution to the strain
energy is zero if the fibres are in compression.

These SEDFs can be adapted to include microstruc-
tural features for the collagen and elastin. To model
aneurysm development we need to prescribe a degra-
dation of elastin. However, little is known other than the
initial and final concentrations of elastin (MacSweeney
et al. 1992) and thus appropriate assumptions need to be
made. The fact that the dilation of the aorta is localized
to a specific region would suggest that elastin is being
lost principally in a confined region. Here, the concen-
tration of elastin in the arterial wall cE(x

1, x2, t) is taken
to be a double Gaussian exponential

cEðx1; x2; tÞ ¼ 1� 1� ðcminÞt=T
� �

� exp �m1
L1 � 2x1

L1

� �2

� m2
L2 � 2x2

L2

� �2
" #

; ð20Þ

where L1 and L2 denote the Lagrangian lengths of the
membrane in the axial and circumferential directions, m1

(>0) and m2 (>0) are parameters that control the de-
gree of localization of the degradation, and cmin is the
minimum concentration of elastin at time t =T. This
gives a point of minimum concentration of elastin, and
the elastin concentration tends towards normal values
towards the distal and proximal ends of the abdominal
aorta. The timescale of aneurysm development may vary
from person to person. Given that average growth rate is
0.4 cm/year (Humphrey 1995), and the decision whether
to operate on an aneurysm occurs when the diameter
reaches 5–6 cm, then the timescale of development is of
the order of 10 years. Estimates for the concentration of
elastin in the developed aneurysm suggest that between
63 and 92% of the elastin is lost (He and Roach 1993).
We choose T=10 years and cmin= 0.1. The spatial
degradation is unknown and further experimental work
is needed to clarify the distributions before more accu-
rate mathematical models can be proposed. For an
axisymmetric degradation Eq. 20 reduces to

cEðx1; tÞ ¼ 1� 1� ðcminÞt=T
� �

exp �m1
L1 � 2x1

L1

� �2
" #

:

ð21Þ

The SEDF is then the product of the concentration of
elastin within the tissue and the neo-Hookean SEDF for
the elastin, i.e.

welastin ¼ kEcEðx1; x2; tÞðe11 þ e22 þ e33Þ; ð22Þ

where kE is a material parameter to be determined that
represents the mechanical behaviour of elastin for the
healthy abdominal aorta.
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Although the geometry is now more complex,
recruitment variables for the collagen fibres can be
introduced throughout the tissue. The Green’s strains in
the collagen, eCJp ; are related to the Green’s strains of the

elastin resolved in the directions of the collagen fibres,
eJp ; via the recruitment variables rJpðx1; x2; tÞ:

eCJp ¼
eJp þ 1� r2Jp

� �.
2

� �
r2Jp

; ð23Þ

where rJp defines the factor by which the tissue must be
stretched, in the direction of a fibre, with respect to the
undeformed configuration, for the collagen fibre to be-
gin to bear a load, and eJp is given by (19). Note again,
the subscript J takes values M and A, referring to the
media and adventitia respectively, and p denotes the
pitch ±cJ. The initial values for recruitment variables,
r0Jp ; are chosen so that the fibres in the media and
adventitia have strains equal to ea at systole, i.e. collagen
fibres in the adventitia have strains identical to those in
the media at the systolic pressure at t=0, i.e. from
Eq. 23

r2Jp ¼
1þ 2eJpðkh; kzÞ

1þ 2ea
; ð24Þ

where the strain in the elastin resolved in the direction of
the collagen fibres, eJp ; is calculated with Eq. 19. A value
for ea now needs to be proposed; experiments to deter-
mine its value precisely would be desirable. The media
has collagen fibres orientated primarily in the azimuthal
direction and is roughly twice the thickness of the
adventitia (Table 1). Consequently, the media is the
predominant load bearer during radial inflation. Using
the pressure–radius graph for a human abdominal aorta
given in Lanne et al. (1992) and subtracting the ‘‘esti-
mated’’ contribution from elastin gives an estimate for

the circumferential strain, kh
rec, at which the medial

collagen begins to be recruited. This has been achieved
quite crudely and more precise experiments would be
desirable. Now Eq. 23 implies,

r2Mp
¼

1þ 2eMp

1þ 2eCMp

: ð25Þ

At the onset of recruitment the strain in the medial
collagen fibres is zero, i.e. eCMp

¼ 0: The Green’s strains
are

e11 ¼
k0z
� �2�1

2
; e22 ¼

krech

� �2�1
2

; e12 ¼ 0; ð26Þ

and so the value of the recruitment variable for the
medial collagen at t ¼ 0 r0Mp

� �
is given by Eq. (25) as

r0Mp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0z
� �2

sin2 cM þ krech

� �2
cos cM

q
; ð27Þ

where eMp
k0z ; k

rec
h

� �
is calculated using Eq. 19. The col-

lagen fibre attachment strain, ea, is defined to be the
strain in the fibres at the systolic pressure, (kh=kh

0,
kz=kz

0), and thus from Eq. 23,

ea ¼
eMp

k0h; k
0
z

� �
þ 1� r0Mp

� �2� �

2

ðr0Mp
Þ2

: ð28Þ

The initial values for recruitment variable for the
adventitia, r0Ap

; are chosen so that the fibres in the
adventitia have strains equal to ea at systole, i.e. collagen
fibres in the adventitia have strains identical to those in
the media at the systolic pressure at t=0. Thus Eq. (24)
implies that

r0Ap
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2eAp

ðk0h; k0z ÞÞ=ð1þ 2eaÞ
q

: ð29Þ

where the strain in the elastin resolved in the direction of
the adventitial collagen fibres, eAp

ðk0h; k0z Þ; is calculated
with Eq. (19).

