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Abstract

The magnetic fields of the planets, including the Earth, are generated by
dynamo action in their fluid cores. Numerical models of this process have
been developed that solve the fundamental magnetohydrodynamic equations
driven by convection in a rotating spherical shell. New results from these
theoretical models are compared with observations of the geomagnetic field
and magnetic data gathered from space missions. The mechanism by which
a magnetic field is created is examined. The effects of rotation and magnetic
field on the convection are of paramount importance in the simulations. A
wide range of simulations with different convection models, varying bound-
ary conditions, and parameter values have been performed over the past
10 years. The effects of these differences are assessed. Numerical consider-
ations mean that all dynamo simulations use much enhanced values of the
diffusivities. We consider to what extent this affects results and show how
the asymptotic behavior at low diffusion is starting to be inferred using scal-
ing laws. The results of specific models relating to individual planets are
reviewed.
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1. INTRODUCTION

A series of space missions over the past 40 years has greatly enhanced our knowledge of the
magnetic fields of the planets in our solar system, and also the magnetic fields of the larger
satellites, which here we count as planets. We focus on the internal magnetic fields of the planets,
so the active research topics of planetary magnetospheres and their interaction with the solar wind
are not discussed here. The picture that has emerged is a remarkably complex one, with some
planets having strong internal magnetic fields, and others having no discernible field in their core.
There is evidence that Mars had a strong internal field in the past, but it does not have one at
present.

It is generally believed that the internal magnetic fields are generated by dynamo action; that
is, the field is created by fluid motion in planetary cores. Larmor (1919) suggested this possibility
mainly in connection with the magnetic fields of sunspots, and Elsasser (1939) and Bullard (1949)
gave the theoretical basis for the modern ideas of convection-driven dynamos. The temperature in
planetary cores is well above the Curie temperature, so permanent magnetism cannot occur. In the
absence of fluid motion, the Earth’s magnetic field strength would decay by a factor e approximately
every 15,000 years (see, e.g., Moffatt 1978), leaving a negligible field over the Earth’s lifetime,
4.5 billion years. Many possibilities for generating planetary magnetic fields (e.g., the thermoelec-
tric effect, magnetic monopoles) have been proposed, but all either have no reliable physical basis
or have been shown to produce fields much smaller than those observed (Stevenson 2007).

Although Larmor’s dynamo hypothesis has been generally accepted, the question of what is
driving the fluid motion, and supplying the energy that is being lost to ohmic heating in planetary
cores, is much more controversial. The most popular idea is that the dynamo is powered by
thermal and compositional convection in the fluid core. In the case of the Earth, this means the
fluid outer part of the core. Others have suggested that precession or tidal interactions might
drive the dynamo (see, e.g., Malkus 1994, Tilgner 2007a), in which case the planet’s rotation is
the ultimate energy source for the magnetic field (see Tilgner 2007b for a review of the rotational
dynamics of the Earth’s core). In this review we concentrate on convection-driven dynamos, partly
because their theory is much more developed than the theory of precession-driven dynamos, and
partly because simple estimates suggest that convection can produce flows of the necessary order
of magnitude, and the flows produced can be shown to give rise to dynamo action.

In parallel with the space exploration of planetary magnetism, considerable theoretical progress
has been made in our understanding of convection-driven dynamos in spherical shells. This has
been driven largely by the remarkable improvements in high-performance computers, which allow
three-dimensional simulations in which the Navier-Stokes and induction equations are solved
simultaneously. This only became feasible in the 1990s, but much progress has been made since
then. Our understanding of planetary dynamos is more advanced than our understanding of stellar
dynamos, because the magnetic Reynolds number, Rm, in planets is generally moderate, and the
induction equation is therefore numerically tractable. There are serious theoretical difficulties with
nonlinear dynamos in the high Rm limit, which emerged in the 1990s and which have not yet been
fully resolved (see, e.g., Hughes 2007). There are nevertheless problems with current planetary
dynamo simulations (see, e.g., Jones 2000), because two small parameters, the Ekman number
and the magnetic Prandtl number, appear in the fundamental equations. Dynamo simulations
cannot reach the very small values of these parameters that are found in planetary cores, and so
we still need to understand the limiting behavior of the models as these parameters become small,
which remains a challenging problem. There have been some important theoretical advances in
our understanding of convection in the presence of rotation and magnetic field that have helped
the interpretation of the results emerging from the very complex simulations. There are also a
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number of laboratory dynamo and magnetohydrodynamic experiments, which also cannot reach
the planetary regime, but nevertheless do probe a different part of the parameter space, which
helps to build up understanding.

The planets are conveniently divided into three groups (Stevenson 2003): the terrestrial planets
with rocky interiors, some of which have fluid cores; the gas giants Jupiter and Saturn, whose
composition is primarily hydrogen and helium; and the ice giants, Uranus and Neptune, which
have deep gaseous atmospheres but also have more heavy elements than in solar composition.
Far more is known about the Earth than the other planets, because the observation history is
longer and more accurate, and seismology gives us detailed information about the nature of the
core. Three terrestrial planets have magnetic fields strong enough to suggest an internal field and
therefore a dynamo: the Earth, Mercury, and Ganymede, the largest moon of Jupiter. The strong
remanent magnetism of Mars, discovered by the Global Surveyor mission (Acuña et al. 1999),
suggests that Mars once had a dynamo but that it ceased to operate probably about 350 million
years after the planet’s birth. Venus has no measurable internal field. Our Moon has patches of
crustal magnetization, which may be remnants of an era when the Moon had a working dynamo,
but it is also possible that lunar magnetic fields were created during meteorite impacts (Stevenson
2003). None of the other larger satellites in the solar system have strong internal fields, although
there are induction effects in the inner Jovian satellites due to their motion through Jupiter’s
magnetic field.

Previous review articles relating to this material are Busse (2000), which discusses the then
existing laboratory experiments and spherical convection-driven dynamo models; Kono & Roberts
(2002), which covers the geomagnetic field and its relation to dynamo simulations; and Jones (2003,
2007a), which review magnetic fields in planets. Christensen & Wicht (2007) focused on numerical
dynamo simulations, and Jones (2007b) addressed thermal and compositional convection in the
core.

