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Energy flux determines magnetic field strength of
planets and stars
Ulrich R. Christensen1, Volkmar Holzwarth1 & Ansgar Reiners2

The magnetic fields of Earth and Jupiter, along with those of rapidly
rotating, low-mass stars, are generated by convection-driven dyna-
mos that may operate similarly1–4 (the slowly rotating Sun gener-
ates its field through a different dynamo mechanism5). The field
strengths of planets and stars vary over three orders of magnitude,
but the critical factor causing that variation has hitherto been
unclear5,6. Here we report an extension of a scaling law derived
from geodynamo models7 to rapidly rotating stars that have strong
density stratification. The unifying principle in the scaling law is
that the energy flux available for generating the magnetic field sets
the field strength. Our scaling law fits the observed field strengths
of Earth, Jupiter, young contracting stars and rapidly rotating low-
mass stars, despite vast differences in the physical conditions of the
objects. We predict that the field strengths of rapidly rotating
brown dwarfs and massive extrasolar planets are high enough to
make them observable.

So far, attempts to explain the magnetic field strength of natural
dynamos have been largely heuristic and disparate for planets and
stars. The field strength in a planetary dynamo is often attributed to
the supposed balance between Lorentz (electromagnetic) and Coriolis
(rotational) forces, requiring that the Elsasser number L 5 sB2/(rV)
is of the order of one (here s is electrical conductivity, B is r.m.s.
magnetic field strength in the dynamo, r is density and V is rotation
rate). This is in fair agreement with the observed field strength of Earth
and some other planets6. However, L falls in the range 0.1–100 in
different geodynamo models7. For stellar dynamos, the equipartition-
ing of magnetic and kinetic energy is sometimes assumed to be the
guiding principle controlling the field strength5. The geodynamo
probably operates in the whole of the fluid outer core, but in the
Sun, much of the magnetic field generation is supposedly localized
at the tachocline5, a thin layer of intense shear between the convecting
outer region and the deeper radiative zone. Fully convective stars, such
as mature stars of less than 0.35 solar masses (M dwarfs) and T Tauri
stars (very young contracting stars with moderate mass), often have
stronger magnetic fields than the Sun and their dynamo may resemble
that of planets.

Rotation strongly influences the dynamo. For stars with moderate
and low mass, the X-ray luminosity (a proxy for the magnetic flux)
increases with rotation rate up to some threshold value, where it satu-
rates8. Direct measurements of the field strength by the magnetic
broadening of spectral lines confirm the saturation for M dwarfs9.
The magnetic field topology, which is small-scale at the surface of
the slowly rotating Sun, becomes more large-scale with prominent
dipole contributions when rotation is fast and the star is fully convec-
tive1,2. In dynamo simulations of fully convective stars, the scale and
strength of the field increase with rotation rate3, but the strength levels
off in the most rapidly rotating cases. Geodynamo model studies
support the existence of two regimes: for slow rotation, the magnetic

field is small-scale and weak; for fast rotation, it is dipole-dominated
and its strength is independent of rotation rate7,10,11.

In ref. 7, a scaling theory for the field strength of planetary dyna-
mos has been presented which is based on the (thermodynamically)
available energy flux; in the case of thermal flux, this is the part that
can be converted to magnetic energy to sustain it against ohmic
dissipation. To test if the same scaling rule applies to the field strength
in stellar dynamos, we generalize it to also cover cases of strong
density stratification. We restrict our study to objects in the rapidly
rotating regime, where in incompressible geodynamo models7 the
magnetic energy density was found to depend on density and con-
vected energy flux qc, but not (or very weakly) on magnetic diffusivity
and rotation rate (that is, the field is saturated):

B2/(2mo) / fohmr1/3(qcL/HT)2/3 (1)

Here mo is permeability, fohm # 1 is the ratio of ohmic dissipation to
total dissipation, L is the length scale of the largest convective struc-
tures (in the geodynamo, this is the thickness D 5 R 2 ri of the con-
vective shell with outer radius R and inner radius ri) and HT 5 cp/(ag)
is the temperature scale height with cp the heat capacity, a the thermal
expansivity and g the acceleration due to gravity. For stars we adopt
the common assumption that L is of the order of the density scale
height Hr. To account for the strong variations of density and scale
height with radius, we assume that the mean squared magnetic field
ÆB2æ is obtained by taking the average of equation (1) over the volume
V of the spherical shell. We normalize density with its mean value Æræ
and qc with a reference value qo, for which we take the bolometric flux
at the outer boundary (except for Earth’s core, see below):

ÆBæ2/(2mo) 5 cfohmÆræ1/3(Fqo)2/3 (2)