6 Strain energy density function for heterogeneous
aneurysmal tissue

A normalized density variable is introduced, which de-
fines the density of the collagen fibres with respect to the
undeformed configuration of the tissue. The recruitment
variables and normalized fibre density variables are
incorporated into the strain energy representation for
the collagen in Holpzapfel et al.’s (2000) model. Note we
assume that the neo-Hookean response in the media has
an elastinous and a non-elastinous part, kg, due to the
ground substance. Furthermore, we assume that
the contribution from the ground substance is equal in
the media and adventitia. Note that in Holzapfel et al.’s
(2000) model, since there is no degradation of elastin,
only one material parameter is required for the

Table 1 Material constants and physiological data used for mod-
elling the human abdominal aorta

Wall thickness
Media (hM) 1.33 mm
Adventitia (hA) 0.67 mm
Collagen fibre angles
Media (cM) 8.4�
Adventitia (cA) 41.9�
Systolic pressure (p0) 120 mmHg
Undeformed radius (R) 6.6 mm
Axial pre-stretch (kz

0) 1.5
Circumferential stretch
At onset of recruitment (kh

rec) 15.2/13.2
At systole (kh

0) 17.2/13.2
At 200 mmHg (kh

200) 18.5/13.2
Material parameters
Exponential constant for collagen (ax) 40
Elastin (kE) 97.6 kPa
Ground substance (kg) 9.76 kPa
Collagen media (kM) 3.52 kPa
Collagen adventitia (kA) 0.88 kPa

This data is estimated and determined from the pressure radius
curve for the abdominal aorta in Lanne et al. (1992)
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neo-Hookean contribution in the media. The SEDFs,
wJ, are thus

wM ¼ðkg þ cEðx1; x2; tÞkEÞðe11 þ e22 þ e33Þ
þ
X

eC
Mp
�0;p¼� rMp

ðx1; x2ÞnMp
ðx1; x2ÞkM

� exp ax eCMp
eMp

; rMp

� �� �2� �
� 1

� �
ð30Þ

for x3 2 ½ð�hÞ=2; ð�hþ 2hMÞ=2�; and

wA ¼ kgðe11 þ e22 þ e33Þ
þ
X

eC
Ap
�0;p¼� rAp

ðx1; x2ÞnAp
ðx1; x2ÞkA

� exp ax eCAp
eAp

; rAp

� �� �2� �
� 1

� �
ð31Þ

for x3 2 ððh� 2hAÞ=2; h=2�: Recall that hM, hA, h (=hM
+ hA) denote the thicknesses of the media, adventitia
and arterial wall respectively, and cE(x

1, x2, t) represents
the concentration of elastin in media. eCJp x1; x2; t

� �
de-

notes the Green’s strain, and rJp x1; x2; t
� �

and
nJp x1; x2; t
� �

; the recruitment and density variables of the
collagen fibres, of pitch p in layer J. At t = 0, cE(x

1, x2,
0) = nM (x1, x2, 0) = nA (x1, x2, 0) = 1. Following
Holzapfel et al. (2000) we set kg to be an order of
magnitude lower than the contribution from the elastin,
i.e. kg = kE/10. Due to a lack of available data on the
human abdominal aorta, we have based some of the
remaining parameters on those determined by Holzapfel
et al. (2000) for the carotid rat artery, namely the fibre
angles in the media and adventitia, and the relative
magnitude of kM, kA; here we choose kA = kM/4. This is
questionable; experimental work is needed to correctly
determine these values. The undetermined constants, kE,
kM and ax, are set so that the strain energy functions
model the mechanical behaviour of the abdominal aorta
using physiological data (Lanne et al. 1992). Note, the
contributions to the strain energy from the collagen fi-
bres arise only when the fibre strains are positive, eC

Jp > 0;

i.e. fibres do not contribute to the strain energy when in
compression. This SEDF enables remodelling in altered
configurations to be addressed. In all, four recruitment
variables and four fibre density variables are required. In
the absence of physiological data, linear differential
equations are proposed for the remodelling of the
recruitment and density variables:

@rJp

@t
¼ a eCJp � ea

� �
;

@nJp

@t
¼ b eCJp � ea

� �
; ð32Þ

where the constants a, b > 0. The remodelling param-
eter a was determined to correspond to a prescribed
turnover rate of the collagen fibres, as follows. The
abdominal aorta is modelled using a physiologically
determined set of material parameters and is initially
subject to physiological axial and systolic circumferen-
tial stretches. The circumferential stretch is then
instantaneously increased. The strains in the collagen
fibres increase to eSJ (>ea), and the artery is held in this

altered configuration whilst the collagen remodels to
restore its strain ea. Two remodelling mechanisms are
considered for restoring strain:

1. A half-life model (Humphrey 1999) which models the
mechanical effects of fibres being deposited in the
altered configuration with strain ea and the decay of
the strained fibres (with strain eSJ).