2. THE GEOMAGNETIC FIELD

Magnetic fields generated internally can be represented in the electrically insulating region above
the core by the spherical harmonic expansion for the potential

� = rs

∞∑
n=1

m=n∑
m=0

(rs

r

)n+1
Pm

n (cos θ )(gm
n cos mφ + hm

n sin mφ), (1)

where the magnetic field B = −∇�, and r, θ , and φ are spherical polar coordinates, with θ as the
colatitude. Here the associated Legendre polynomials have the partial Schmidt normalization (see,
e.g., Merrill et al. 1996, p. 28), and the coefficients gm

n and hm
n are the Gauss coefficients. Planetary

magnetic fields, including that of the Earth, are usually specified by their Gauss coefficients.
Equation 1 can be used to reconstruct the field either at the planetary surface r = rs or at the
core-mantle boundary (CMB), r = rcmb = 3.48 × 106 m for the Earth.

2.1. The Magnetic Field Spectrum

Figure 1a shows the radial component of the Earth’s field at the surface. Note that the axial dipole
g0

1 component dominates the picture. Figure 1b shows the field at the CMB. It is still essentially
dipolar, but the field clearly has much more small-scale structure, as well as being about 10 times
stronger. Also of interest in Figure 1b is the large reversed field patch in the South Atlantic. This
feature has been growing over the past few 100 years, which is the main reason why the dipole
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Radial magnetic field

Radial magnetic field

Figure 1
(a) The radial component of the Earth’s magnetic field at the surface and (b) at the core-mantle boundary,
both using the Hammer-Aitoff projection. In panel b, shorter wavelengths may be present in the true field,
but they have to be filtered out because of crustal-field contamination. Figure provided by R. Holme.

component of the geomagnetic field is in decline (Gubbins et al. 2006). The relative content of
higher harmonics is measured by the Lowes-Mauersberger spectrum

Rn =
(rs

r

)2n+4
(n + 1)

n∑
m=0

[(gm
n )2 + (hm

n )2], (2)

which is fairly constant with n up to degree about 12 if r is evaluated at the CMB (see, e.g., Maus
et al. 2005). For higher n, the geomagnetic core field is obscured by crustal magnetism. The
spectrum must tail off at some value of n > 12 because otherwise the ohmic dissipation would be
too large. A recent discussion of bounds on the ohmic heat dissipation for the geomagnetic field
is given by Jackson & Livermore (2009). Another interesting feature of Figure 1b is the string
of flux patches just south of the equator from the mid-Atlantic, which are propagating westward
( Jackson 2003). The time dependence, called the secular variation, is measured by continuous
monitoring of the field by satellites and magnetic observatories.
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20.0 km year–1

Figure 2
Core flow inferred from secular variation observations using the tangential geostrophy assumption. Figure
reproduced with permission from Holme & Olsen (2006).

2.2. The Core Flow

The secular variation enables the velocity below the CMB to be reconstructed, provided some
assumptions are accepted. The most common assumption is the frozen flux hypothesis (Roberts
& Scott 1965),

∂ Br

∂t
= −∇H · (uH Br ), (3)

where ∇H is the horizontal gradient, uH is the tangential flow just below the CMB, and Br

is the radial component of the magnetic field. As this is only one equation for two unknown
velocity components, an additional constraint from the equation of motion is required. A common
assumption is tangential geostrophy, which is ∇H · cos θuH = 0, although several others have
been used (Holme 2007). Figure 2 shows the tangential components of u that result from these
assumptions (Holme & Olsen 2006). The most important deduction for dynamo theory is the
estimate of the typical core velocity, which is consistent with that expected from thermal and
compositional convection in the core and is also capable of generating magnetic field by dynamo
induction (see below).

2.3. Reversals and Excursions

The geomagnetic field reverses polarity rather randomly. The reversal rate is typically once every
0.3 Myr (see Merrill et al. 1996 for a full discussion), but reversals are completed relatively quickly,
on a timescale of around 20,000 years only. There have been long periods, around 40 Myr, during
which the field has not reversed at all, the most famous being the Cretaceous superchron, 83–
124 Myr before present. A rather controversial observation is that the dipole axis of the field has
preferred longitude paths during reversal (Hoffman 1992), discussed by Glatzmaier & Coe (2007).
In addition to the full reversals, the dipole axis has much more frequent excursions (e.g., Valet
et al. 2005), which may be thought of as failed reversals because the field strength drops and the
dipolar component moves away from the geographical polar axis, but eventually the field recovers
its original polarity.

3. DYNAMO MODELS

Dynamo simulations in spherical geometry have mostly used the Boussinesq approximation,
although recently anelastic dynamo models have been developed. These have mostly been used
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Figure 3
Geometry used for spherical shell geodynamo simulations. The fluid outer core lies between the inner-core
boundary (ICB) and core-mantle boundary (CMB). Gravity is directed radially inward, and the heat flux is
carried outward.

to investigate stellar dynamos, with the ASH (anelastic spherical harmonic) code (Clune et al.
1999) perhaps the best-known code. Some work has been done on compressible models for the
giant planets ( Jones & Kuzanyan 2009), and more is in progress. The configuration used by the
Boussinesq codes is shown in Figure 3. The fluid outer core lies between the inner-core boundary
(ICB) and the CMB. The inner core is an electrically conducting solid, mostly iron. Spherical polar
coordinates r, θ , and φ are used in the computations, but cylindrical coordinates s, φ, and z are
also useful to discuss results. There is rotation � about the z axis, and gravity is radially inward,
and of magnitude proportional to r, appropriate for a uniform sphere. Centrifugal acceleration is
neglected. The unit of length is the gap width d = rcmb − ricb, and for the Earth ricb = 1.22 × 106 m
and d = 2.26 × 106 m. The tangent cylinder, marked in Figure 3, is an imaginary cylinder, but
it does divide the core into regions where the dynamical behavior is rather different.

We use the magnetic diffusion time d2/η as the unit of time, where η is the magnetic diffusivity,
estimated at 2 m2 s−1 in metallic cores. The unit of velocity is then η/d, so the dimensionless velocity
is a direct measure of the magnetic Reynolds number Rm = U∗d/η, where U∗ is the typical core
velocity. The unit of magnetic field is (�ρμη)1/2, where ρ is the density (∼104 kg m−3), and
μ = 4π × 10−7 in SI units is the permeability of free space, so a magnetic field of strength 1
has an Elsasser number 
 = B2

0 /�ρμη of unity. In the Earth’s core this unit is about 1.4 mT or
14 Gauss.

