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Abstract The novel three-dimensional (3D) mathematical
model for the development of abdominal aortic aneurysm
(AAA) of Watton et al. Biomech Model Mechanobiol 3(2):
98–113, (2004) describes how changes in the micro-structure
of the arterial wall lead to the development of AAA, during
which collagen remodels to compensate for loss of elastin. In
this paper, we examine the influence of several of the model’s
material and remodelling parameters on growth rates of the
AAA and compare with clinical data. Furthermore, we calcu-
late the dynamic properties of the AAA at different stages in
its development and examine the evolution of clinically mea-
surable mechanical properties. The model predicts that the
maximum diameter of the aneurysm increases exponentially
and that the ratio of systolic to diastolic diameter decreases
from 1.13 to 1.02 as the aneurysm develops; these predictions
are consistent with physiological observations of Vardulaki
et al. Br J Surg 85:1674–1680 (1998) and Lanne et al. Eur J
Vasc Surg 6:178–184 (1992), respectively. We conclude that
mathematical models of aneurysm growth have the potential
to be useful, noninvasive diagnostic tools and thus merit fur-
ther development.

1 Introduction

Abdominal aortic aneurysm (AAA) is characterised by a
bulge in the abdominal aorta. Development of AAA is asso-
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ciated with dilation of the arterial wall and the possibility of
rupture; 80–90% of ruptured aneurysms will result in death
(Wilmink et al. 1999). Surgery to remove the aneurysm is an
option, but it is a high-risk procedure with a 5% mortality rate
(Raghavan and Vorp 2000). Statistically, it is observed that
the risk of rupture exceeds the risk of the operation when the
diameter exceeds 5.5 cm (Powell and Brady 2004). However,
this criterion fails to identify small aneurysms with high risk
of rupture and large aneurysms with low risk. Thus there is a
general need for improved diagnostic criteria to aid clinical
decisions.

Several models have analysed the stress distributions in
AAAs utilising idealised (Elger et al. 1996) or physiological
geometries (Raghavan and Vorp 2000). These aim to yield an
improved diagnostic tool for predicting rupture. However, a
detailed knowledge of the AAA wall thickness and histology
of the tissue needs to be non-invasively determined to suc-
cessfully predict stresses (and the strength) of the aneurysmal
tissue on a patient specific basis. Hence current state-of the-
art biomechanical models of AAA are not ready for clinical
application and patient management (Vorp 2007) and thus to
date, rupture risk is still based on the diameter of an AAA.

Modelling growth of an aneurysm will ultimately lead to
a greater understanding of the pathogenesis of the disease
and may yield improved criteria for the prediction of rup-
ture. However, we emphasize that growth models of AAA
(Watton et al. 2004), and similarly intracranial cerebral aneu-
rysms (Baek and Humphrey 2006; Kroon and Holzapfel
2007), still require significant development to realise clinical
application.

In the healthy artery, the main load bearing constituents in
the arterial wall are elastin and collagen. Collagen is consid-
erably stiffer than elastin; however, at physiological strains
elastin bears most of the load (Armentano et al. 1995). This
is because collagen is tortuous in nature (Shadwick 1999;
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Raghavan et al. 1999). In fact, at each point in unloaded
tissue, there is a population of collagen fibrils which dis-
play varying degrees of undulation. It is only at physiological
pressures that the fibrils begin to straighten out and contrib-
ute to load bearing (Sverdlik and Lanir 2002; Sacks 2003).
The progressive recruitment of a population of fibrils gives
rise to the highly nonlinear mechanical response of the col-
lagen.

Several recent microstructural models of collagen des-
cribe the detailed behaviour of specimens of collagenous tis-
sue under repeated loading in vitro. For example, Sverdlik
and Lanir (2002) examined pre-conditioning of sheep dig-
ital tendons assuming that individual collagen fibrils have
quasi-linear viscoelastic properties, while Sacks (2003) stud-
ied native bovine pericardium and took the fibrils to be lin-
early elastic and assumed that it is the progressive recruit-
ment of a population of fibrils that gives rise to the highly
nonlinear mechanical response of the collagenous tissue. In
both these models, the waviness of individual fibrils in the
tissue varies according to a probability density function, and
the tissue stress–strain relationships are obtained by integrat-
ing over the population of fibrils. Such models often define
the straightening stretch ratio (SSR) of each individual fibril
(e.g. Sverdlik and Lanir 2002) and assume that the individual
fibrils do not bear load until the undulation disappears. (Note
though that Hansen et al. (2002) reports a small but detectable
force whilst there is still an observable crimp). These models
are complicated and require a number of parameters to be
fitted to experimental data using statistical model sensitivity
tests. Moreover these models do not address the changes in
the tissue stress–strain relationship that arise when the tis-
sue remodels in vivo. Hence we utilize a constitutive model
(Holzapfel et al. 2000) that accounts for the gross mechanical
response of the collagen.

Collagen is in a continual state of deposition and degrada-
tion with a relatively fast turnover of 3–90 days (Humphrey
1999). More specifically, Nissen et al. (1978) determined the
collagen half-life of the aorta and mesenteric arteries of a rat
to be 60–70 days in normotensive animals and reduced to
17 days in hypertensive conditions. The collagen fibres are
secreted by fibroblasts. These cells work on the collagen,
crawling over it and tugging on it in order to compact it into
sheets and draw it out into cables. In doing this, the fibroblasts
attach the collagen fibres to the extra-cellular matrix in a state
of strain (Alberts et al. 1994, p. 984). This ensures that, at
the higher end of the physiological range of pressures, colla-
gen contributes to the load bearing of the arterial wall. The
process of fibre deposition and degradation naturally acts to
remodel the arterial wall in response to changing physiolog-
ical conditions. The theoretical study by Humphrey (1999)
has served as the foundation for a number of theoretical stud-
ies that address the remodelling of collagen in pathological
conditions (Humphrey and Rajagopal 2002, 2003; Gleason

et al. 2004; Gleason and Humphrey 2004, 2005; Baek and
Humphrey 2006).

During the growth of an AAA, it is observed that there is
an accompanying loss of elastin (He and Roach 1993). How-
ever, the degradation of elastin alone does not explain the
large dilatations observed in aneurysms because the colla-
gen is very stiff and has a strongly nonlinear tensile response
curve. Therefore models of aneurysm growth must address
both the degradation of elastin and the remodelling of colla-
gen.

The unloaded artery (no internal pressure, no axial force)
is not stress free. If a radial cut is made in the axial direction,
it springs open into an approximate circular sector which is
characterised by an opening angle which can be measured
experimentally (Rachev and Greenwald 2003). This geome-
try is often adopted as the stress-free configuration. However,
the geometry is not actually a circular sector and moreover
the artery may still contain residual stresses. Consequently,
two alternative hypotheses exist that enable an unstressed ref-
erence configuration to be defined. It may be hypothesised
that the physiological state of a healthy artery has either:

(i) constant circumferential stress in each of its layers
(Ogden and Schulze-Bauer 2000)

(ii) uniform strain distribution through the thickness of the
wall. (Takamizawa and Hayashi 1987).

Although all the previous (three) hypotheses are not equiva-
lent, they all yield stress and strain distributions through the
thickness of the wall that are more uniform at physiologi-
cal pressures than if the unloaded artery had been adopted
as the stress-free reference configuration. For example, Ster-
giopulos et al. (2001) model the porcine aortic media as two
stress free circular sectors and observe that the radial dis-
tribution of circumferential stretch is close to uniform with
a difference between stretch ratios at the inner and outer
surfaces of the arterial wall at physiological pressures to be
less than 10%. Stalhand and Klarbring (2005) determined the
material and residual strain parameters for a human abdom-
inal aorta (assuming a stress-free configuration of a circu-
lar sector) using in vivo pressure–diameter data applied to a
Fung type strain energy density function. They also find that
the circumferential stress and the circumferential strain are
approximately uniform at physiological pressures.