2. Remodelling via the recruitment variable. The
kinetics and mechanical effects of the two remodel-
ling mechanisms are compared to give a value for a
associated with the turnover rate of the collagen
fibres.

It is important to remember that the strain in the
elastin is defined with respect to the undeformed con-
figuration, whereas the strain in the collagen is defined
with respect to an altered configuration, via the
recruitment variable. The recruitment variable remodels
to maintain the strain in the collagen to ea. This is to
simulate the effect of fibres being degraded and depos-
ited in altered configurations. It is not regarded as the
effect of disattachment and reattachment of fibres, which
may occur if the tissue is stretched over much shorter
time periods. The fibre density, nJ, is defined with respect
to the undeformed configuration of the tissue, and gives
an interpretation of the relative density of the fibres as
the tissue remodels. If nJ stays constant whilst the
recruitment variable remodels then one can picture this
as the number of fibres in the arterial wall remaining
constant. This allows for a structural interpretation of
the remodelled tissue and may be used to predict chan-
ges in mass content of collagen. This may be useful, since
the mass content of collagen could be measured.
Although this may be less easy to determine than the
thickness of the tissue, it may yield a better under-
standing of the structural changes in the tissue. More
complex models may be proposed in the future as
knowledge of the changing structure of the collagen in
the developing aneurysms improves. Ideally the degra-
dation and deposition of the entire population of col-
lagen fibres would be modelled; however, such an
approach would be computationally expensive in a full
3D model and it would seem preferable to use variables
which are gross mechanical descriptors.

7 Numerical solution

Equation 16 can be written as

Z2pR0

0

ZL

0

ðui � piÞdvi þ uiadvi
;a

h i
dx1 dx2 ¼ 0; ð33Þ

where ui ¼ @ðhMwM þ hAwAÞ=@vi; uia ¼ @ðhMwM þ
hAwAÞ=@vi

;a and pi ¼ pðA1 ^ A2Þ � ai for i = 1, 2, 3 and
a=1, 2. This equation is solved by applying a dis-
placement-based finite element technique. The displace-
ments are approximated by an ansatz
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viðxaÞ ¼
XN

g¼1
V igwgðxaÞ ð34Þ

for N basis functions, wg; piecewise bilinear shape
functions are employed to approximate the displace-
ment field. Similarly, the remodelling variables rJp ; nJp
are defined at nodal points of the domain, with the
variables Rg

Jp and N g
Jp ; and interpolated using the shape

functions:

rJpðxaÞ ¼
XN

g¼1
Rg

JpwgðxaÞ; nJpðxaÞ ¼
XN

g¼1
N g

JpwgðxaÞ ð35Þ

Now

dviðxaÞ ¼
XN

g¼1
dV igwgðxaÞ; dvi

;aðxaÞ ¼
XN

g¼1
dV igwg;aðx

aÞ

ð36Þ

and so insertion of Eq. (35) into Eq. (32) yields

fig ¼
XN

g¼1

Z2pR0

0

ZL

0

½ðui � piÞwg þ uiawg;a�dV igdx1dx2 ¼ 0;

ð37Þ

where ui ¼ uiðcEðx1; x2; tÞ; rJpðR
g
Jp ;wgÞ; nJpðN

g
Jp ;wgÞ;

viðV ig;wgÞ; vi
;aðV ig;wg;aÞÞ; with a similar expression for

/i,a. Equation 37 must hold for all variations dVig. If
nBC of the boundary conditions are specified then this
equation yields 3N-nBC equations for the 3N-nBC un-
knowns. It is solved using a Newton–Raphson scheme,
using the displacement variables as the independent
variables. The initial values of the nodal values of the
recruitment are given by Eqs. 27 and 29. The nodal
values of the fibre density are set equal to 1 throughout
the domain. At each time step the remodelling variables
are updated with a forward Euler time-integration
scheme applied to Eqs. 32, i.e.

Rg
J ðtnþ1Þ ¼ Rg

J ðtnÞ þ aðeCg
Jp ðtnÞ � eaÞdt;

Ng
J ðtnþ1Þ ¼ N g

J ðtnÞ þ aðeCg
Jp ðtnÞ � eaÞdt;

ð38Þ

where the nodal value of the strain in the collagen eCg
Jp is

taken to be the average of the strains in the surrounding
elements. The degradation of the elastin is the driving
force for the remodelling, it causes the strains in the
aneurysm to increase and then the recruitment and
density variables remodel to restore the strain in the
collagen (with respect to the configuration it is recruited
in). A timestep of 0.04 years was employed; decreasing
the timestep further made negligible difference to the
results and merely increased computational time. The
asymmetric model (see below) employed a domain size
of 200·50 elements, and the axisymmetric model, 200
line elements. Increasing the number of elements further
has a negligible effect on the results (Watton).