The dimensional Boussinesq equation of motion is

ρ
Du
Dt

+ 2ρ� × u = −∇ p + j × B + ρν∇2u + ρg0

rcmb
(αT + ξ )r. (4)

Here u is the velocity, p is the pressure, ν is the kinematic viscosity, and j is the current density,
which is ∇×B/μ by Ampère’s law. g0 is gravity at the CMB, and the buoyancy term has a thermal
part αT, where α is the coefficient of thermal expansion, and a compositional component ξ , where
ξ is the mass fraction of light material (believed to be sulphur and oxygen in the Earth’s core).
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The dimensionless form is
E

Pm
Du
Dt

+ 2ẑ × u = −∇ p + (∇ × B) × B + E∇2u + Ra E Pm
Pr

(T + ξ )
r

rcmb
. (5)

Here the unit of temperature is �T, the superadiabatic temperature difference across the core,
and the unit of ξ is α�T.

The dimensionless induction equation is

∂B
∂t

= ∇2B + ∇ × (u × B), (6)

and the temperature and composition equations are

∂T
∂t

= Pm
Pr

∇2T − u · ∇T + Q, (7)

and
∂ξ

∂t
= Pm

Pc
∇2ξ − u · ∇ξ + Qξ , (8)

and we also have

∇ · B = ∇ · u = 0 (9)

for Boussinesq fluid.
The dimensionless parameters are

Ra = g0α�T d 3

νκ
, Pr = ν

κ
, Pm = ν

η
, Pc = ν

κξ

, E = ν

�d 2
, (10)

where Ra is the Rayleigh number, Pr the Prandtl number, Pm the magnetic Prandtl number,
Pc the compositional Prandtl number, and E the Ekman number. κ and κξ are the thermal and
compositional diffusivities, respectively. The terms Q and Qξ represent internal heating (or cool-
ing) and internal compositional sources. To complete the model we must specify the radius ratio
ricb/rcmb, taken as 0.35 for the Earth’s core, and the boundary conditions. The usual estimate for
the molecular value of E is 10−15, way below what can be achieved numerically. Even if we suppose
a turbulent diffusion increasing the viscosity to the value of the magnetic diffusivity, and there is
no compelling physical reason to assume so large a turbulent diffusion, we still have E ∼ 5×10−9,
also below anything numerically possible. The fluid Prandtl number in metallic cores is typically
0.1, and the compositional Prandtl number is large, but the magnetic Prandtl number is very
small, of order 10−6. This is far below what can be achieved in simulations. It is often argued that
turbulence will enhance the effective values of the Prandtl numbers toward unity. This may well
be the case, but our current understanding of the nature of core turbulence is very limited. The
possible form of small-scale turbulence to be expected in the core and its effects are discussed
by Braginsky & Meytlis (1990) and Braginsky & Roberts (1995). The very slow flows, the rapid
rotation, and strong influence of the magnetic field mean that we are far from regimes that can be
studied experimentally or numerically.

To estimate the Rayleigh number inside the core, we need to know the superadiabatic temper-
ature difference between the ICB and CMB. This is very much less than the actual temperature
difference, which is of order 103 K, because the core is almost certainly very close to adiabatic
stratification. In Section 6 below, we estimate the typical temperature fluctuation as having an
order of magnitude of 10−3 K. In practice, the Rayleigh number is often chosen so that a sensible
value of the magnetic Reynolds number is found.

Equations 5–10 form a complete set of equations, which together with appropriate boundary
conditions can be integrated forward in time. Another issue is the choice of heat and composition
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sources, Q and Qξ . As the inner core grows, the light-element composition increases, and this is an
effective uniform sink. Similarly, a gradual cooling of the core is an effective heat source. As more
heat is conducted down the adiabat near the CMB than near the ICB, heat flux is removed from
the convection to appear as conduction, so this is an effective heat sink. These rather complicated
heat and composition source issues are discussed in detail in Anufriev et al. (2005).

In practice, not much attention has been paid to the case with both compositional and thermal
driving. If the Prandtl numbers are close to unity (as may be the case if turbulent diffusion dom-
inates), and similar boundary conditions are used for temperature and composition, temperature
and composition may be combined into one codensity variable (Braginsky & Roberts 1995). Partly
because of this, and for reasons of simplicity, most dynamo models have used only one buoyancy
source, usually called temperature.

To interpret the solutions that emerge from integration of these equations, the linear theory
of rapidly rotating convection in spherical shells is essential. This linear theory is now fairly
well understood. Roberts (1968) and Busse (1970) established that convection onsets in tall thin
columns. Numerical solutions showing the columns spiralling outward in the s -φ plane were found
by Zhang (1992), and the full small E asymptotic theory was evaluated by Jones et al. (2000) and
Dormy et al. (2004). There is now excellent agreement between numerics and asymptotics, and
the theory has recently been extended to anelastic compressible convection by Jones et al. (2009).

The first time-dependent numerical solutions of the full magnetohydrodynamic equations
given in Equations 5–10 in spherical geometry appeared in the mid-1990s (Glatzmaier & Roberts
1995, 1996a,b, 1997; Jones et al. 1995; Kageyama et al. 1995; Kuang & Bloxham 1997). It soon
became apparent that steady dipolar dynamos, and dynamos that occasionally reversed, were
possible. The flow speeds generating the fields give magnetic Reynolds numbers similar to those
indicated by the core flow measurement techniques of Section 2.2.

Many different boundary conditions have been used, and the effects of different boundary
conditions are reviewed in Section 5 below. The most commonly studied, for reasons of simplicity
rather than their relevance to planetary models, are no-slip boundary conditions, tangential u
vanishing on both boundaries, constant-temperature boundaries, and a magnetic insulator in both
inner core and mantle. The standard model also has no heat sources, but is driven by a uniform
heat flux entering through the ICB and leaving through the CMB. All these assumptions can be
criticized, but they do form a useful basis from which to explore the effects of making different
assumptions. The dynamo benchmark (Christensen et al. 2001) was a standard model case with
Ra = 105, E = 10−3, Pr = 1, and Pm = 5, which was used by a number of different codes to
establish their accuracy. The solution is steady in a drifting frame provided that a suitable initial
value is used for the magnetic field. This steadiness in a drifting frame is an unusual property for
convection-driven dynamos. The norm is that the flow has gone through several bifurcations as
Ra is increased and has chaotic time dependence before the magnetic field starts to grow. A more
typical case for the standard model is at Ra = 7.5 × 106, E = 10−4, Pr = Pm = 1, computed by
Christensen et al. (1999) and confirmed by Sreenivasan & Jones (2006a). A snapshot of the radial
component of the magnetic field and the radial velocity at r = ricb +0.8d is shown in Figures 4a,b.
Notable features are the strong dipolar dominance of the field (more dipolar than the Earth at the
CMB; see Figure 1a), the strong flux patches where the tangent cylinder meets the CMB, and the
slightly weaker field at the poles (similar behavior in the geomagnetic field). The radial velocity
plot shows that the convection occurs in columnar structures, with a long length scale parallel to
the rotation axis and a comparatively short length scale transverse to z, tall thin columns. Movies
of the radial field show that it drifts westward, as does the velocity field pattern in Figure 4b. The
field and flow are not steady in a drifting frame; individual flux patches and convection columns
continually grow and decay. The φ average of the azimuthal field, Bφ , is shown in Figure 4c.
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Figure 4
Snapshot of a dynamo simulation: Ra = 7.5 × 106, E = 10−4, and Pr = Pm = 1: (a) The radial component of the magnetic field Br at
the core-mantle boundary, (b) radial velocity ur at r = rIC B + 0.8d , and (c) a meridional section of the azimuthally averaged azimuthal
field Bφ .