At physiological pressures the radius of the abdominal
aorta is approximately 10 mm and the thickness is 1 mm.
Neglecting thrombus formation, the ratio of the thickness
of the wall to the diameter of the aneurysm will decrease
as the aneurysm enlarges, therefore the deformation of the
three-dimensional(3D) arterial wall of the developing aneu-
rysm is closely related to the deformation of its midplane. The
residual strain that is present in the unloaded configuration
gives rise to an approximately uniform strain field through
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the thickness of the arterial wall at physiological pressures.
If it is assumed that the physiological mechanism by which
collagen fibres attach to the artery is independent of both
the current configuration of the artery and the radial position
in the arterial wall, then the remodelling process may natu-
rally maintain a uniform strain field (in the collagen fibres)
through the thickness of the arterial wall as the AAA devel-
ops. These considerations thus support the suitability of a
membrane model (Wempner 1973; Heil 1996) to model the
deformation of the abdominal aorta and development of an
aneurysm at physiological pressures.

Watton et al. (2004) model the abdominal aorta as a cylin-
drical nonlinearly elastic membrane subject to an axial pre-
stretch and a constant internal systolic pressure. The distal
and proximal ends of the abdominal aorta are fixed to simulate
vascular tethering by the renal and iliac arteries. Formation
and development of AAA is assumed to be a consequence
of the material constituents of the artery remodelling, whilst
subject to a constant systolic pressure. The constitutive
relations for the tissue in the model of Watton et al. (2004)
incorporate variables that relate to the concentration of the
elastin, and to the density and waviness of collagen fibres.
This enables the remodelling of the arterial microstructure
during AAA development to be addressed. The degradation
of elastin is prescribed using a time-dependent axisymmetric
function. Collagen fibres are assumed to be in a continuous
state of degradation and deposition, and to attach to the artery
such that their strain at systole is a constant. As the AAA
develops, the deposition and degradation of collagen fibres
act to maintain the strain in the fibres within an equilibrium
range.

Watton et al. (2004) demonstrated that using a set of phys-
iological material parameters to model the abdominal aorta
and realistic remodelling rates for its constituents, the pre-
dicted dilations of the aneurysm model were consistent with
those observed in vivo. An asymmetric aneurysm with spi-
nal contact is also modelled and the stress distributions are
broadly consistent with previous studies. However, the fact
that their model of AAA growth achieves realistic dimen-
sions is a factor of its construction. Indeed, the proportion
of load initially borne by the collagen, the functional form
of the spatial degradation of elastin, the turnover rate of the
collagen fibres, the rate at which additional collagen is depos-
ited/lost and the mechanical nonlinearity of the collagen, all
directly influence the growth of the aneurysm. In this paper,
we examine the effects of varying these influential param-
eters on the growth rates of the AAA model and compare
with clinical observations (Vardulaki et al. 1998; Brady et al.
2004). We also apply a physiological pressure pulse to calcu-
late the steady temporal evolution of the systolic and diastolic
geometries of the AAA model. Parameters that characterise
the stiffness in terms of the systolic and diastolic configura-
tions can then be determined and compared with physiolog-

ical studies (Lanne et al. 1992). It is seen that realistic rates
of dilation can be achieved for a range of physiologically-
consistent geometric, material and remodelling parameters.
Moreover, the evolution of the compliance, pressure-strain
elastic modulus and stiffness of the AAA model are found to
be consistent with published data.

2 Methods

2.1 The recruitment stretch λR

As in Watton et al. (2004), we assume that the gross mechan-
ical response of a population of collagen fibrils of varying
undulation can be represented by a nonlinear function of
stretch, which is defined relative to the onset of recruitment
of the fibrils to load bearing. Effectively one can picture an
idealised collagen fibre which depicts the mechanical res-
ponse of a population of collagen fibrils. We assume that
the mechanical properties of the idealised fibre remain con-
stant as the tissue remodels, i.e. the undulation distribution
of the population of collagen fibrils does not change. This
approach allows us to simulate the tissue stress–strain law of
a population of fibrils with just a few material parameters.

The stretch in the collagen is defined with respect to the
configuration in which it is recruited to load bearing, whilst
the stretch in the elastin is always defined with respect to
the initial (undeformed) reference configuration. Consider
Fig. 1b, which depicts a parallel arrangement of elastin and
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Length L Collagen
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Onset of
collagen
recruitment λRL

0xL
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0yλRL(Equilibrium strain)

Fig. 1 a Collagen fibres are recruited, i.e. begin to bear load, when
unstrained tissue is stretched by a factor λR . b In the unstrained state,
the collagen is crimped and the length of elastin is L . A constant force
is applied to both ends. In equilibrium, the stretch in the collagen is λA
and thus the G–L strain in the collagen is EA = (λ2

A − 1)/2
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collagen. The length L denotes the length of the unstrained
tissue and x its extension. In unstrained tissue, the strain in
the elastin is equal to 0, and thus the strain in the elastin is
measured with respect to the undeformed configuration. The
stretch in the elastin is

λ = [(L + x)/L]. (1)

Collagen fibres are recruited to load bearing when the unstrai-
ned tissue is stretched by a factor λR. The collagen stretch
is defined with respect to the configuration at which it is
recruited to load bearing (see Fig. 1), thus

λC = (λR L + y)/λR L (2)

Now y = L + x − λR L , hence from Eq. (1) and (2) a sim-
ple relationship between the elastin stretch and the collagen
stretch is obtained:

λC = λ

λR
(3)

The significance of this relationship, i.e. Eq. (3), is that the
recruitment stretch λR can remodel to maintain the stretch in
the collagen to an equilibrium value whilst the stretch in the
elastin increases as the aneurysm dilates. Equivalently: the
model adopts distinct reference configurations for the elastin-
ous and collagenous constituents; the reference configuration
for the collagenous constituents can adapt.

2.2 The attachment stretch λA

An equilibrium stretch λA (or attachment stretch) for the col-
lagen needs to be defined to enable the remodelling of the col-
lagen to be addressed, as the artery enlarges. The attachment
stretch is defined to be the stretch in the collagen (defined
with respect to the onset of recruitment to load bearing of a
population of collagen fibrils) at systole at t = 0. The jus-
tification for this definition of λA is based on the following
hypotheses:

(i) Initially the arterial wall is in a homeostatic state.
Although collagen fibrils are in a state of continual
deposition and degradation, the gross structural and
mechanical properties of the collagen are constant.

(ii) Newly deposited collagen fibrils are acted on by fibro-
blast cells to attach them to the extra-cellular matrix
(ECM) in a state of stretch so that they contribute to
the load bearing at physiological pressures. We assume
there is a maximum attachment stretch that the fibro-
blasts can achieve.

(iii) we assume that the time taken for the fibroblasts to
configure the collagen fibrils is much longer than the
duration of a cardiac cycle. This implies that the maxi-
mum fibril attachment stretch will occur at the systolic
(peak) stretch of the cardiac cycle. Thus the maximum

fibril stretch during the cardiac cycle (which will occur
at systole) is equal to the maximum attachment stretch.

Fibrils that achieve maximum attachment stretches will
have minimum undulation and thus are the first to be recruited
to load bearing as the tissue is stretched. If there is a distribu-
tion in attachment stretches that the fibroblasts can achieve
this would naturally account for the variation in undulation
of the fibrils in unloaded tissue. Note also that the definition
of a maximum attachment stretch is consistent with the def-
inition of recruitment stretch, which relates to those fibrils
(of minimum undulation) which are recruited first to load
bearing.

2.3 Collagen remodelling via the recruitment stretch

The remodelling of the recruitment stretch is subtle and it
is helpful to visualise what is occurring on the scale of the
collagen fibres. Figure 2 portrays the effects of fibre deposi-
tion and degradation for a tissue that is stretched and held at
fixed length whilst remodelling occurs. Note that the figure
depicts hypothetical collagen fibres, each of which represents
the mechanical response of a population of collagen fibrils
of varying undulation. The figure illustrates that the micro-
structural changes to the tissue, which arise as a result of the
physiological turnover of collagen fibres, can be captured
by remodelling the recruitment stretch λR. It is important to
appreciate that the time for the tissue to remodel from states
(3) to (4) (in Fig. 2) is dependent on the turnover rate of the
collagen fibres. Equivalently, the rate at which the recruit-
ment stretch remodels is dependent on the turnover rate of
the fibres.