Partial integration of Eq. 33 yields ui � uia;a ¼ 0: The
initial displacement field for the artery subject to a
pressure p axial stretch kz and radial stretch kh with
undeformed radius R is v1=(kz�1)x1, v2=0,
v3=(kh�1)R. This displacement field can be shown to
imply that /i- /ia,a=0 (i=1, 2, 3 and a=1, 2) and /1=0,
/2=0. Thus /3=0, which implies that

p ¼ 1

Rkz

� 
ðhM þ hAÞkg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ð1Þ

þ hMcEkE

�
1� 1

k2z k
4
h

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ

�

þ
X

J¼M;A;
eC
Jp
�0

2nJ hJ kJ axeCJp exp

�
axðeCJpÞ

2

�
cos2 cJp

r2Jp

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð3Þ

!
: ð39Þ

The first term (1) is a contribution from the non-elas-
tinous neo-Hookean constituents in the media and
adventitia, the second term (2) arises due to the contri-
bution from the elastin in the media, and the third
contribution (3) is due to the collagen in the media and
the adventitia. For an artery subject to a physiological
axial pre-stretch (kz=kz

0), the onset of collagen
recruitment is estimated to begin at kh=kh

rec. This en-
ables values for rM, rA, ea to be determined using the
analysis detailed earlier. For a healthy artery nJ (x

1, x2,
0)=1, and thus in Eq. 39 there are three unknowns to be
determined, namely kE, kM, ax (given that kA=kM/4). It
is assumed that at the initial systolic pressure (kz=kz

0,
kh=kh

0, p=p0) the neo-Hookean constituents bear 80%
of the load. This enables kE to be determined using Eq.
39, i.e.

kE ¼ Rkz0P
0

E:Cp0
h
10
þ hM

� �
1� 1

k0z
� �2

k0h
� �4

 ! !

ð40Þ

where PE:C
0=0.8 (and h=hM+hA, kg=kE/10). At a

pressure of 200 mmHg the circumferential stretch, kh
200,

is determined from Lanne et al. (1992). The proportion
of load borne by the elastin, PE:C

200, and collagen
(1�PE:C

200) are found at this increased pressure using
Eq. 39. Consequently, there are two equations for the
proportion of load borne by the collagen, at the systolic
pressure and a pressure of 200 mmHg, which allows the
constants ax and kM to be determined to achieve
the appropriate mechanical nonlinear behaviour for the
collagen. Table 1 details the material parameters used in
the model, and Fig. 3, the resulting pressure–diameter
relationship.

8 Example of an axisymmetric aneurysm

We will now consider the development of an aneurysm
that arises due to an axisymmetric degradation of
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elastin. The degradation of elastin is given by Eq. 21
with m1=20 (see Fig. 4a). Appropriate remodeling rate
parameters need to be specified for Eqs. 32. Given a
value for the remodelling parameter a that corresponds
to a physiologically realistic turnover rate of the collagen
fibres, the remodelling constant b is then determined so
that the aneurysm dilation is physically realistic, i.e. by a
factor of 2–3 over a period of 10 years. Humphrey
(1999) suggested collagen turnover rates, i.e. the time for
50% of the fibres to decay and be replaced, of
3–90 days, although acknowledging that the timescales
may be longer. It was found that correspondings values
of a resulted in a very nonlinear remodelling profile, with
little dilation initially followed by rapid dilation in the
final few years (Watton 2002). Although aneurysms can
suddenly expand, the average rate of dilation is 0.4
cm/year (Humphrey 1995) and dilation rates are in the
range of 0.3 to 1.1 cm/year (Humphrey 2002). Thus, it
was considered physiologically more consistent to
choose a=12 (130<b< 150), which corresponds to a
(longer) half-life of 180 days. This yields an increasing
rate of dilation but in a less nonlinear manner (Fig. 5a).
It would be desirable if turnover rates of collagen fibres
in aneurysms were more precisely known to both im-
prove and validate our modelling.

An unusual feature of aneurysm growth is high-
lighted in the axisymmetric model (Fig. 5c). Large axial
deformations occur in addition to the visually apparent,
radial deformations. This is a consequence of the fact
that, under in vivo normotensive conditions, the
abdominal aorta is subject to a large axial stretch. As the
elastin degrades, the central region of the aneurysm di-
lates axially, while the distal and proximal end regions of
the aorta retract. As the end regions of the aneurysm
retract, the collagen remodels about the new state, which
promotes further retraction. Conversely, as the central
region dilates axially, the collagen remodels about this
new configuration, allowing further axial dilation. This
effect is highlighted by the difference in the profiles of the
elastin degradation as defined in Lagrangian coordinates
(Fig. 4a) and in a spatially fixed Eulerian frame
(Fig. 4b). Physiologically, this would have the effect of
reducing the in vivo axial stretch of the artery as the
constituents remodel about the new basal state.