Note that it is mainly antisymmetric about the equator, which is consistent with the meridional
field being mainly dipolar. The magnetic structures that are generated inside the core have been
visualized by Aubert et al. (2008b).

4. THE DYNAMO MECHANISM

In this section we focus on the dynamo mechanism generating the magnetic fields in the dipolar
cases such as that shown in Figure 4. In these cases, the magnetic field is created in the convection
columns, and the mechanism is essentially that for α2 dynamos (see, e.g., Moffatt 1978). Our
description of the dynamo process follows Olson et al. (1999). Figure 5 shows an illustration of
the flow in four convective columns. The columns are drawn as circular, but in reality each column
may have a more complicated cross section. The primary flow is the rotation of each column about
its z axis, with alternate columns being cyclonic (anticlockwise viewed from the north, adding to
the vorticity of the rotating planet) or anticyclonic (clockwise viewed from the north, reducing
the planetary vorticity). This flow is driven by the convection near the equatorial region, with
hot rising fluid carried out from the ICB in the positive s direction toward the CMB. Similarly,
cold fluid falls back between the columns. This columnar flow on its own cannot drive a dynamo.
Indeed no purely two-dimensional flow can drive a dynamo (Zeldovich 1957). The secondary flow
up and down the columns is therefore crucial. The direction of the secondary flow is such that
it diverges in the z direction at the equator in the anticyclones and converges at the equator in
the cyclones. As the fluid is incompressible, this means that flow must converge in the φ and s
directions in the anticyclones near the equator. This convergence leads to an accumulation of Bz

in the anticyclones near the equator (Kageyama & Sato 1997). Similarly, a meridional field (that
is, in the r and θ directions) accumulates in cyclones near the CMB.

Figure 6 illustrates the process by which magnetic field in the φ direction is converted into
a meridional field. The symmetry of the initial Bφ field can be seen in Figure 4c. In Figure 6a,
which is taken to be in the northern hemisphere, the secondary flow stretches out Bφ , creating
Bz. This generates Bz locally, but there is no nonzero average over φ. However, as shown in
Figure 6b, the primary flow sweeps the positive Bz field toward the ICB and the negative Bz

toward the CMB, creating a nonzero average in φ. In the southern hemisphere, Bφ has the opposite
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Figure 5
Illustration of the flow in the convective columns. The primary (red ) flow shows the cyclonic (C) and
anticyclonic (A) rotation of the convecting columns. The secondary (blue) flow shows the flow up and down
the columns and its recirculation near the equator and the core-mantle boundary.

sign, and the secondary flow also has the opposite sign, so the created Bz has the same sign.
The meridional field created therefore has a dipolar nature, with Bz positive near the ICB, in
agreement with Figure 4a. The negative Bz generated in this process is mostly pushed out of the
core altogether, which is allowed by the insulating boundary conditions. This mechanism relies
(implicitly) on the relatively low magnetic Reynolds number on the roll length scale. If we denote
the typical thin length scale across a roll by L⊥, the local Rm = U∗L⊥/η � U∗d/η is sufficiently
small so that the field is not advected though more than a moderate angle before diffusion kicks
in, thus ensuring that all the generated Bz has the appropriate sign. In mathematical terms, we are
in the first-order smoothing regime of Moffatt (1978). For simplicity, we concentrate here on Bz

production, but similar arguments apply to Bs production, except that now it is the primary flow

Z

s

ICB

CMB

φ

φ

a

b

BZ > 0> 0BZ < 0< 0BZ > 0> 0 BZ > 0BZ < 0BZ > 0

BZ > 0

BZ < 0

BZ > 0

CAC A

Figure 6
Illustration of the creation of Bz from Bφ in the northern hemisphere. (a) A Bφ magnetic field line ( green) is
stretched by the secondary flow of Figure 5. (b) The created Bz field is separated by the primary flow, so
that positive Bz moves to the inner-core boundary (ICB), and negative Bz moves to the core-mantle
boundary (CMB).
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Bφ > 0> 0
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Bφ > 0
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z

Figure 7
Illustration of the creation of Bφ from Bz in the northern hemisphere. (a) A Bz magnetic field line ( green) is stretched by the secondary
flow of Figure 5. (b) The created Bφ field is separated by the primary flow, so that negative Bφ moves to the inner-core boundary
(ICB), and positive Bφ moves to the core-mantle boundary (CMB).

that generates Bs and the secondary flow that separates out the positive and negative Bs. In the
northern hemisphere, positive Bs is moved toward the pole and negative Bs toward the equator,
with the opposite taking place in the southern hemisphere, consistent with the dipolar nature of
the field.

The creation of negative and positive Bs from Bφ across individual rolls just above and below
the equator gives rise to reversed flux patches, which are visible in Figure 4a. The uz flow will
push these reversed flux patches together, and they will be destroyed by diffusion across the
equator. However, the uz flow is weak near the equator, and so the near-equatorial reversed flux
patches appear in many simulations. Interestingly, the present geomagnetic field does not show
this behavior; the reversed field patches in the Earth’s CMB seem to occur mainly at high latitudes.
This is perhaps the main difference between the fields generated by the simulations in the dipolar
regime at moderate Rayleigh number and the actual geomagnetic field.