Here c is a constant of proportionality, and the averaging of radially
varying properties has been condensed into the efficiency factor F:
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where we set L 5 min(D,Hr).
F must be calculated for each object separately. For Earth’s core,

simplifying approximations are made, such as L 5 D, constancy of
density and thermodynamic properties, and linear variation of gravity
with radius, g 5 gor/R. A significant part (perhaps all) of the flux at
Earth’s core–mantle boundary is transported by conduction. At
greater depth, the convected portion is larger and augmented by com-
positional driving of convection, which we treat as enhanced effective
heat flux. We take the effective flux on the inner boundary qi,c to define
the reference flux as qo 5 qi,c(ri/R)2. Two options for the variation of qc
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with radius are considered: constancy of total flux 4pr2qc as used in
many geodynamo models, or a decrease to zero on the outer bound-
ary. With these assumptions, equation (3) can be evaluated analyt-
ically. Setting ri/R 5 0.35, we obtain F 5 0.88agoR/cp for constant total
flux and F 5 0.45agoR/cp when qc(R) 5 0. For a 5 1.35 3 1025,
go 5 10.7, R 5 3.48 3 106 and cp 5 840 in SI units12, F in the Earth’s
core is obtained as 0.52 or 0.27, respectively.

In Fig. 1 we compare results of geodynamo simulations (ref. 7 and
this work) with a non-dimensional form of the scaling equation (2).
The spread in the non-dimensional flux q* relates to a variation of the
rotation rate by a factor of 1,000 and a variation of the flux for fixed
rotation rate by a factor of 100. The good agreement confirms the
independence of the field strength from the rotation rate and the
variation with the 2/3 power of the flux. It provides the constant of
proportionality as c 5 0.63. Data for zero flux on the outer boundary
(Supplementary Information) are collapsed with those for constant
total flux when the difference in the efficiency factor F is accounted
for. Results from a stellar dynamo model with moderate density
stratification3 agree with the scaling law, suggesting that it may also
be applicable to stars and that the dynamo mechanisms in this model

and in our geodynamo models are similar. We note that if the mag-
netic field strength is strictly independent of rotation rate and of
magnetic (and any other) diffusivity, for dimensional reasons the
exponents for density and heat flux in equation (2) must necessarily
be 1/3 and 2/3, respectively.

We numerically integrate equation (3) for structural models of
Jupiter and stars. For Jupiter, we use the adiabatic model with gradual
metallization13, assuming that the top of the dynamo region is at 0.84
planetary radii. With convection as the only means of heat transport
and with luminosity varying with radius proportional to Tdm/dr,
where T is temperature and m is the mass inside radius r, we obtain
F 5 1.19. We use a stellar evolution code14, which provides density,
temperature, luminosity and convected flux as function of radius, to
generate models in the range of 0.25 to 0.7 solar masses for ages
between 1.2 and 20 Myr and for masses of 0.25 and 0.30 solar masses
up to 4.5 Gyr. The resulting F factors lie in the range 0.69–1.22.

We compare the predictions of our scaling law with the magnetic
fields of Earth, Jupiter and two groups of rapidly rotating stars whose
surface field strength has been determined spectroscopically. One is
the classical T Tauri stars15 and the other is a set of old M dwarfs16,
from which we select those with a projected rotational velocity
vsin(i) $ 3 km s21 (here v is the actual velocity, and i is inclination).
To estimate their mean internal field strength B from the observed
mean surface field Bs, we multiply the latter by a factor of 3.5, the
typical ratio found in our geodynamo simulations. Additionally, we
include some M stars whose large-scale field has been inferred from
Zeeman–Doppler tomography2. Here the total surface field Bs is
usually unknown. We use the dipole field strength Bdip and multiply
by factors Bs/Bdip < 7 found at EV Lac and YZ CMi (Supplementary
Tables 4 and 6) and B/Bs 5 3.5 to obtain B. Also, for planets the total
field strength at the top of the dynamo is unknown. The dipole field
strengths at the dynamo surface are 0.26 mT and 1.0 mT at Earth17

and Jupiter18, respectively. In our geodynamo simulations, we find a
typical ratio B/Bdip of around seven for dynamos with an Earth-like
magnetic power spectrum, which we apply to estimate the internal
field strength of the planets.

The agreement with the theoretical prediction is remarkable for
the different groups of rapidly rotating objects (Fig. 2), which span
more than eight orders of magnitude in (equivalent) bolometric flux.
For comparison, we also include stars with radiative cores and slow
rotation19; as expected they fall below the prediction (green and
yellow bars). The validity of some assumptions may be questioned
for dynamos with strong density stratification—for example the use
of Hr for the length scale L in equation (3) or the application of
scaling factors between internal field and surface field derived from
incompressible models. However, the latter are unlikely to differ
vastly and even when we assume L 5 D, the F factor for stars increases
only from one to five. Hence we consider the scaling law as robust on
an order of magnitude scale. We conclude that dynamos in rapidly
rotating stars and planets are basically similar, and that a single prin-
ciple controls their magnetic field strength.