In addition to the recruitment stretches, variables may be
introduced which relate to the density of the collagen fibres.
This enables the collagen remodelling that occurs during
aneurysm development to be modelled.

2.4 Mathematical method

A geometric nonlinear membrane theory (e.g. Wempner 1973;
Heil 1996) is adopted to model the deformation of the arte-
rial wall. The abdominal aorta is treated as a thin cylinder of
undeformed radius R0, length L , and thickness H . It is sub-
ject to a physiological axial pre-stretch, λ0

z , and a constant
systolic pressure p0(= 16 kPa = 120 mmHg) which causes
a circumferential stretch of λ0

θ he initial in vivo configura-
tion is thus a cylindrical tube of length λ0

z L , radius λ0
θ R0,

and thickness H/λ0
zλ

0
θ .The ends of the initial deformed con-

figuration are spatially fixed to simulate vascular tethering by
the renal and iliac arteries. The length of the section of the
abdominal aorta between the renal and iliac arteries is taken
to be 16 cm which is consistent with physiological values
(Raghavan et al. 2006).
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Fig. 2 Attachment of collagen fibres in altered configurations. 1 The
reference state is the undeformed configuration of the tissue. In the
undeformed state, the fibres have a characteristic waviness. 2 The ini-
tial physiological state is such that the strain in the collagen fibres is the
equilibrium value, i.e. at systolic pressure the G–L strain in the fibres
is EA. The tissue is currently in equilibrium. Although the fibres are in
a continual state of degradation and deposition, new fibres will attach
with identical levels of strain to those that decay and thus no changes
occur in the mechanical properties of the tissue. 3 Suppose the tissue
is stretched further and, for the purposes of this example, held at fixed
length. New fibres attach to the tissue so that at the new systolic config-
uration their G–L strain is EA. The old fibres decay, and the distribu-
tion of collagen fibres changes. The naturally occurring turnover of the

fibres will proceed to restore strain in all the fibres to equilibrium levels.
4 All of the old fibres have decayed and have been replaced by new fibres
of strain EA. The artery reaches a new equilibrium configuration. 5 If
the tissue is contracted back to the reference configuration, the crimp
of the collagen will have increased. Equivalently, the factor the tissue
must be stretched for the collagen to be recruited has increased. Hence
the effects of deposition and degradation in altered configurations can
be captured by remodelling the recruitment stretch λR—which relates
to the waviness of collagen in the undeformed configuration. Note that
the time for the tissue to remodel from state (3) to state (4) is dependent
on the turnover rate of the collagen fibres, i.e. the halflife. Equivalently,
the rate at which the recruitment stretch remodels is dependent on the
turnover rate of the fibres

Details of the mathematical formulation used to model the
development of an AAA and numerical implementation can
be found in Watton et al. (2004). Here we give an outline of
the methodology to avoid unnecessary repetition. The steady
deformation of the artery is governed by the principle of vir-
tual displacements,

δ�strain − δ�load = 0, (4)

where δ�strain represents the variation of the strain energy
stored in the arterial wall and δ�load is the work done by
the pressure during a virtual displacement about an equilib-
rium displacement field. The variation of the internal elastic
energy for a 2D cylindrical membrane is

2π R∫

0

L∫

0

δ(HMWM + HAWA)dx1dx2, (5)

where HM and HA denote the thicknesses of the media and
adventitia, respectively, and the integral is evaluated on the
midplane of the membrane: 0 ≤ x1 ≤ L and 0 ≤ x2 < 2π R0

are the axial and azimuthal Lagrangian midplane coordinates,
respectively. The functional forms for the strain–energy den-

sity functions (SEDFs) for the media (WM) and adventitia
(WA) need to be specified.

2.5 Strain–energy density functions for heterogeneous
aneurysmal tissue

The first step in the development of the model is to accurately
model the healthy abdominal aorta. The constitutive model
proposed by Holzapfel et al. (2000) is utilised. The arterial
wall is modelled as two layers. The inner layer models the
mechanical response of the media, with contributions from
ground substance, elastin and a double helical pitch of colla-
gen fibres. The outer layer models the mechanical response
of the adventitia, with mechanical contributions from ground
substance and a double helical pitch of collagen fibres. The
mechanical response of each layer is modelled as the sum of
a neo-Hookean SEDF and a highly nonlinear SEDF which
represents the mechanical response of the collagen. Gundiah
et al. (2007) confirm the suitability of the neo-Hookean SEDF
to represent the mechanical behaviour of elastin. The model
of Holzapfel et al. (2000) is adapted to incorporate a degrada-
tion function for the elastin, and microstructural recruitment
and density variables for the collagen fibres.
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We assume that the neo-Hookean response in the media
has an elastinous and a non-elastinous part, kg, due to the
ground substance. The elastinous contribution in the media is
multiplied by a normalised spatially and temporally depen-
dent concentration of elastin function, cE(x1, x2, t), where
cE(x1, x2, t = 0) = 1 throughout the membrane. We assume
that the contribution from the ground substance is equal in
the media and adventitia. The SEDFs are thus

WM = (Kg + cE(x1, x2, t)KE)(E11 + E22 + E33)

+
∑

ε
Mp
C ,p=±

nMp (x1,x2, t)

× KM{exp[Ax (E
Mp
C (EMp , λ

Mp
R ))2] − 1}

(6)

for x3 ∈ [−H
2 , −H+2HM

2 ], and

WA = Kg(E11 + E22 + E33)

+
∑

ε
Ap
C ,p=±

nAp (x1,x2, t)

×KA{exp[Ax (E
Ap
C (EAp , λ

Ap
R ))2] − 1} (7)

for x3 ∈
(

H−2HA
2 , H

2

]
.E

Jp
C (x1, x2, t) denotes the Green–

Lagrange (GL) strains in the collagen fibres andλ
Jp
R (x1, x2, t)

and n Jp (x1, x2, t), are the collagen fibre recruitment and den-
sity variables, respectively. J takes values M and A, referring
to the media (M) and adventitia (A). The fibres are orientated
at angle of γJp to the azimuthal axis, where p denotes the
pitch ±γJ .

The GL strains of collagen EC
Jp

are a function of the GL
strains in the elastin resolved in the directions of the collagen

fibres, i.e. E Jp , and the recruitment stretches λ
Jp
R (x1, x2, t),

where

EC
Jp

= (E Jp + (1 − (λ
Jp
R )2)/2)/(λ

Jp
R )2, (8)

and

E Jp = E11 sin2 γJp + E22 cos2 γJp + 2E12 sin γJp cos γJp ,

(9)

For the axisymmetric model E12 = 0, thus we can drop the
subscript p and denote E J ≡ E J+ = E J− , i.e. at each point
fibres of positive and negative pitch (in both the media and
adventitia) have identical values of GL strain. This implies
that there are only two independent recruitment variables,
i.e. λJ

R ≡ λ
J+
R = λ

J−
R (J = M, A), and two independent fibre

density variables n J ≡ n J+ = n J− . At t = 0, nM(x1, x2, 0) =
nA(x1, x2, 0) = 1.

The orientations of the collagen fibres in the medial and
adventitial layers need to be specified. Holzapfel (2006)
determined mean orientations of the medial and advential
collagen fibres for an abdominal aorta to be ±37.8◦ and
±58.9◦, respectively. However, whilst the tissue sample

exhibited no appreciable disease it was from an elderly spec-
imen (80-year-old female cadaver) and thus the orientations
may be unrepresentative values for younger arteries. In fact,
fibre orientations are possibly also species and vessel depen-
dent, e.g.: the orientation of collagen fibres in human aortic
tissue is ±8.4◦ in the medial layer and ±41.9◦ in the adven-
titial layer (Holzapfel et al. 2002) whilst fibre orientations in
the carotid artery of a rabbit are ±29◦ in the medial layer and
±62◦ in the adventitial layer (Holzapfel et al. 2000). For our
model of the human abdominal aorta fibre orientations are
chosen to be γM = 30◦, γA = 60◦.