Figure 7 illustrates the process by which the Bz field is converted back to an azimuthal field.
In the solar dynamo, the azimuthal field comes from a differential rotation stretching out the
meridional field, the ω-effect. It was therefore quite a surprise when convection-driven dynamo
models were shown to be generating an azimuthal field not by the ω-effect but through the α-
effect also, hence the name α2 models. This is possibly because the magnetic field itself tends
to strongly reduce the shear driven by Reynolds stresses (see, e.g., Aubert 2005), whereas in the
solar dynamo the field only weakly affects the differential rotation. In Figure 7a, an initial field
line in the z direction is stretched into the φ direction by the secondary flow (see Figure 5).
Figure 7b, the situation in the northern hemisphere, shows that the positive Bφ created is swept
toward the CMB, whereas negative Bφ is swept toward the ICB. Now with insulating boundaries
at the ICB, Bφ vanishes at the ICB, so the negative Bφ is lost by diffusion. Therefore, net positive
Bφ is created, in agreement with Figure 4c.

We can view these mechanisms in terms of the mean φ-averaged field B and the small-scale
fluctuating parts b′ produced by the convection rolls, which are highly nonaxisymmetric. Ohm’s
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law can then be written

η∇ × B = ημj = E + U × B + u′ × b′, (11)

and we are interested in the mean current produced by the mean of the fluctuating convective
terms. The dipolar field with Bz positive near the ICB and negative outside is produced by a
positive azimuthal current, so we need the φ component of u′ × b′, u′

zb ′
s − u′

s b ′
z, to be positive.

Figure 6 focuses on the term u′
s b ′

z. The induction equation for the fluctuating term (ignoring any
mean flow U) is

∂b′

∂t
= B · ∇u′ + η∇2b′, (12)

assuming that derivatives of the mean quantities are small compared with derivatives over the short
fluctuating length scales. Taking the z component and using the azimuthal Bφ , we get the rate of
growth of b ′

z as Bφ/s ∂u′
z/∂φ. We assume this field builds up for a time �t and then comes into

balance with diffusion, so b ′
z ∼ �t Bφ/s ∂u′

z/∂φ. Note this argument is only valid provided diffusion
is strong enough for equilibrium to be achieved before fluctuating fields can build up sufficiently
to change the Bφ significantly; this is where the first-order smoothing assumption (Moffatt 1978)
enters the argument. Note also that this result for b ′

z is in accord with the illustrated argument
in Figure 6a. Figure 6b shows that u′

s b
′
z is negative, so this part of the fluctuating term does

indeed generate a positive jφ current as required to maintain the dipole. Considering Figures 6
and 7, it is not difficult to see that the term u′

zb
′
s will be positive, and so this term reinforces the

creation of positive jφ . This argument gives jφ = �t Bφ/s [u′
z∂u′

s /∂φ −u′
s ∂u′

z/∂φ], and the terms in
square brackets are the dominant terms of u′ · ∇ × u′, the kinetic helicity, because the convection
varies most rapidly in the φ direction. It is this nonzero helicity, mainly antisymmetric about the
equator, that gives rise to the dynamo action seen in these dipolar models. The secondary flow of
Figure 5 is therefore an essential part of the dynamo. Similar arguments can be used to understand
the creation of Bφ from the meridional field. Figure 7 focuses on the z component of the current
in Equation 11, and the term u′

s b
′
z, which has positive mean, but similar arguments apply to the

other terms giving rise to meridional current.

5. EXPLORING THE PARAMETER SPACE

The Boussinesq dynamo equations given in Equations 5–10 have been used for a very large number
of simulations. However, many different choices have been made for the parameters, the boundary
conditions, and the form of the internal heating, with the consequence that it can be quite difficult
to relate the results from different authors, and it can seem as though by an appropriate choice
almost any result can be obtained. There are, however, some recurrent features that can serve as
a guide through this wilderness. We start by considering the effect of varying the parameters in
the standard model, that is, when there is no internal heating and the temperature is fixed at the
boundaries, which are no slip and electrically insulating.

5.1. The Standard Model

The case of the standard model has been explored by Olson et al. (1999), Christensen et al. (1999),
Kutzner & Christensen (2002), and Sreenivasan & Jones (2006a), among others. There are five
dimensionless parameters that describe this model: the radius ratio, Ra, E, Pm, and Pr. Sometimes
q = Pm/Pr is used in place of Pm. We describe here only radius ratio = 0.35, the Earth-like
value, leaving different radius ratios to Section 7. If we set Pr = 1, dynamos obtained as the three
remaining parameters are varied are illustrated in Figure 8. At moderate E = 10−3, fairly high Pm
is needed to obtain any dynamo, a result noted as early as 1989 by Zhang & Busse, which caused
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Figure 8
Regime diagram for dynamos as a function of Ra/Rac and Pm at six different values of E. Pr = 1 throughout. The area of the red circles
scales with the strength of the field. Blue diamonds denote nondipolar dynamos, and purple crosses are failed dynamos. Figure
reproduced with permission from Christensen & Aubert (2006).

concern as liquid metals have low Pm, typically in the range 10−5–10−6. However, optimism was
restored when it was noted that as E is lowered, dynamos can be obtained with lower Pm (Figure 8).
At E = 10−4, Pm = 0.5 can be reached, and at E = 3×10−6 dynamos can be found at Pm = 0.06.
There is no prospect of finding numerical dynamos at much lower Pm than this. Another notable
feature shown in Figure 8 is that at larger Ra, dipole-dominated dynamos are not found. A
magnetic field is generated, but the field typically has no systematic large-scale components. The
(small) dipolar component fluctuates, so these can be reversing dynamos. Near the border between
the reversing dynamos and the dipolar dynamos, a great range of dynamical behavior is possible,
including dynamos that are dipole dominated but occasionally reverse, which have been suggested
as a possible model for reversals in the Earth’s core (Olson & Christensen 2006), where the time
between reversals is very much longer than the duration of individual reversals.

