|
||||
My principal research interests
are in applying mathematics and fluid mechanics to biology,
physiology and medical engineering. In particular,
I have modelled the biology and behaviour of individual
micro-organisms and suspensions of micro-organisms.
Recently, I have been extending my research into modelling
arterial disease in collaboration with vascular surgeons at
Leeds and Birmingham. I also study plankton population
dynamics and travelling waves in moving media such as the
oceans. See below for more details.
Modelling of Arterial Disease
Modelling of Control Mechanisms in Micro-Organisms and Animals Many micro-organisms are motile and actively seek optimum environments, for example bacteria swim up and down chemical gradients (chemotaxis) and the ciliate Tetrahymena swims vertically upwards (negative gravitaxis). I have worked on simple models for the important control mechanism of phototaxis (responses towards light) which enables swimming algal cells to find the best habitat for photosynthesis. A model based on the shading of the cell's photoreceptor which periodically scans its environment as the whole cell rotates when swimming along was developed to explain experiments on responses to multiple sources of light (Hill & Vincent 1993). Recently, I have extended this work to include on responses to polarised light (Hill & Plumpton 2000). I have also carried out experimental and theoretical work on the measurement and analysis of trajectories of swimming cells which has lead to new techniques for assessing cell motility (Hill & Häder 1997). I am investigating the use of stochastic differential equations and random walks to better describe the average motion and dispersion of populations of swimming cells. In collaboration with Prof. Alan Roberts (Biology, Bristol), I have explained how immature tadpoles without a fully-developed inner ear control complicated escape manoeuvres using passive mechanical torques. These are all fundamental problems in biology and important in their own right, but they may find future application in the control of microscopic robots made possible by developments in nanotechnology. Pattern Formation by Oceanic Plankton
Bioconvection
Fluid Mechanics of Suspensions Previously I have worked on dispersion in sedimenting colloidal suspensions (Davis & Hill 1992) and a research project is available for a PhD student to work on pairwise hydrodynamic interactions between small particles in a chamber rotating about a horizontal axis. This is expected to lead to an interesting dynamical system and it has application in chemical engineering and to experiments on the reorientation of swimming micro-organisms (Kessler et al. 1998). |