Judging by the visible Solar surface flows, buoyancy dominates rotation and viscous effects. Numerical simulations of buoyancy-dominated convection in rotating spherical shells show that differential rotation (DR) becomes retrograde (Gilman, 1976) contrary to the fact that prograde differential rotation is measured in the Solar interior.

Questions

- Can magnetic field self-sustained by spherical dynamos act to establish a prograde differential rotation in the buoyancy-dominated regime?
- Do differential rotation profiles and other features of buoyancy-dominated spherical dynamos resemble Solar observations?

ANELASTIC MODEL of CONVECTION-DRIVEN DYNAMOS

Model equations

Setting – Electrically conducting, self-gravitating (gravity ~ 1 g), perfect gas confined to a rotating (f/k) spherical shell.

Background state – A hydrostatic polytropic reference state

\[\rho = \rho_0 \left(\frac{T}{T_0} \right)^{\gamma - 1} \]

Scales

- Length: \(r \) = \(r_i \) to \(r \)
- Time: \(t \)
- Entropy: \(S \)
- Magnetic induction: \(B \)

** Governing equations** – Lartiz Engabi anelastic approximation (e.g., Jones et al., 2011)

\[\rho \left(\nabla \times \vec{B} \right) \cdot \nabla \phi = 0 \]

\[\rho \left(\nabla \times \vec{B} \right) \cdot \nabla \phi = 0 \]

Parameters

- \(n \)
- \(\tau \)
- \(\gamma \)
- \(\nu \)
- \(\epsilon \)

Boundary conditions

- Velocity BC - No-slip at \(r \) and stress-free at \(r_{res} \)
- Entropy BC - Dirichlet BC
- Magnetic field BC - Body forces outside of shell

Numerical method & code

- The anelastic code is an extension of our mature Boussinesq code (Gilman, 1976; Jones et al., 2011).
- The anelastic code is an extension of our mature Boussinesq code (Gilman, 1976; Jones et al., 2011).
- Toroidal poloidal decomposition into scalar unknowns \(u, v, g \) and \(S \).
- Pseudo-spectral method with expansions in spherical harmonics and Chebychev polynomials.
- IMEX Crank-Nicolson scheme combined with Adams-Bashforth scheme.
- Resolution up to \(N_r = 212, N_\theta = 216, N_z = 437 \).

Benchmarking & validation

- Near exact agreement with the anelastic benchmark cases of Jones et al., 2011.

Some parameter dependences

- Model parameters for different Rayleigh numbers.

Examples of transition

- Transition from prograde to retrograde differential rotation.
- Transition from prograde to retrograde differential rotation.

Supplementary Figures

- Figure 1: Solution structure of benchmark cases 1, 2 and 3 (left to right). The first plot in each column shows azimuthally-averaged isocontours of \(\phi \) (left half) and of the streamfunctions \(\psi \) (right half) in the meridional plane. The second plot in each column shows isocontours of \(\tau_{r,1} \) in the equatorial plane. The third plot in each column shows isocontours of \(\phi \), \(\psi \) and \(\chi \).
- Figure 2: Structure of convection showing the transition to the buoyancy-dominated regime with increasing value of the Rayleigh number as indicated in the plot and of the streamlines \(r = r_i \) (left half) and of the streamlines \(r = r_f \) (right half) in the meridional plane. The plots in the second column show isocontours of \(\chi \) on the spherical surface \(r = r_f \) (right half) in the meridional plane. The plots in the second column show isocontours of \(\chi \) in the equatorial plane.

Conclusion

- We present a set of convective dynamic simulations in rotating spherical fluid shells based on an anelastic approximation of compressible fluids.
- The simulations extend into a ‘buoyancy-dominated’ regime where the buoyancy forcing is dominant while the Coriolis is no longer balanced by pressure gradients. Strong retrograde differential rotation develops as a result. Dynamo in this regime are strongly dominated by dipole components but at the same time their magnetic energies are relatively small compared to the corresponding kinetic energies of the flow.
- Despite being relatively weak the self-sustained magnetic fields are able to reverse the direction of differential rotation to prograde and give rise to some similarities with Solar convection.

References