The border between these dipolar dynamos and the reversing dynamos is where the inertial
terms in the equation of motion start to become important (Olson & Christensen 2006, Sreenivasan
& Jones 2006a). An inertia-free limit is reached when Pm is increased while E and Ra are held fixed.
To avoid affecting the relative strength of the thermal diffusion to advection ratio, Sreenivasan &
Jones performed a series of runs at varying Pr = Pm with E = 10−4 and Ra = 7.5 × 106. The
magnetic Reynolds number and mean magnetic field were defined by

Rm = U∗d
η

, U∗ =
[

1
V

∫
V

u2 dv

]1/2

, B =
[

1
V

∫
V

B2 dv

]1/2

, (13)

where V is the volume of the outer core. Figure 9a shows the magnetic Reynolds number as a
function of time on units of the magnetic diffusion time. In every case a saturation level is eventually
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Figure 9
(a) Magnetic Reynolds number Rm plotted as a function of magnetic diffusion time and (b) mean magnetic field as a function of
magnetic diffusion time. Figure taken with permission from Sreenivasan & Jones (2006a).

attained, which is fairly independent of Pr = Pm provided Pm ≥ 0.5, but Rm (and so the kinetic
energy) is much larger at Pr = Pm = 0.2. Similarly, in Figure 9b the mean B is reasonably
independent of Pm above 0.5 but is much lower when the inertial regime is reached. To establish
that the transition is indeed connected with inertia, Figure 10 plots the relative strength of the
radial components of the Lorentz force |(∇ × B) × B|r , the Coriolis acceleration |2ẑ × u|r , and
the advective part of the inertial acceleration E Pm−1|(∇ × u) × u|r at a randomly chosen time,
for points on half of a section parallel to the equatorial plane at z = 0.5d . It is clear that inertia
is negligible at the higher Pm values, and Lorentz force is not, whereas at low Pm inertia is large
and Lorentz force is comparatively unimportant in controlling the convection (although it must
play a role in determining the low magnetic field strength). This inertia-free regime in which the
main force balance is between the magnetic Lorentz force (M), the buoyancy, or Archimedean
force (A), and the Coriolis acceleration (C). This regime is therefore known as the MAC balance,
or the magnetostrophic, regime.

At low E, the dipolar dynamos develop a much finer velocity structure. Figure 11a shows an
equatorial section of the radial velocity of a dynamo at E = 3×10−6, Pr = 1, and Pm = 0.1. The
velocity is only weakly dependent on z, and the fluid motion is more in sheets than in columns.
This type of flow has also been found at low E by Kageyama et al. (2008) in a slightly different
model. As might be expected given the low Pm, magnetic diffusion is larger than viscous diffusion,
and the magnetic field structures shown in Figure 11b are thicker than the velocity structures.
This is perhaps the first clear evidence of scale separation between the size of the magnetic and
fluid structures.

5.2. J.B. Taylor’s Constraint

J.B. Taylor (1963) showed that if the force balance in the core was magnetostrophic, the magnetic
field must satisfy a constraint. The φ component of momentum integrated over a cylinder radius

596 Jones

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
1.

43
:5

83
-6

14
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
sg

ow
 U

ni
ve

rs
ity

 o
n 

11
/0

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FL43CH24-Jones ARI 15 November 2010 14:28

a b c

Figure 10
Relative strength of the radial component of the (a) Lorentz force, (b) Coriolis acceleration, and (c) inertial acceleration on a horizontal
section at elevation z = 0.5 north of the equatorial plane. Only half the section is shown. The intensity of each point is the ratio of the
magnitude of that force to the strongest force at that point. Each force is divided by the strongest of the forces at each point (including
buoyancy and viscous forces, not shown) and is shaded black for a value near 1, and white for a value near 0. Pr = Pm = 1 (top row) and
0.2 (bottom row). Note that at Pr = Pm = 1, the Lorentz force is greater than inertial acceleration, but at Pr = Pm = 0.2, inertial
acceleration is much larger than the Lorentz force. Figure taken with permission from Sreenivasan & Jones (2006a).

s cut off by the CMB gives (see, e.g., Fearn 1998)

∂

∂t

∫
C(s )

ρuφ ds +
∫

C(s )
2ρus � ds =

∫
C(s )

( j × B)φ ds − 4π s
ρuφ(v�rc mb )1/2

(r2
c mb − s 2)1/4

. (14)

The Coriolis term is zero because there is no net flow across the cylinder, and buoyancy has no φ

component. Reynolds stress is ignored because it is believed to be small in the core, although it is
not small in many simulations. The last term comes from the viscous friction at the boundaries,
which is produced by Ekman suction (e.g., Fearn 1998). It is small because E is small. On a
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1.6

a b

100.0
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(Ωρμη)½η/d

Figure 11
Snapshot of a dynamo simulation at E = 3 × 10−6, Pr = 1, Pm = 0.1, and Ra = 2.33 × 109: (a) equatorial section of ur and
(b) equatorial section of Br . The flow is quite independent of z and so consists of narrow sheets. The magnetic field structures have less
very-small-scale structures, as expected at low Pm.
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long-term average, the time-dependent term must be zero, so the Lorentz force balances the
Ekman suction. Because this is small, but B and j are not, the magnetic field must be constrained
to be in a special configuration that makes the integral almost zero, and this is Taylor’s constraint.
Low-E simulations (particularly plane-layer models, which can reach lower E) do seem to satisfy
Taylor’s constraint (Rotvig & Jones 2002). The degree to which Taylor’s constraint is satisfied is
monitored by the Taylorization parameter

Tay =
∫

C(s ) j × B · 1φd S∫
C(s ) |j × B · 1φ | d S

. (15)

Aubert (2005) reported that at low E the Taylorization parameter is becoming small in spherical
dynamos, as did Christensen & Wicht (2007). Takahashi et al. (2005) also claimed to have found
a quasi-Taylor state at low E.

Torsional oscillations of the Taylor cylinders about the magnetostrophic equilibrium, torsional
Alfvén waves, have been reported in the core with a period of around 50 years (Zatman & Bloxham
1997). However, Gillet et al. (2010) have recently found a 6-year oscillation both in the secular
variation of the magnetic field and in the length of the day, which they identify with a torsional
oscillation. If this is correct, it would correspond to an root-mean-square field strength of about
4 mT in the core, considerably stronger than the field at the CMB (see Figure 1a). This strong
field is more consistent with current geodynamo models than the much weaker field implied by
a 50-year torsional oscillation period. Possible excitation mechanisms are discussed by Dumberry
& Bloxham (2003).