The remodelling parameters are determined by first
selecting a value of a that corresponds to a realistic
turnover rate for the collagen fibres, and then choosing
b such that dilation is physiologically realistic over a
timescale of 10 years. The free variable is the remodel-
ling of the collagen density. This must be examined to
see if, once a and b have been prescribed, the remodel-
ling of the density of fibres is physiologically consistent.
Not surprisingly, the density remodels to the greatest
extent in the central region of the aneurysm, which
undergoes the greatest deformation. The adventitial
collagen density remodels more than medial colla-
gen—this may be attributed to the adventitial collagen
being more axially orientated so it is subject to greater
strains due to the high axial deformation in the central
region of the aneurysm. The remodelling of the collagen
density nJ in the medial and adventitial layers at first
seems excessive, with maximum increases of 25 times in
the media (Fig. 6a) and 30 times in the adventitia
(Fig. 6b). However, nJ defines the collagen density with
respect to the undeformed configuration of the tissue.
The remodelled in vivo aneurysmal tissue may retract
only slightly due to the loss of elastin and remodelling of
constituents about the new basal state. In fact, Fukui
et al. (2002) report mean axial and circumferential in
vivo stretches of aneurysmal arterial tissue of 5 and 12%
respectively. The in vivo physiological pre-stretch of the
healthy abdominal aorta is 1.5, therefore the tissue must
have remodelled about the deformed configuration.
Thus, it may be more appropriate to define the collagen

Fig. 3 The pressure–diameter relationship for the model of the
abdominal aorta. Here the relationship is shown for an in vivo
physiological axial stretch of kz=1.5

Fig. 4 a Concentration of elastin as a function of the Lagrangian
coordinate x1 for aneurysm in Fig. 5c. b Concentration profile as
plotted against a spatially fixed Eulerian axial coordinate. t denotes
time in years. The Eulerian profile occupies a wider region than the
Lagrangian profile due to the axial distortion as the aneurysm
develops
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density with respect to the current deformed configura-
tion, ~nJ ðx1; tÞ ¼ nJ ðx1; tÞ= A1 ^ A2j j; where A1 and A2 are
the deformed midplane basis vectors. This gives in-
creases in density of a factor of 2–3 (Fig. 6c and d).

The axisymmetric model may be employed to exam-
ine the effect that changes in the pressure have on the
rate of remodelling. To simulate the onset of hyperten-
sion the pressure is increased stepwise after 2 years by
factors of 1.1, 1.2 and 1.3. As expected, greater pressures
give greater dilation rates (Fig. 7). Importantly, for a
pressure change of up to 30%, the predicted dilations

are still physiologically consistent, i.e. 0.3–1.1 cm per
year (Humphrey 2002). These results have an obvious
clinical application in that patients with aneurysms
should have therapy to prevent hypertensive conditions.

9 Example of an asymmetric aneurysm

Asymmetric aneurysms can be developed either by
assuming an asymmetric degradation of elastin or by
assuming an axisymmetric degradation of elastin and
postulating that the spine limits posterior expansion.
The physiologically determined remodelling-rate
parameters for the axisymmetric model (a=12, b=140)
are used in the subsequent analysis. Here the elastin is
degraded axisymmetrically, and a penalty pressure ap-
proach is used to model spinal contact. The spine is
modelled as a stiff spring-backed plate. Where the
aneurysm wall penetrates the plate, a penalty pressure
acts normal to the aneurysm. The effective pressure

Fig. 5 a Plots of the maximum diameter of the axisymmetric
aneurysm model vs. time showing that a physiologically realistic
dilation is obtained for a=12 (corresponding to a half-life of
6 months) and 130<b<150. This range of parameters gives
physiologically realistic dilation, i.e. the aneurysm diameter
increases by a factor of 2–3 over 10 years. b The initial undeformed
geometry at t=0. c The axisymmetric solution at 10 years using
a=12, b=140 (m1=20, m2=0). The Lagrangian mesh superim-
posed on the midplane of the aneurysm is attached to the material
points and illustrates the deformation from the initial state

Fig. 6 Remodelling of the
a medial nM and b adventitial
nA, collagen density vs. Eulerian
axial coordinate z for the
axisymmetric model shown in
Fig. 4b, t denotes time in years.
The predicted results seem high.
However, if one takes into
account the distortion of the
tissue in the altered
configuration, more realistic
results are obtained:
remodelling of c medial n̂M and
d adventitial n̂A collagen density
with respect to the deformed
configuration. Note that the
rapid increase in dilation of the
central region in later years
results in a drop in density with
respect to the deformed
configuration in this region
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acting on the membrane, p(x1, x2, t) is given by the
difference of internal physiological pressure and the
penalty pressure. For further details, see Watton (2002).
The contact with the spine results in a preferential
anterior bulging in the aneurysm (Fig. 8a).

Axial and azimuthal Cauchy stresses, normalized
with respect to the initial stresses in the healthy
abdominal aorta at systolic pressure, are considered on
the anterior and posterior wall. A rupture criterion
based on the stresses on the tissue is not known—indeed,
the use of such a criterion would be useful only if the
stresses in an aneurysm in a living person could be
accurately measured. Thus a criterion based on the
diameter serves more usefully. However, mathematical
models can easily define the stresses in the aneurysm,
which may be useful in determining the shapes of
aneurysm that are more likely to rupture. The Cauchy
stresses relate to the stress that the tissue ‘feels’; relative
changes in the magnitude of stresses with respect to their
normotensive levels may be a suitable indicator for
likelihood of rupture. The purpose of our model is to
show that a model for an aneurysm can be developed by
considering it to be a consequence of changes to the
tissues composition. To further test the validity of our
model, the stresses it predicts will be compared with
others predicted in the literature.