The thickness of the arterial wall of the abdominal aorta is
approximately 2 mm (Mohan and Melvin 1982). Following
Holzapfel et al. (2000) we assume the media occupies 2/3 of
the thickness of the arterial wall. Note that although that this
ratio is based on data for the carotid artery of a rabbit and it is
assumed representative of other arteries, e.g. Holzapfel et al.
(2000) assumed this to be true for the human left anterior
descending coronary artery. We also follow Holzapfel et al.
(2000) and assume that the neo-Hookean contribution from
the adventitia is an order of magnitude lower than that for
the media, i.e. we set Kg = KE/10; this is based on physi-
ological observations for the Youngs modulus of the medial
and adventitial layers of porcine thoracic aorta in the refer-
ence state (where elastinous constituents dominate mechan-
ical behaviour—see Holzapfel et al. (2000) for discussion)
and thus would seem suitable for the abdominal aorta.

The most recent models of the abdominal aorta do not
explicitly model the individual contributions from the medial
and adventitial layers. Stalhand et al. (2004) determined
material and residual strain parameters for a one layered con-
stitutive model (Holzapfel et al. 2000) to fit the in vivo pres-
sure diameter data of Sonneson et al. (1994). Stalhand and
Klarbring (2005) adopted a Fung type constitutive model
to the same in vivo data and enforced the constraint that
the axial force is invariant to the pressure (within the phys-
iological range) to assist parameter determination. Van de
Geest et al. (2006) have performed biaxial testing of aneu-
rysmal and non-aneurysmal abdominal aorta however they
did not test the medial and adventitial layers independently.
Consequently, there is insufficient guidance in the litera-
ture to determine the material parameters for the medial and
adventitial collagen. In this paper, we have assumed that the
ratio of the medial and adventitial collagen material param-
eters for the carotid artery of a rabbit (Holzapfel et al. 2000)
are representative for the human abdominal aorta, i.e. we
specify KA = KM/4. We emphasize this is a purely arbi-
trary choice: mechanical testing of the individual layers of
the abdominal aorta is required to guide the determination of
such parameters.

Three independent material parameters, namely KE, KM

and Ax remain to be determined so that the SEDFs model
the mechanical behaviour of the human abdominal aorta.
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The pressure–diameter curve of a healthy abdominal aorta is
utilised (Lanne et al. 1992) for this purpose. The diastolic and
systolic diameters (15 and 17.2 mm) and pressures (80 and
120 mmHg) can be observed directly. However, the experi-
ments were performed in vivo and thus the reference config-
uration dimensions are unavailable. Hence we take typical
physiological values of axial and circumferential stretches
from the literature.

Learoyd and Taylor (1966) analysed the retraction of
human abdominal aortas and found that older and younger
vessels retracted by approximately 30 and 20%, respectively.
Consistent with these findings, Holzapfel et al. (2007) found
the average in situ axial stretch of seven human abdominal
aortas to be 1.19 ± 0.084. We choose λ0

z = 1.3—which rep-
resents an upper bound for the axial pre-stretch of the human
abdominal aorta. Langewouters et al. (1984) analysed the
static elastic properties of 20 abdominal aortas in vitro: from
their data the average circumferential stretch of 11 abdom-
inal aortas from patients of ages ranging from 30 to 59 can
be determined to be 1.29. This is consistent with the findings
of Stalhand and Klarbring (2005) who used an axial force
constraint to identity in vivo parameters of the abdominal
aorta—they predicted a circumferental stretch of 1.27 at a
systolic pressure of 16 kPa.

Assuming a circumferential stretch of 1.3 and utilising
the pressure–diameter data of Lanne et al. (1992), i.e. sys-
tolic diameter of 17.2 mm, this implies a diameter of approx-
imately 13.2 mm in the reference configuration. We assume
that the onset of collagen recruitment occurs between the
diastolic and systolic diameters (Armentano et al. 1995),
and arbitrarily estimate this to occur at a diameter close
to the diastolic diameter, i.e. 15.2 mm. Initial values for the
recruitment variables are then calculated to be λM

R (t = 0) =
1.19, λA

R(t = 0) = 1.19 and the equilibrium attachment
G–L strain is EA = (λ2

A − 1)/2 = 0.098.
To determine the three unknown material parameters KE,

KM and Ax we analyse the governing force-balance equation
for a cylindrical membrane of fixed axial stretch subject to
radial inflation:

p =
{

1

R0λz

[
(HM + HA)Kg + HMcE KE

(
1 − 1

λ2
z λ4

θ

)]}

+

⎧⎪⎨
⎪⎩

1

R0λz

∑
J=M,A;εC

J ≥0

4n J HJ K J Ax EC
J exp[Ax (EC

J )2] cos2 γJ

(λJ
R)2

⎫⎪⎬
⎪⎭
(10)

where the first- and second-terms on the right-hand side
of Eq. (10) correspond to the contribution to load bearing
from the elastinous and collagenous constituents, respecti-
vely. Equation (10) is derived from the governing varational
equation [i.e. Eq. (4)], the functional form of the strain energy
density functions (Eqs. 6, 7) and consideration of the displa-

cement field for a cylindrical membrane. Full details of the
derivation can be found in Watton et al. (2004).

Now for an artery subject to a fixed axial pre-stretch and
subject to radial inflation, Eq. (10) can be written more suc-
cinctly as

p(λθ ) = PE:C p(λθ ) + (1 − PE:C)p(λθ )

= fE(KE, λθ ) + fC(KC, Ax , λθ )
(11)

where PE:C denotes the proportion of load borne by the elas-
tinous constituents at t = 0; and thus (1 − PE:C) represents
the proportion of load borne by the collagen at t = 0. The
functions fE(KE, λθ ) and fC(KC, Ax , λθ ) represent the
mechanical contribution to load bearing from the elastin and
collagen, respectively; they can be explicitly identified from
the first-and second-terms on the right-hand side of Eq. 10.
Given a value for PE:C at systolic pressure (p = p0), this
enables KE to be determined immediately:

PE:C p0 = fE(λ0
θ , KE) ⇒ KE = f −1

E (PE:C p0, λ
0
θ ). (12)

An additional equation is required to determine the remaining
material parameters, KM and Ax . We consider the diameter
at a second, greater pressure (p = p200 = 200 mmHg, λθ =
λ200

θ ). This yields two equations,

(1 − PE:C)p0 = fC(KC, AX , λ0
θ ),

p200 = fE(λ
p=200
θ ) + fC(KC, AX,λ

p=200
θ ) (13)

thus enabling the two remaining constants, KM and Ax, to
be determined.

A value for the parameters PE:C needs to be specified.
Armentano et al. (1995) proposed a simple 1-D model to
account for the individual mechanical contributions to load
bearing of the elastinous and collagenous constituents for the
aorta of a conscious dog. Their model predicts that at systolic
pressure, the elastin bears 88% of the load, i.e. PE:C ≈ 0.9 for
an aorta. Given that human arteries naturally lose elasticity as
they age (Lanne et al. 1992; Wuyts et al. 1995), this suggests
that 0.9 is a suitable upper bound for PE:C. For the default
model of the abdominal aorta, we assume a slightly lower
value, i.e. PE:C = 0.8. However, lower values of PE:C may
be more appropriate given that AAA generally occurs in older
individuals. Therefore we consider the influence of this para-
meter on growth of the AAA model for 0.1 ≤ PE:C ≤ 0.9.