5.3. Stress-Free Boundaries

Stress-free boundaries are commonly used on the grounds that the effect of the Ekman boundary
layers that occur in no-slip simulations is overestimated because the Ekman number is too large
for numerical reasons, and it would therefore be better to remove the boundary layers altogether
(Kuang & Bloxham 1997). Stress-free nonmagnetic convection simulations lead to much larger
zonal flows (axisymmetric flow in the φ direction) than are found with no-slip boundaries, because
the inertial Reynolds stresses only compete against the internal viscosity and not the much larger
boundary layer friction. Consequently, inertial effects, and in particular the effect of zonal flow,
are far more apparent in stress-free boundary cases. This leads to a rich dynamical behavior; it is
possible to find quadrupolar dynamos (Simitev & Busse 2005, Busse & Simitev 2006), fluctuating
dynamos (Simitev & Busse 2008), and even hemispherical dynamos, that is, dynamos predomi-
nantly in one hemisphere (see Grote & Busse 2000). This work was reviewed in Busse & Simitev
(2007). The shear driven by the convection can disrupt the convection, and hence the dynamo.
It is therefore possible to obtain regions of reduced shear, where the field and the convection are
active, and regions dominated by shear, where convection is reduced and no field is generated.
More recently, it has been noted that in this transition region, multiple steady solutions can be
found; that is, with some initial conditions, dipolar dynamos can be found, but with other initial
conditions, small-scale dynamos are found at exactly the same parameter values (Simitev & Busse
2009). Simply evaluating the strength of the inertial terms in the Earth’s core suggests that they
are very small compared with other terms, except over very short length scales [Sreenivasan &
Jones (2006a) estimated length scales below 4 km], which are too small to affect the dynamo.
Even small inertial terms can be significant in building zonal flow if they are opposed only by
small viscous terms in the absence of a magnetic field, but large zonal flows seem unlikely in the
presence of a magnetic field, although Miyagoshi et al. (2010) presented a low-E dynamo with a
region of strong differential rotation outside the field-generating region.
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5.4. Thermal Boundary Conditions and Internal Heating

The effect of changing the thermal boundary conditions and adding internal heating was inves-
tigated by Kutzner & Christensen (2002). They showed that adding internal heating reduces the
dipole dominant region, whereas chemical convection (which acts like thermal convection with
an effective heat sink in the outer core) extends the dipolar region (Figure 12). They found that
changing from a constant-temperature boundary condition to a fixed-flux boundary condition
made little difference, but Sakuraba & Roberts (2009) looked at low E ∼ 2 × 10−6 (using our
definition) and Pm = 1, Pr = 0.2, and found significant differences between fixed-flux and
fixed-temperature boundary conditions. In particular, the flow structures are much broader with
fixed-flux boundary conditions (see Figure 13), and in consequence flux patches on the CMB are
more significant, as on the Earth. The very fine velocity structures seen in Figures 11a and 13a

lead to a much more dipolar field than the geomagnetic field. Sakuraba & Roberts attribute the
difference to the large-scale flows driven by the temperature differences that appear on the CMB
when fixed-flux conditions are used.
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Figure 12
Dynamos found with varying boundary conditions and internal heating. E = 3 × 10−4, q = Pm/Pr = 3,
and Pr = 1. The Rayleigh number on the scale is a factor E smaller than that defined here. N are regions of
no dynamos, S are stable dipolar dynamos, and R are reversing nondipolar dynamos. The size of the circles
relates to field strength. Abbreviations: CMB, core-mantle boundary; ICB, inner-core boundary. Figure
reprinted from Kutzner & Christensen (2002), with permission from Elsevier.
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–300 0 300

a b

Us

Figure 13
Equatorial section of us = ur for a dynamo at E = 2.37 × 10−6, Pr = 1, Pm = 0.2, and Ra ∼ 9 × 109 in the
units used here: (a) constant temperature on the core-mantle boundary (CMB) and (b) constant heat flux on
the CMB. The flow is quite independent of z, so the flow consists of narrow sheets. Note the larger-scale
structures that appear in the constant–heat flux case. Figure reprinted by permission from Macmillan
Publishers Ltd.: Sakuraba & Roberts (2009).

6. SCALING LAWS AND HEAT TRANSPORT

As we can never perform simulations at very small E and Pm, the hope is that we can identify
the behavior in the asymptotic limit as E → 0 and Pm → 0 and hence evaluate the magnetic
field strengths and velocities to be expected for given heat flux and boundary conditions. This
asymptotic limit is described by scaling laws; the idea is that we will be able to perform a simulation
at numerically possible values of E and Pm with the appropriate geometry, boundary conditions,
and internal heating distribution and use the scaling laws to convert the output into numbers
that can be compared directly with observations of the real planet. This is clearly an ambitious
program, but some progress has been made.

Two complementary approaches are possible when deriving scaling laws. The direct approach,
exemplified by Christensen & Aubert (2006), is to look at many dynamo model runs to see if
asymptotic laws are emerging. The alternative (e.g., Starchenko & Jones 2002) is to use physical
arguments to see which terms are balancing in the appropriate limit. This is not straightforward,
because even if pressure forces are discounted by considering vorticity, there are still five terms
in Equation 4, inertial and Coriolis accelerations balanced against buoyancy, Lorentz forces, and
viscosity. We focus on the case of thermal driving only, but compositional convection can be dealt
with by similar methods.

In nonlinear theories, the temperature fluctuation is estimated from the convected heat flux,
given by a surface integral at constant r,

Qconv =
∫

S
ρc p ur T d S ∼ 4πricbrcmbρc pU∗T∗, (16)
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where U∗ and T∗ are the typical velocity and temperature fluctuations, defined in simulations by
the volume integrals over the outer core

U∗ =
[

1
V

∫
u2 dv

]1/2

T∗ =
[

1
V

∫
T 2 dv

]1/2

, (17)

and cp is the specific heat. Recall that T here is the very small superadiabatic temperature, not the
actual temperature. The symbol ∼ here means there is a numerical constant of proportionality that
can be determined by a simulation. The choice 4πricbrcmb follows Christensen & Aubert (2006). The
hope here (and below) is that the same constant will serve for all solutions with the same geometry
and boundary conditions. This assumes that there is a strong constant correlation between hot
fluid and rising fluid. In rotating convection this is not so clear, but the limited numerical evidence
we possess does give it some support. Note that in a strongly convecting steady state with no
heat sources, the total heat flux is independent of r, and so outside of boundary layers, Qconv will
also be independent of r. Astrophysicists use mixing-length theory, a balance between inertia and
buoyancy,

U 2
∗ /d ∼ gαT∗ ∼ gαQconv

4πricbrcmbρc pU∗
. (18)

In compressible convection, d is usually taken as the density-scale height, and in Boussinesq
convection as the distance between the boundaries. The typical velocity is then the Deardorff
velocity

U∗ ∼
(

gαQconvd
4πricbrcmbρc p

)1/3

. (19)

The plane-layer version of this works well in laboratory experiments. In the core, for 1 TW of
convective heat flux, ρ ≈ 104 ms−1, c p ∼ 900 Jkg−1 K−1, g ≈ 8 ms−2, and α ≈ 10−5 K−1, this
gives U∗ about 10 times too big, suggesting that rotation and magnetic field are slowing down the
convection.