The stresses, averaged across the thickness of the
arterial wall, will be considered on the anterior surfaces
and posterior surfaces, along deformed coordinate lines,
where x2=0 and x2=pR. Due to the symmetry of the
aneurysm along these deformed coordinate lines, there

are no shear strains. Thus, the average Cauchy stress
through the thickness of the wall is given by

t11av ¼ ð2e11 þ 1ÞS11
av ; t22av ¼ ð2e22 þ 1ÞS22

av ; ð41Þ

where tav
11 and tav

22 denote the average Cauchy stresses
in the direction of the deformed x1 and x2 coordinates.
The quantities Sav

11 and Sav
22 are the average second

Piola–Kirchhoff stresses. The media is twice the thick-
ness of the adventitia and thus the average stress is
weighted accordingly,

S11
av ¼

@ðð2wM þ wAÞ=3Þ
@e11

; S22
av ¼

@ðð2wM þ wAÞ=3Þ
@e22

:

ð42Þ

The stresses can be normalized with respect to axial and
azimuthal stresses at the systolic pressure in the healthy
abdominal aorta,

t̂11 ¼ t11av
t11av0

; t̂22 ¼ t22av
t22av0

; ð43Þ

where t11av0 and t22av0 denote the average axial and azi-
muthal Cauchy stresses in the abdominal aorta at systole
at t = 0. Plots of the normalized Cauchy stresses on the
anterior and posterior wall are shown in Fig. 9. Stresses
increase in the region of maximum dilation. The azi-
muthal stresses increase more than the axial stresses, and
stresses are greater on the anterior wall than the pos-
terior wall. At the proximal and distal ends of this
aneurysm, the axial stresses have dropped almost to zero
and there is a small reduction in the azimuthal stresses.
The stress analysis agrees with the previous analysis
(Elger et al. 1996) in that the azimuthal stresses increase
more than the axial stresses. Also, the axial stress de-
creases towards the distal and proximal ends of the
aneurysm. However, the model predicts increases in the
Cauchy stresses that are particularly greater than in
previous models, i.e. 10–18 times, whereas Elger et al.
(1996) calculate increases by a factor of 2–3. This is a
consequence of the axial strains in the central region of
the aneurysm increasing to such an extent that, in the
deformed configuration, a substantial thinning of the
membrane has occurred (Fig. 8b). Thus, the Cauchy
stresses, which define stresses with respect to deformed
area elements, are very high.

In this work, collagen remodelling has been achieved
by changing the collagen fibre density. However, depo-
sition of collagen may arise by adding more tissue,

Fig. 7 The rate of dilation of the axisymmetric aneurysm increases
in hypertensive conditions and is physiologically consistent. The
remodelling parameters are fixed (a=12, b =140) and the same
degradation of elastin (Fig. 5a) is used for each case

Fig. 8 Profile of an aneurysm
using an axisymmetric
degradation of elastin (m1=5,
m2=0.25) and introducing
contact at y=15 mm. Spinal
contact has resulted in
preferential anterior bulging.
b The deformed thickness of the
aneurysm is very thin
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rather than increasing the density. Mathematically, the
equilibrium deformation field is dependent on the strain
energy stored inside the arterial wall. The deformation
field for a thickening of the wall would be equivalent to
that of an increase in density, provided that this repre-
sented the same number of fibres per unit area of the
membrane, and the wall remained thin enough for
the membrane approximation to be made. The density is
the preferred variable to consider for remodelling pur-
poses, since this relates to the mass of the collagen in the
wall, whereas there is ambiguity in the microstructural
interpretation of a remodelled thickness. Nevertheless,
to correctly estimate stresses, it may be more appropri-
ate if they are defined with respect to a physiologically
realistic aneurysm wall thickness. Elger et al. (1996)
considered the wall thickness of the aneurysm to be
uniform in the deformed configuration. The stress dis-
tributions in this model can be examined by assuming
that the wall thickness in the deformed configuration is
constant.

The Cauchy stresses are defined with respect to the
deformed arterial wall thickness hdef, i.e.
hdef ¼ h= A1 ^ A2j j; where h=hM+hA is the undeformed
thickness, and A1 ^ A2j j is the determinant of the mid-
plane metric tensor. Now consider the forces acting on a
membrane element: if the thickness of the element in-
creases by a factor f, then the stress must decrease by a
factor f for the force to remain the same. The (virtual)
factor by which the deformed aneurysm membrane must
thicken to achieve a uniform systolic thickness is
f ¼ A1 ^ A2j jt¼T= A1 ^ A2j jt¼0; the initial systolic thick-
ness for the healthy axisymmetric model of the abdom-
inal aorta is hsys ¼ h= A1 ^ A2j jt¼0: Thus the stresses
(acting in the deformed configuration) defined with re-
spect to an arterial wall of uniform systolic thickness,
t̂aa
unif; are given by