Figure 3 illustrates a pressure–diameter relationship for
our model of the abdominal aorta and illustrates the indivi-
dual contributions to load bearing of the elastin and the col-
lagen. Note, the material parameters summarised in Table 1
(and correspondingly the pressure–diameter relationship
depicted in Fig. 3) are based on PE:C(λθ = λ0

θ ) = 0.8.
Note that for our model of the abdominal aorta, the systolic
(diastolic) axial and azimuthal Cauchy stresses are 102.9 kPa
(87.4 kPa) and 116.5 kPa (78.3 kPa), respectively. The axial
force is 3.97 N at diastole and 3.34 N at systole.
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Fig. 3 Pressure–diameter relationship for the model of the abdominal
aorta. The diameter of the abdominal aorta in the reference configuration
is taken to be 13.2 mm. The diastolic and systolic diameters are DDIAS =
15 mm and DSYS = 17.2 mm, respectively. Recruitment of collagen to
load bearing is estimated to begin at DDIAS = 15.2 mm. Collagen bears
one-fifth of the load at systole

Table 1 Material constants and physiological data used for modelling
the human abdominal aorta

Wall thickness:
Media HM 1.33 mm
Adventitia HA 0.67 mm

Fibre orientation

Media γM 30◦

Adventitia γA 60◦

Systolic pressure p0 120 mmHg

Undeformed radius R0 6.6 mm

Axial pre-stretch λ0
z 1.3

Circumferential stretch:

At onset of recruitment λrec
θ 15.2/13.2

At Systole λ0
θ 17.2/13.2

At p = p200 = 200 mmHg λ200
θ 18.5/13.2

Material Parameters:

Elastin KE 97.6 kPa

Ground substance Kg = KE/10 9.76 kPa

Collagen media KM 3.52 kPa

Collagen adventitia KA = KM/4 0.88 kPa

Exponential constant for collagen Ax 40

This data is estimated using the pressure–radius curve for the abdominal
aorta in (Lanne et al. 1992) and physiological measurements of axial
(Learoyd and Taylor 1966) and circumferential stretches (Langewouters
et al. 1984) at systole

2.6 Elastin degradation

The dilation of an AAA is accompanied by loss of elastin (He
and Roach 1993; Shimizu et al. 2006). The half-life of elas-
tin is approximately 50 years, consequently the loss of elastin
in adults almost certainly results from increased elastolysis
rather than insufficient synthesis (Shimizu et al. 2006). How-
ever, the physiological processes that lead to the degradation
of elastin in AAA are not clearly understood. One sugges-
tion is that the degradation may be linked to the uptake of
oxidised cholesterol through the arterial wall (Davies 1998).
This suggests a progressive degradation of elastin over time.
However, the functional form of the spatial degradation is
unknown. We assume that there is a point in the central region
of the domain where elastin degradation begins, and in the
developed aneurysm this region has been degraded the most.
This functional form should give rise to a fusiform dilatation
of the abdominal aorta centred in the computational domain.
One such suitable candidate for the degradation function is

cE(x1, t) = 1 − (1 − (Cmin)
t/T ) exp[−µ(1 − 2x1/L)2],

(14)

where L denotes the axial Lagrangian length of the mem-
brane, µ ≥0 controls the width of the degradation, and Cmin

is the minimum concentration of elastin at time t = T . Spec-
ifying µ = 0 yields a uniform degradation throughout the
domain. Increasing the value of µ increases the spatial local-
isation of the degradation about a point of minimum concen-
tration in the centre of the axial domain.

The timescale of aneurysm development may vary from
person to person. Given that average growth rate is 0.4 cm/
year (Humphrey 2002), and the decision whether to operate
on an aneurysm occurs when the diameter reaches 5.5 cm,
then the timescale of development is of the order of 10 years.
Estimates suggest that 63–92% of the elastin is lost in
aneurysmal tissue (He and Roach 1993), i.e. 0.08 ≤ Cmin ≤
0.37. Consequently, we choose default values for these
parameters within this range, specifically Cmin=0.2, T =10.

The localisation of degradation of elastin is varied by con-
sidering a range of values for the parameter µ, namely 0 ≤
µ≤ 160, and the resulting axial profiles of developed aneu-
rysms are analysed. (It is observed that µ = 20 yields satis-
factory results — see Section 3)

2.7 Collagen remodelling

The turnover of collagen is simulated by proposing remod-
elling equations that act to maintain the G-L strain in the
collagen fibres to an equilibrium value EA (equivalently
remodelling the stretch of the collagen fibres to λA). This is
achieved by remodelling the reference configuration of the
collagen fibres, i.e. remodelling the recruitment stretches. In
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addition, it is assumed that changes in the density of the col-
lagen fibres are driven by deviations of the collagen strain
from equilibrium values.

For the axisymmetic model, two independent recruitment
variables and two independent fibre density variables are
required. In the absence of physiological data, linear dif-
ferential equations are proposed for the remodelling of the
recruitment and density variables, i.e.

∂λJ
R

∂t
= α(EC

J − EA),
∂n J

∂t
= β(EC

J − EA), (15)

where α, β > 0 and EA = (λ2
A − 1)/2. The remodelling

parameter α can be determined numerically so that it corre-
sponds to a prescribed half-life, αH (months), of the collagen
fibres, i.e. α = α(αH) (Watton 2002). Given that collagen
in the arterial wall typically has a half-life of 60 days, we
assume a default value of αH = 2. However, turnover rates
may increase (Nissen et al. 1978) or decrease (Carmo et al.
2002) in pathological conditions. Consequently we explore a
range of collagen half-lives, viz. 0.1 ≤ αH ≤ 6, to explore the
influence of this physiological parameter on AAA growth.

The growth rate parameter β relates to the rate at which
additional collagen is deposited and configured within the
arterial wall. It is numerically determined so that the dilation
is physiologically consistent over a timescale typical of aneu-
rysm development: we assume that the diameter increases by
a factor of 2–3 over a period of 10 years.

Note there is a distinction between growth and remodel-
ling. Here the recruitment variables capture the remodelling
of the tissue, i.e. the gross microstructural changes that occur
within the tissue due to the natural physiological process of
fibre deposition and degradation, in altered configurations,
for a fixed mass of collagen constituents. The collagen den-
sity variables relate to the growth/atrophy of the collagenous
constituents within the arterial wall.

2.8 Analysis of mechanical properties of the AAA model

To analyse the evolution of clinically measurable mechani-
cal parameters, the diastolic deformations are calculated as
the aneurysm evolves. At each time step of the computational
simulation, the pressure is incrementally decreased from sys-
tolic to diastolic values to calculate the geometry of the AAA
at all pressures. A clinical measure (Lanne et al. 1992) of the
strain in the AAA wall, ε, is calculated, i.e.

ε = Dp − Ddias

Ddias
(16)

where Dp is the maximum diameter at a pressure p, and
Ddias the maximum diameter of the AAA at diastolic pres-
sure. The maximum fractional diameter change, εmax, or
maximum arterial strain (Lanne et al. 1992) is thus εmax =
ε|Dp=Dsys

, where Dsys is the maximum diameter at systole.

The pressure–strain elastic modulus, E p, is given by

E p = k
Psys − Pdias

(Dsys − Ddias)/Ddias
, (17)

where k = 133.3 is a conversion parameter so that E p is mea-
sured in N/m2. Psys (=120 mmHg) and Pdias (=80 mmHg) are
the systolic and diastolic blood pressure. Due to the nonlin-
ear pressure–diameter relationship of the arterial wall, E p is
pressure dependent. A stiffness parameter, γ , that appears to
characterise the entire deformation of the arterial wall with-
out pressure dependence (Lanne et al. 1992) is

γ = ln(Psys/Pdias)

(Dsys − Ddias)/Ddias
. (18)

Note, higher values of E p and γ imply that the artery is stiffer
and less distensible and thus has a lower compliance.