Some T Tauri stars in our sample may have formed a small radiative
core. The observations for rapidly rotating old stars that are too mas-
sive to be fully convective19 (orange symbols in Fig. 2) also agree with
our field strength scaling law. Thus, the essential condition for its
applicability is probably rapid rotation.

Although magnetic fields have been measured at other planets in
the Solar System, the scaling law is either hard to test or not applicable
at these locations: Mercury is a slow rotator and may hence fall into
the non-dipolar dynamo regime20, the dynamos in Saturn21 and
Mercury20 probably lie below a stably stratified conducting layer of
unknown thickness, and those in Uranus and Neptune may operate
in a thin shell overlying a stable region22.

Stars, particularly old M dwarfs, cluster in a narrow range of
Æræ1/3(Fqo)2/3 because the decrease in bolometric flux is balanced
by an increase in density. This explains why rapidly rotating stars
with rather different luminosities all have magnetic surface fields of
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Figure 1 | Scaling law versus results from dynamo models. The non-
dimensional form of equation (2) is obtained by dividing by ÆræV2R2,
resulting in a non-dimensional energy density Em*5 ÆB2æ/(2moÆræV2R2) and
flux q*5 qo/(ÆræV3R3); the non-dimensional mean density is unity. Black-
edged symbols are for models with radially constant total flux (ref. 7 and this
work), green-edged symbols are for flux decreasing to zero at the outer
radius (Supplementary Information). F is 0.88agoR/cp in the first case and
0.45agoR/cp in the second case. Only results in the strongly rotational regime
are included, which requires that the local Rossby number7,11 be less than
0.12. The Ekman number E 5 n/(VD2), where n is viscosity, varies between
1023 and 1026. The magnetic Prandtl number Pm 5 n/g, where g is magnetic
diffusivity, is colour-coded; white means Pm 5 1, different shades of red
indicate values progressively larger than 1, and blue values less than 1. The
pink hexagrams are the two most rapidly rotating cases from a set of dynamo
models for fully convecting stars with a polytropic equation of state3 with
Pm 5 1 and E 5 1.6 3 1024 and 0.8 3 1024, respectively. Here F 5 1.48 is
calculated by numerically integrating the reference star model
(Supplementary Information). The slope of the fitting line is set to one (if
unconstrained, the least-squares slope is 1.02). Dashed lines, 3s standard
error.
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some tenths of a tesla. Even for a typical 1-Gyr-old brown dwarf of
0.05 solar masses23 with an effective temperature of 1,500 K and
Æræ 5 90,000 kg m23, a surface magnetic field of the order of 0.1 T
is expected (brown ellipse in Fig. 2). Magnetic fields have not been
detected at brown dwarfs so far, but our estimate suggests that a
search might well be productive. For young (1–3 Gyr) giant extra-
solar planets of 5–10 Jupiter masses, which should have 20–200 times
Jupiter’s intrinsic luminosity at a similar radius23, the expected field
strength is 5–12 times larger than that at Jupiter’s surface (consider-
ing also the shallower depth of the dynamo). Another estimate24

based on the Elsasser number rule arrived at similar maximum
values, but only for rotation periods ,5 h, which we do not require.
The presence of such strong fields improves the prospects for detect-
ing radio emissions from these planets25. From the high-frequency
cut-off in the radio spectrum, the surface field strength can then be
determined25.
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Figure 2 | Scaling law versus magnetic fields of planets and stars.
Magnetic energy density in the dynamo versus a function of density and
bolometric flux (both in units of J m23). The scale on the right shows r.m.s.
field strength at the dynamo surface. The heat flow from Earth’s core is
uncertain12,26 but is in the range 30–100 mW m22. The effective convected
flux including compositional convection is about twice as large
(Supplementary Information); we use qo 5 100 mW m22, Æræ 5 104 kg m23

and F 5 0.35. For Jupiter27, qo 5 5.4 W m22 and Æræ 5 1,330 kg m23. For
stars we assume F 5 1. For T Tauri stars15 (in blue) and old M dwarfs (in red
where data for total field is known16, and in pink where the large-scale field
was observed2), qo is obtained from the effective surface temperatures15,16,28.
Stars of 0.6–1.1 solar masses19 are shown in green for rotation periods
P . 10 d, yellow for 4 d , P , 10 d and orange for P , 4 d. Where relevant
stellar data are not quoted, we use model-based relationships between
spectral subclass, mass and luminosity29,30. We assume fohm < 1 as a nominal
value. The bar lengths show estimated uncertainty rather than formal error
(Supplementary Information). Black lines show the rescaled fit from Fig. 1
with 3s uncertainties (solid and dashed lines, respectively). The stellar field
is enlarged in the inset. Brown and grey ellipses indicate predicted locations
of a brown dwarf with 1,500 K surface temperature and an extrasolar planet
with seven Jupiter masses, respectively.
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