t̂aa
unif ¼

t̂aa A1 ^ A2j jt¼0
A1 ^ A2j jt¼T

for a ¼ 1; 2: ð44Þ

Plots of the stress distributions on the posterior and
anterior walls, for an aneurysm wall of uniform systolic
thickness, are shown in Fig. 10. The relative magnitudes
and distributions of the stresses are now in agreement
with Elger et al.’s (1996) findings. Furthermore, the
distribution of the stress compares favourably with the
stress analysis of an asymmetric aneurysm model used by
Raghavan and Vorp (2000). They proposed an isotropic
homogeneous SEDF for aneurysmal tissue and used an
idealized asymmetric geometry for the aneurysm, with
no attempt to model spinal contact. The von Mises
stresses were found to be lower towards the proximal
and distal ends, had peaks in the necks of the aneurysm,
and had a local maximum stress that was located at the
centre of the posterior wall. We obtained similar results
with the exception that there is a local maximum azi-
muthal stress on the anterior wall and not the posterior
wall (Fig. 10). However, this difference may be attrib-
uted to two differences in the modelling. Firstly, our
model includes spinal contact, which would act to sup-
port the posterior wall and thus will reduce the stresses in
this region. Secondly, the geometry of the asymmetric
aneurysm differs. Raghavan and Vorp’s (2000) aneu-
rysm’s geometry is more asymmetric, the anterior wall
bulges substantially whilst there is negligible bulging of
the posterior wall. We did find though, that if an
asymmetric aneurysm is developed using an asymmetric
degradation of elastin, with no spinal contact, then
maximum azimuthal and axial stresses occurred on the
center of the posterior wall (Watton 2002). An interest-
ing and possibly important result is obtained when one
examines the distribution of the axial stress. On the
anterior wall it has a localized minimum close to the
distal and proximal ends of the aneurysm. This may
indicate a propensity for the aneurysm to buckle.

The model allows for the strain fields in the elastin
and collagen to be examined independently. The strains
in the collagen fibres are defined with respect to the
deformed configuration by means of the recruitment

Fig. 9 Normalized Cauchy
stresses in the asymmetric
aneurysm with spinal contact at
10 years: a posterior, b anterior.
Azimuthal stresses increase by a
greater factor than the axial
stresses. The magnitudes are
high due to the substantial
thinning of the membrane in the
model

Fig. 10 Cauchy stresses
(t=10 years) for asymmetric
aneurysm with constant wall
thickness in deformed
configuration a posterior,
b anterior. This yields
distributions and magnitudes in
general qualitative agreement
with previous studies
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variables, whilst the strains in the elastin are defined with
respect to the initial undeformed configuration of the
artery. This may be an important feature if the eventual
rupture of the aneurysm is attributed to the failure of a
particular material. Figure 11a shows the distribution of
the strains in the elastin and Fig. 11b the strains in the
collagen fibres, on the anterior of the aneurysm. Similar
results are found for the posterior wall although, as
expected, the strains on this wall increase slightly less.
The azimuthal strains in the elastin are highest in the
central region of the aneurysm and close to normoten-
sive values towards the distal and proximal ends of the
abdominal aorta. The axial strains in the elastin peak in
the central region of maximum dilation, and fall to zero
towards the proximal and distal ends of the aorta.
Collagen fibre strains are greatest in the central region of
maximum dilation and have remodelled to normotensive
values towards the distal and proximal ends of the
abdominal aorta. The adventitial fibre strains increase to
a greater extent than the medial fibre strains because the
adventitial fibres are more axially orientated and the
greatest deformation occurs in the axial direction.
Overall strains in both the elastin and collagen increase
to the greatest extent on the anterior wall at the point of
maximum dilation. The small increase in collagen strains
is a consequence of the remodelling of the recruitment
variables and the fibres strains being defined with respect
to an altered configuration. The much larger increase in
the elastin strains are a result of the artery being subject
to an initial axial pre-stretch which causes the central
region of the artery to dilate and the distal and proximal
ends to retract as the elastin degrades.

10 Conclusions and discussion

The model developed here is the first mathematical
model to consider the evolution of the AAA. It uses a
realistic structural model for the healthy abdominal
aorta and implements the remodelling of the constitu-
ents using structural remodelling equations. However,
this model does not explain why aneurysms are most
likely to occur in the abdominal aorta and not elsewhere
in the body. Furthermore, the central assumption that
drives the remodelling, the degradation of elastin, is
assumed and prescribed. No attempt is made to model

the cause of the loss of elastin, nor to explain why this
primarily occurs in the abdominal aorta. These are
important matters, which require increased physiologi-
cal knowledge; new mathematical models may guide
research. However, there are more immediate criticisms
of the model that could be addressed in subsequent
work.

During development of the aneurysm, the Green’s
strains in the elastin become very large. The isotropic
neo-Hookean SEDF used to model the elastin’s
mechanical behaviour may not be valid at such large
strains; an alternative SEDF may be required. However,
it is likely that some creeping of the elastinous tissue
occurs. To model such a process would require that the
elastin strains are defined with respect to a deformed
configuration, in which case the isotropic neo-Hookean
SEDF (defined with respect to the strains in an altered
configuration) may be valid. Also, the ground substance
may creep. This is probably not significant in our cal-
culations because it bears only a small proportion of the
total load, yet it is probably able to resist a compressive
load and could lead to in vivo aneurysms not retracting
fully to the undeformed state.

The spatial degradation of elastin may have been
unrealistic. The Lagrangian function, which is used to
model the degradation, deforms with the material
coordinates. Thus, due to the distortion of the tissue in
the central region of the aneurysm, the relative concen-
tration of elastin would be of the order of
10%=ððA1 ^ A2Þjt¼T� 1%: This is approximately an
order lower than the lowest experimental estimates, i.e.
8% (He and Roach 1993). The substantial axial distor-
tion of the aneurysm is a consequence of degrading the
elastin in the central region whilst assuming it does not
degrade towards the distal and proximal ends. The
concentration difference causes the axial dilation of the
central region and retraction of the ends. If the elastin
were degraded uniformly along the length of the artery,
then such high axial distortions would not occur. This
may account for the unrealistic thinning of the mem-
brane that is predicted by the model. Further experi-
mental work is necessary to accurately determine spatial
distributions in developed aneurysms to improve the
mathematical model.