2.9 Overview of the model

To summarise the model: Eqs. (6) and (7) are the (spatially
and temporally) heterogeneous SEDFs of the medial and
adventitial layers of the arterial wall, which account for inde-
pendent reference configurations for the elastin and collagen
at each point in the tissue. Equation (14) represents the con-
centration of elastin which degrades in a spatially prescribed
manner over time. Equation (15) (left) acts to maintain the
GL strain in the collagen to EA by remodelling the refer-
ence configuration of the collagen fibres, i.e. it simulates the
consequence of fibre deposition and degradation in altered
configurations. The second of equations (15) controls the
remodelling of the collagen fibre density. Equation (4) gov-
erns the equilibrium displacement field and is solved by a
finite element method coded in FORTRAN 77.

3 Results

3.1 Axisymmetric AAA growth

We illustrate the development of an AAA that arises due to
an axisymmetric degradation of elastin. The default set of
parameters we use for the AAA growth model to achieve
realistic dilation are:αH = 2, β = 25, Cmin = 0.2, µ =
20, PE:C = 0.8. 1 Figure 4a shows the concentration of elas-
tin (as a function of the Lagrangian coordinate,x ′

1 ∈ [0, L],
see Eq. 23) and Fig. 4b its evolving geometry every 2 years.
The grid in the illustration (Fig. 4b) enables deformation of
material points on the arterial wall to be visualised: notice the

1 Note that in Watton et al. (2004) the stated half-life used was 6 months,
however a numerical mistake in the computational code actually meant
that the half-life used was 0.6 months. This should be borne in mind
when comparing their results with this paper.
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Fig. 4 a Prescribed concentration of elastin as a function of the
Lagrangian coordinate x1 (see Eq. 23) using µ = 20, Cmin = 0.2,

L = 160/λ0
z , T = 10, x ‘

1 ∈ [0, L] (Note: no circumferential
variation). b A developing axisymmetric aneurysm, t = 2, 4, 6,

8, 10 years from left to right. Notice the axial dilation of the cen-
tral region of the aneurysm and retraction of the ends. Remodelling
parameters are αH = 2, i.e. a half-life of 2 months, and β = 25. The
grid is for visualisation only and indicates the relative deformation of
points on the arterial wall

model predicts that AAA growth is accompanied by an axial
dilation of the central region of the artery and a retraction of
its distal and proximal ends.

However, the fact that our model of AAA development
achieves physiological dimensions (Fig. 4b) can partly be
attributed to its construction and selection of parameters.
Indeed, there exists a set of pairs of remodelling parameters,
(αH , β) which can be numerically determined to achieve
identical systolic diameters at t = 10. Assuming a physiolog-
ical range for the collagen half-life, i.e. 0.1–3 months, the fol-
lowing remodelling parameter pairs, (αH , β) = (0.1, 950),
(0.5, 195), (2, 25), (3, 10) and (6, 0) all yield a systolic

diameter of approximately 45 mm at t = 10 (see Fig. 5a).
We include the case αH = 6 in this analysis as this achieves
a realistic dilation with no remodelling of the fibre density,
and thus represents an upper bound for the collagen half-
life predicted by our mathematical model. Figures 5b and c
illustrate the rate of growth as a function of the systolic diam-
eter and time, respectively. It is seen that as the half-life is
decreased to achieve realistic dilation at t = 10, the growth
rate progressively decreases at earlier times and is more rapid
at later times. Interestingly, in all cases considered here the
rate of growth evolves approximately linearly with respect
to the diameter (Fig. 5c). For an AAA of diameter 45 mm,
the predicted growth rates range from 4 to 26 mm/year for
αH = 6 to αH = 0.1, respectively.

Next, consider the evolution of the diameter as the remod-
elling parameters αH and β are varied independently. First
αH is varied whilst β = 0, i.e. there is no increase in collagen
content within the wall as the AAA develops. Increasing the
turnover rate of the fibres, i.e. decreasing αH , increases the
rate of dilation and increases the nonlinearity of the dilation
(see Fig. 6a). Figure 6b illustrates evolving systolic diame-
ters for αH = 2 and β = {0, 5, 15, 25, 50, 100}. It can be
seen that increasing the rate at which the artery can deposit
new collagen, i.e. increasing the value of β, reduces the rate
of dilation.

To illustrate the dependency of growth on the elastin deg-
radation function (Eq. 23), the parameter µ is varied from
µ = 0 (the special case of uniform degradation throughout
the domain) to µ = 320 a very localised degradation in a
central region of the domain: Fig. 7a shows the degradation
(as a function of the Lagrangian coordinate) at t = 10 for 7
cases (µ = 0, 0.25, 0.5, 15, 20, 80, 320) and Fig. 7c the
corresponding axial geometries. It is observed: for µ ≤ 1 the
geometry of the AAA is constrained by the fixed boundary
conditions at the end of the domain; for 5 ≤ µ ≤ 80, aneu-
rysms of similar diameters develop and the geometry of the
AAA does not appear to depend on the fixed radial position
of the boundaries (but it still depends on the axial position
of the boundaries); for µ ≥ 160, the aneurysms become pro-
gressively smaller. It can be seen that 5 ≤ µ ≤ 80 yields
aneurysms of maximum diameters in the range 42–44 mm
that display a characteristic bulge in the central region of
the domain. For our default model, we choose µ = 20, this
yields an appreciable bulge which is not unduly influenced
by the boundary conditions at the ends of the domain.

The parameter PE:C defines the proportion of load initially
borne by the elastin at systolic pressure. The influence of this
parameter on the evolving diameter of the AAA is shown in
Fig. 8. As to be expected, increasing PE:C renders the artery
more sensitive to the degradation of elastin and faster rates
of dilation are observed; the converse of this is clearly true.

Lastly we consider the effect of varying the parameter
Ax , which governs the mechanical nonlinearity of the colla-
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Fig. 5 Various combinations of
αH , β can be chosen to yield an
aneurysm of physiological
dimensions at t = 10, e.g.
(αH , β) = (0.1, 950),

(0.5, 195), (2, 25), (3, 10) and
(6, 0). Evolution of a the
systolic diameter DSYS and b
growth rate with respect to time.
It is observed that half-lives of
2–6 months yield a steady
evolution of the diameter. As the
half-life is reduced further, to
achieve a physiological dilation
at t = 10 the model predicts
growth with increasing
non-linearity. c Evolution of the
growth rate as a function of the
systolic diameter DSYS. The rate
of growth increases linearly
(DSYS > 25 mm) with respect
to the diameter in all cases—this
observation suggests that the
diameter of the aneurysm
increases exponentially with
respect to time for this model of
AAA
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gen, on AAA growth. Figure 9a shows the pressure–diameter
relationships for an artery held at fixed axial pre-stretch and
maintaining a cylindrical geometry as the pressure is increa-
sed for a range of values: Ax = 10, 20, 40, 80, 160. Note
that (i) Ax = 40 is the default physiological case determined
from the data of Lanne et al. (1992); (ii) in all cases, the
proportion of the load borne by elastin at systole is 0.8, i.e.
PE:C = 0.8; and (iii) increasing Ax increases the mechani-
cal nonlinearity of collagen and the arterial wall. Figure 9b
shows the evolution of the diameter with time for each value
of Ax considered. It can be seen that the greater the stiffness
of the collagen, the lower the rate of dilation.

3.2 Evolution of the mechanical properties
of the AAA model

The default aneurysm model [see Figs. 4 and 6 for the case
(αH , β) = (2, 25)] is subjected to a physiological pressure
pulse (Fig. 10a) as it develops. Figure 10b illustrates the
strain in the aneurysm wall (see Eq. 25) as the pressure is
increased from diastolic (80 mmHg) to systolic (120 mmHg).
The ten curves represent the pressure-strain behaviour of the
aneurysm for each year of development. It can be seen that
the curves become progressively steeper for each subsequent

year, and that for any given value of pressure, the stiffness
increases as the aneurysm increases in size, i.e. the gradient
of the pressure–strain curves progressively increases.

The evolution of εmax, E p and γ with respect to time are
illustrated in Fig. 11a–c for the five remodelling parameter
sets illustrated in Fig. 5, i.e. (αH , β)=(0.1, 950), (0.5, 195),

(2, 25), (3, 10) and (6, 0). In all cases considered, εmax

decreases from 0.13 to approximately 0.02. E p andγ increase
from 0.4 × 105 N/m2 and 3 to 1.7 ≤ E p ≤ 3 × 105 N/m2

and 16 ≤ γ ≤ 30, respectively. If εmax, E p and γ are plotted
against the maximum diameter (Fig. 11d–f), it can be seen
that εmax falls in an exponential manner, and that the rates of
increase of E p and γ decrease as the diameter enlarges.

4 Discussion

Our analysis suggests that the more compliant the artery,
in particular increased values of PE:C and/or decreased val-
ues of Ax , produce faster AAA dilation rates (Figs. 8, 9).
Given that arteries naturally increase in stiffness with age,
this would suggest that the growth rates of AAA may depend
on the patient’s age. However, if younger arteries have a bet-
ter adaptive response, and thus can respond more rapidly to
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Fig. 6 a Dilation of the aneurysm with a range of collagen half-lives,
i.e. αH = { 0.1, 0.5, 1, 2, 3, 6 } and prescribing no remodelling of the
collagen density, i.e.β = 0. Dilation rates increase as the collagen half-
life is decreased. b Dilation of the aneurysm for a half-life of 2 months,
i.e.αH = 2, with β = { 0, 5, 15, 25, 50, 100 }. Increasing the value
of β increases the rate of collagen deposition and thus decreases the
rate of aneurysm growth

deposit new collagen, differences in dilation rates may not
be observed.

Interestingly, we find an approximate linear relationship
between the growth rate and the diameter of the aneurysm
(see Fig. 5c) for all five sets of remodelling parameters con-
sidered, i.e. (αH , β) = (0.1, 950), (0.5, 195), (2, 25),

(3, 10) and (6, 0). Thus the model predicts that the diameter
d(t) of an AAA increases exponentially over time, i.e.

d[d(t)]
dt

= Cd(t) ⇒ d(t) = A exp(Ct) A, C > 0. (19)

Fig. 7 a Different functional forms for the degradation function obtai-
ned by varying the parameter µ (see Eq. 23). The axisymmetric degra-
dation varies from being spatially uniform (µ = 0) to highly localised
in the centre of the domain (µ = 320). b Axial profiles of developed
aneurysms at t = 10 years for various degrees of spatial degradation of
the elastin. It is observed that: for µ ≤ 1 the geometry of the aneurysm
is constrained by the fixed boundary conditions at the end of the domain;
for 5 ≤ µ ≤ 80 aneurysms of similar diameters develop and the geom-
etry of the aneurysm is not dependent on the fixed boundary conditions;
and for µ ≥ 160, the aneurysms become progressively smaller. In this
work we choose µ = 20, this achieves an appreciable bulge which is
not unduly influenced by the boundary conditions at the ends of the
domain

The prediction that the rate of growth increases as the
aneurysm enlarges is consistent with clinical observations,
e.g. Vardulaki et al. (1998) and Brady et al. (2004). Indeed,
Vardulaki et al. (1998) applied an exponential growth model
to determine a mean average growth rate from clinical data.
They found that AAAs of diameters in the ranges, 30–39 mm,
40–49 mm and 50 mm+ increased in diameter by 0.69, 1.5
and 3.2 mm/year, respectively. However, Brady et al. (2004)
concluded that a quadratic growth law is more suitable:
average growth rates of AAAs with diameters ranging
from 28–39 mm, 40–45 to 46–85 mm were 1.85, 2.69 and
3.5 mm/year, respectively.
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Fig. 8 The evolution of the systolic diameter as a function of time
for varying initial values of PE:C; the parameter that governs the rel-
ative load borne by the elastinous constituents of the arterial wall, at
systolic pressure, at the start of the simulation, i.e. t = 0. Increasing
PE:C, results in an increased (mechanical) sensitivity of the arterial wall
to elastin degradation, with the consequence that the rate of dilation
increases

On inspection of Fig. 5b it can be seen that using a half-
life of the collagen of 2 months, i.e. αH = 2, our model pre-
dicts that AAAs of diameters 25, 35 and 45 mm have growth
rates of approximately 2.6, 4.3 and 5.7 mm/year, respectively.
Longer half-lives produce slower rates of dilation. Interest-
ingly, a collagen half-life of 6 months just achieves realistic
dilation rates after 10 years with no remodelling of the fibre
density, i.e. αH = 6 is an upper bound for our growth model
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Fig. 9 a Pressure–diameter relationship for varying values of the col-
lagen exponential stiffness parameter Ax . Note that the default value is
Ax = 40 (estimated using data from Lanne et al. 1992). In all cases,
at the systolic pressure (120 mmHg), the diameter of the healthy artery
is 17.2 mm and the collagen bears 1/5 of the load, i.e. PE:C = 0.8.
Increasing Ax increases the mechanical nonlinearity of the collagen
(and the artery). b The evolution of the diameter as a function of time
for 10 ≤ Ax ≤ 160. Increasing the value of Ax increases the nonlinear
mechanical response of the collagen fibres (a) and the effect of this is
to reduces the rate of growth of the diameter of the aneurysm

of the AAA. Shorter half-lives, i.e.αH ≤ 0.5, produce unreal-
istically high rates of dilation: half-lives of 0.5 and 0.1 months
yield maximum growth rates of 12 and 26 mm/year, respec-
tively. This may suggest that half-lives of the order of months
are the most suitable for modelling steady AAA develop-
ment. This is consistent with the experimental observation
by Nissen et al. (1978) that collagen of the normotensive
rat aorta has a typical half-life of 60–70 days. However, it is
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Fig. 10 a Physiological pressure pulse is applied to the AAA model.
b The arterial diameter strain, ε, as a function of the pressure. Each
of the 11 curves corresponds to the pressure–strain behaviour at yearly
time intervals. The gradient of each curve increases as the pressure

increases, i.e. the aneurysm becomes stiffer as it increases in size.
Also, for any given pressure, the stiffness of the aneurysm increases
with time. Note, this example uses the default set of parameters:
µ = 20, PE:C = 0.8, Ax = 40, αH = 2, β = 25

unclear how turnover rates of fibres will change as the aneu-
rysm progresses. Carmo et al. (2002) report an increase in
collagen cross-links in aneurysm aortic walls and suggest the
synthesis of new collagen could be stopped whilst existing
collagen continues to accumulate cross-links, i.e. reduced
turnover rates. However, in the hypertensive aorta and mes-
enteric arteries of a rat turnover rates reduce to 17 days in
hypertensive conditions. It may be that a sudden increase in
enzymatic activity that is not balanced by increased matrix
deposition is the predisposing factor for rupture. Given the
rapidity of tissue remodelling, this could be a relatively quick
event.

The fact that AAAs of realistic dimensions can be devel-
oped is partly a factor of the construction of our model. We
have illustrated that growth is sensitive to several key param-
eters in the model, e.g. the half-life of the collagen fibres, αH

(Fig. 6a), the growth rate parameter β (Fig. 6b), the elastin
degradation function (Fig. 7c), the proportion of load initially
borne by the collagen, PE:C (see Fig. 8a), and the mechan-
ical nonlinearity of the collagen Ax (Fig. 9b). Thus given
the uncertainty in these parameters, the model as it stands
cannot be used to predict growth rates on a patient-specific
basis. However, there would appear to be potential for the
values of these parameters to be more accurately known: the
parameters PE:C and Ax are both parameters that could be
estimated from physiological data to yield a structural model
of the abdominal aorta as it ages; accurate functional repre-
sentations for the degradation of elastin could be determined;
the half-life collagen fibres, αH , in aneurysmal tissue could
be determined, and then a suitable value for β could be pre-
scribed from knowledge of the current diameter and growth
rate of an individuals AAA.