It has been assumed that the collagen fibre angles
deform with the tissue as the aneurysm deforms; this is

Fig. 11 Green’s strains on
anterior wall of aneurysm at
t=10 years for a elastin b
collagen fibres. Note that the
strains in the elastin increase
substantially since they are
defined with respect to the
undeformed configuration of
the tissue, whereas collagen
fibre strains are much lower due
to the remodelling
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questionable. The structural arrangement of fibre angles
in the healthy abdominal aorta is known, but the
structure in an aneurysm is not. It is likely that the fibres
distribute themselves so that the tissue behaves in an
optimum manner. If a physiological/mechanical crite-
rion for fibre alignment were known, then the fibre an-
gles could be treated as free variables and allowed to
remodel. Indeed if the fibre angles in diseased tissue were
known, remodelling hypotheses for fibre alignment
could be tested with this model.

The remodelling equations for the recruitment and
fibre density variables have been given simple linear
forms and the remodelling parameters, a and b, have
been assumed to take the same values in the media and
adventitia. It is questionable as to whether a linear
function realistically represents the remodelling behav-
iour and whether the remodelling rate parameters for the
media should be equal to those for the adventitia. For
example, if turnover rates and increased rates of depo-
sition are affected by cellular activity, then, since elastin
degradation occurs in media, the remodelling rates
should be higher in the media. In vivo, aneurysms are
reported to have an appreciably thicker adventitia than
media (Humphrey 2002). A suitably sensitive, nonlinear
remodelling function could allow for greater increases in
the adventitia and less in the media, or the value of the
remodelling parameter b could be increased for the
adventitia and decreased for the media. However, such
modelling is phenomenological and does not yield an
insight into the underlying physical mechanisms causing
the increased deposition in the adventitia. An alternative
approach, that may be more appropriate, would be to
use a remodelling equation for the thickness of the
arterial wall that acts to maintain an equilibrium stress.
However, this would not yield information about
changes in the structural composition. Although this
model does not accurately predict thicknesses of the
arterial wall it does predict how much mass of collagen
there will be in the developed aneurysm wall, which
could be measured experimentally. Further experimental
investigation is needed to assist in determining the most
appropriate form the remodelling functions should take.

The abdominal aorta has been modelled as a perfectly
cylindrical tube. In fact, there is a small degree of
tapering and a small amount of tortuosity; an axial
section of abdominal aorta of length 11.0 cm has an
actual straight length of 11.5 cm (Raghavan and Vorp
2000). It was seen in this work that the axial stress could
fall to a minimum of zero, close to the neck of the
aneurysm. The reduction in axial stress (that occurs as
the elastin is lost and the collagen remodels) coupled
with an initial asymmetric geometry may predict the
highly tortuous aneurysms often seen in vivo.

The remodelling hypothesis assumes that the fibres
attach and configure to achieve a peak attachment
strain. It was assumed that the peak strains in the fibres
occur at systolic pressure. Thus, fibre attachment can be
modelled by considering the steady deformations that

occur as the constituents remodel at systolic pressure.
However, for a more complex geometry, the fibres may
not achieve maximum strains at systolic pressure. For
example, towards the distal and proximal ends of the
aneurysm the strains may increase as the pressure is
reduced. The remodelling of fibres should be dependent
on the peak strains of the fibres during the cardiac cycle.
The remodelling assumption should thus be generalized
so that no remodelling occurs if the peak strain in the
fibre is equal to eA during the cardiac cycle, i.e.

drJp

dt
¼ a eCJp

���
max
�ea

� �
ð45Þ

where eCJp

���
max

is the maximum strain that occurs in the

collagen during the cardiac cycle (diastolic to systolic).
This would increase computational cost but would be
relatively easy to include. Physically this would act to
reduce the rate of remodelling towards the distal and
proximal ends of the aorta.

The model does not include other physical features
that would act to bear the load and limit the rate of
dilation, such as the calcification of the wall or the in-
traluminal thrombus (Di Martino et al. 1998; Wang
et al. 2001). Moreover, the effective transmural pressure
would reduce as the aneurysm comes into contact with
the surrounding tissue which would reduce the rate of
dilation. Modelling of such features may be incorpo-
rated in future developments of the model.

All of the criticisms discussed so far could be ad-
dressed. However, one criticism is integral to the model.
Increased deposition of collagen has been achieved by
remodelling the fibre density within the tissue. The
model does not predict by how much the wall will
thicken. Consequently, the precise stress distributions in
the aneurysm wall are unknown and some assumption
regarding the remodelled thickness of the aneurysm is
required.

Despite its shortcomings, our model yields results
that are consistent with those observed in vivo and
predicted by other mathematical analyses of developed
aneurysms. Where possible we have based parameter
values on those from the literature; however some of the
estimates are coarse and further experimental research is
required to accurately determine values. We believe this
model may provide a theoretical basis for further
experimentation and validation in the field.
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