The AAA model can produce a range of realistic dilation
and growth rates for a physiological range of input parame-
ters. However, it has been demonstrated that there is a wide
range of parameter values that can yield similar dilation rates.

To further test the consistency of our model we consider
the evolution of clinically measurable mechanical param-
eters, i.e. the maximum arterial strain εmax, the pressure
strain elastic modulus, E p and the stiffness parameter γ

(see Eqs. 25–27 for definitions); note, the initial physiolog-
ical values of these parameters are εMAX(t = 0) = 0.13,

E p(t = 0) = 0.4 × 105 N/m2 and γ (t = 0) = 3 respec-
tively. The values of these parameters in our model of a devel-
oped AAA are compared with Lanne et al. (1992) clinical
study of 37 males, of mean age 74, all of whom suffered
from AAAs of mean diameter 41.6 ± 14 mm. To make a
quantitative comparison with Lanne et al.’s study we con-
sider the values predicted by our model when the diameter
of our model of an AAA is equal to the average of Lanne
et al.’s study, i.e. DSYS = 41.6 mm, for the five parameter sets
that give rise to an aneurysm of diameter 45 mm at t = 10,
namely (αH , β) = (0.1, 950), (0.5, 195), (2, 25), (3, 10)

and (6, 0). Our AAA model predicts max diameter strain,
0.015 < εMAX < 0.025, pressure–strain elastic modulus
1.7 ≤ E p ≤ 3 × 105 N/m2 and stiffness parameter 16 ≤
γ ≤ 30. These values are broadly consistent with Lanne
et al. (1992) study; the average values they obtained were
εMAX = 0.023 ± 0.012, E p = 5.04 ± 2.53(105N/m2) and
γ = 34.9 ± 25.5.

The increase in stiffness predicted by our model correlates
with the decrease in elastin content and increase in collagen
content within the arterial wall as the AAA develops. Note
that our model predicts values of E p and γ lower than the
mean values observed by Lanne et al. (1992). This may be
attributed to the fact that our model does not include effects
such as the calcification of the arterial wall, or formation of
atherosclerotic plaques, which would act to increase the stiff-
ness further. Also we assume constant, diastolic and systolic
pressures in the range 80–120 mmHg whereas the individu-
als in Lanne et al. (1992) study had a mean blood pressure
range from 80 to 150 mmHg.
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Fig. 11 Various combinations
of αH , β can be chosen to yield
an aneurysm of physiological
dimensions at t = 10, (see
Fig. 6) a illustrates the evolution
of the compliance, εmax, b the
evolution of the pressure–strain
elastic modulus, E p and c the
evolution of the stiffness γ with
respect to time. As a function of
time: a The maximum arterial
strain εmax decreases
exponentially from 13 to 2% b
the pressure strain elastic
modulus, E p , increases
exponentially from 0.4 to
approximately 2–3, c the
stiffness γ increases nonlinearly
from 3 to a range of values
between 17 and 33. d illustrates
the evolution of the compliance,
εmax, e the evolution of the
pressure–strain elastic modulus,
E p and f the evolution of the
stiffness γ with respect to the
systolic diameter. As a function
of the arterial diameter, d the
maximum arterial strain
decreases rapidly, E p e and γ f
increase nonlinearly
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In reality, AAAs may have linear or accelerating expan-
sion, “growth spurts” followed by periods of stasis, or even
reduce in size (Brady et al. 2004). Of course, such features
of AAA growth could be modelled by adopting more elabo-
rate functional forms for the degradation of elastin. However,
whilst this may, seemingly produce more realistic compu-
tational simulations of AAA development; at this stage, it
would complicate the modelling unnecessarily and not yield
further understanding of the aetiology of the disease. More-
over, the functional form of the spatial and temporal degra-
dation is unknown: mathematical models require guidance
from physiological studies.

Our AAA model assumes that the distribution of the fibre
undulation does not change as the aneurysm develops. This
is unlikely, however it would be an unnecessary complication
of the model at this stage to address this, particularly given
that there is no clinical data available to guide its develop-
ment. However, future developments of this model may ben-
efit from constitutive models that account for the distribution
of the waviness of the collagen fibres in the arterial wall,
e.g. Zulliger et al. (2004), or implementing a collagen fibre
population model such as that proposed by Sacks (2003) or
Sverdlik and Lanir (2002). We also do not account for the dis-
persion of the fibres about a mean orientation in this paper.
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However, a constitutive model that can model fibre dispersion
has been recently developed by Gasser et al. (2006). This has
been implemented into our remodelling framework; prelimi-
nary results show that increased fibre dispersion gives rise to
reduced growth rates.

This model assumes the fibre angles are constant relative
to the undeformed reference configuration. This naturally
implies there is an implicit realignment of the fibres (with
respect to the deformed configuration of the tissue) towards
directions of increasing principal stretch as the aneurysm
develops. There is some justification for approach. Fibro-
blasts crawl along the existing extra-cellular matrix thus the
orientation in which they deposit and degrade collagen is
partly dependent on the existing extracellular matrix structure
(Dallon and Sherratt 1998). However, fibroblasts are sensitive
to their mechanical environment and may attempt to reorien-
tate leading to remodelling of the fibre alignment. Given that
the arterial wall in an AAA is comprised largely of collagen,
it is important to address how the collagen structure remodels
to accurately predict stress distributions and future growth.

This mathematical model uses a linear differential equa-
tion to simulate the remodelling effects of fibre deposition
and degradation in altered configurations. Remodelling of
the collagen fibre density is assumed to be driven by devia-
tions in the strain from an equilibrium value. This relatively
simplistic approach is able to predict changes in material
and mechanical parameters broadly consistent with clinical
observations. However, the cells that synthesise new pro-
teins and produce matrix degrading enzymes within the arte-
rial wall, i.e. fibroblast, smooth muscle and endothelial cells,
have not been explicitly represented. Moreover, mechanical
stimuli acting on the cells within the arterial wall, e.g. wall
shear stress and the frequency/magnitude of cyclic stretch-
ing are not accounted for. It is known that the wall shear
stress (Chien 2007) and cyclic stretch can profoundly modu-
late vascular cell processes (Cummins et al. 2007), and thus a
more sophisticated modelling approach may be required. In
fact, a simple development of this model would be to assume:

‘the number of fibroblasts in the arterial tissue is depen-
dent on the mass of collagen that it has to maintain.’

Consequently, given that it is the fibroblasts that deposit
collagen fibres, the rate of increase of the collagen density
should be dependent on the density of fibroblasts in the arte-
rial wall, or equivalently by the above hypothesis, the density
of collagen in the arterial wall. Hence it may be more appro-
priate to adopt a natural exponential growth law of the form:

∂n J

∂t
= βnz(EC

J − EA), (20)

where z = 1. Preliminary analysis show that this yields an
aneurysm that stabilises in size even if all elastinous constit-
uents are degraded. We tentatively suggest the case z = 1

may represent optimum remodelling, whilst z = 0 (the case
considered in this paper) leads to progressive enlargement
of the AAA, and the physiological case may lie anywhere
between these extremes, i.e. 0 ≤ z ≤ 1. Alternative func-
tional forms to address the remodelling of the collagen den-
sity will be explored in subsequent research.

5 Conclusions

The model developed here is the first and to date only mathe-
matical model to consider the evolution of AAA. Our model
evolves from a physiologically realistic model of the healthy
abdominal aorta and predicts changes in mechanical param-
eters consistent with experimental observations (Lanne et al.
1992). This gives support to the suitability of our remodelling
assumptions and parameters.

The current criterion for the rupture of an AAA is a statisti-
cal measure calculated from its diameter. The incorporation
of additional patient-specific parameters into the criterion
may reduce the uncertainty associated with predicting rup-
ture. Our model illustrates the potential for mathematical
models to predict changes in mechanical properties of aneu-
rysms. We conclude that mathematical models of aneurysm
growth have the potential to be useful, noninvasive diagnostic
tools and thus merit further development.
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