6.1. Inertial Theory of Rotating Convection

The essential modification for rotating convection is to allow for tall thin columns, involving the
new short length scale, the column width L⊥. The vorticity (ω) equation, ignoring viscosity, gives

Dω

Dt
− 2(� · ∇)u = ∇ × gαT r̂ + 1

ρ
∇ × (j × B). (20)

Ignoring (temporarily) the Lorentz force, this suggests that the order-of-magnitude balance is

U 2
∗

L2
⊥

∼ �U∗
d

∼ gαT∗
L⊥

, (21)

where the magnitude of the vorticity is U∗/L⊥. The first term comes from nonlinear vorticity
advection over the short length scale L⊥, and the second term comes from the stretching of the
planetary vorticity over the long length scale d due to the motion along the sloping boundaries.
Then

L⊥ ∼
(

U∗d
�

)1/2

∼
(

5 × 10−4 × 2 × 106

7 × 10−5

)1/2

∼ 4 km, (22)

where L⊥ is Rhines length, the length scale at which there is a balance of inertial and Corio-
lis accelerations. On longer length scales, inertial acceleration is small compared with Coriolis
acceleration.
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As in mixing-length theory, we use Equation 16 to eliminate T∗, and from Equation 21

L⊥ ∼ d
(

gαQconv

4πricbrcmb�3d 2ρc p

)1/5

, (23a)

gαT∗ ∼
(

�

d

)1/5 (
gαQconv

4πricbrcmbρc p

)3/5

, (23b)

U∗
�d

= Ro ∼
(

gαQconv

4πricbrcmbρc p�3d 2

)2/5

. (24)

Hide (1974) and Ingersoll & Pollard (1982) proposed these scalings, and they were tested ex-
perimentally by Aubert et al. (2001). Gillet & Jones (2006) studied them numerically, using the
quasi-geostrophic approximation, that is, assuming the vorticity parallel to z is independent of z.
For compositional convection, Qconv is replaced by the compositional buoyancy flux. Christensen
& Aubert (2006) defined a flux Rayleigh number

RaQ = gαQconv

4πricbrcmbρc p�3d 2
. (25)

Fitting data from dynamo simulations, they obtained

Ro = 0.83Ra0.41
Q , (26)

which is very close to Equation 24, the inertial scaling. Taking the typical core velocity as 15 km
per year from the secular variation gives Ro = U∗/�d = 2.9 × 10−6, giving

RaQ ∼ 2 × 10−14 → Qconv ∼ 0.6 TW. (27)

This is a reasonable value consistent with independently obtained estimates of the total heat flux.
Compositional convection may be releasing a mass flux of 3 × 104 kgs−1 at the ICB, which would
be equivalent to RaQ ∼ 8 × 10−13. This would give a rather high value for the typical velocity in
the core, 60 km per year.

One problem with Equations 23 and 24 is that they predict that L⊥ has a very small value of
about 4 km in the core. If we assume that the magnetic field prevents L⊥ from becoming this small,
a fixed value of L⊥ rather than that given in Equation 23a leads to an exponent of 1/2 rather than
2/5 in Equation 24, as suggested by Starchenko & Jones (2002). This would give a slightly lower
velocity for the given compositional mass flux.

6.2. Magnetic Field Strength

In the Earth’s core, magnetic energy is much greater than kinetic energy, so a simple equipar-
tition as used in astrophysics will not work here. One approach (Christensen & Aubert 2006)
to estimating the field strength is through estimating the rate of ohmic dissipation. The rate of
working of the buoyancy force equals the rate of ohmic and viscous dissipation in a steady state.
We denote the fraction of ohmic dissipation to the total dissipation as fohm. In dynamo models the
rate of ohmic dissipation is typically similar to the rate of viscous dissipation, fohm ≈ 0.5, but the
low Pm suggests a value closer to unity might be more appropriate in the core. We can estimate
the buoyancy force work in terms of the heat flux by taking the scalar product of Equation 4 with
u and integrating over the whole outer core, so∫

ημj2 dv = fohm

∫
gα

c p

[∫
ρc p ur T ′ d S

]
dr ≈ 7.01 fohmρ�3d 5 RaQ (28)

for the geometry of the Earth’s core (Christensen & Aubert 2006).
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Now we need to relate the magnetic energy to ohmic dissipation. The dissipation time is
the time taken for the magnetic energy to be dissipated through ohmic loss, which for a solid
conductor would scale as d 2/η. For a whole sphere of radius a, Moffatt (1978) gave the e-folding
time as τdiss = a2/π2η. Christensen & Tilgner (2004) proposed that in a turbulent fluid, this
time would be reduced by a factor Rm, the magnetic Reynolds number, so then τdiss ∼ d/U∗,
independent of η. Equivalently, we can think of the dissipation taking place over a short length
scale d Rm−1/2, which is the expected length scale if the magnetic field is concentrated into flux
ropes (Galloway et al. 1977), which then dominate the dissipation. Then∫

ημj2 dv ∼ Rmη

d 2

∫
B2/2μ dv. (29)

We now have ∫
ημj2 dv ∼ U∗

d

∫
B2

μ
dv ∼ fohmρ�3d 5 RaQ. (30)

Using Equation 24 to estimate U∗, this gives

B∗ ∼ (μ fohmρ)1/2�d (RaQ)3/10 ∼ (μ fohm)1/2d−1/5ρ1/5�1/10
(

gαQconv

c p

)0.3

. (31)

The remarkable feature is the weak dependence of B∗ on �. We are assuming, however, that the
planet is in the rapidly rotating low Ro regime for these estimates to be plausible. This estimate
does give sensible field strengths for the Earth and Jupiter (Christensen & Aubert 2006), the two
planets for which we have reasonable estimates for the heat flux and the other physical quantities
in the formula.

It is not easy to reconcile Equation 31 with the balance in the vorticity equation given in
Equation 20, which is slightly worrying as the fundamental MAC balance in the core is believed to
be between the buoyancy force, Lorentz force, and Coriolis acceleration. The simplest estimate
for the Lorentz force in Equation 20 is B2

∗/μL2
⊥, and balancing this against the Coriolis estimate

ρ�U∗/d gives

B∗ ∼ (μρ)1/2�d Ra2/5
Q , (32)

slightly different from Equation 31 and significantly smaller in the core. A more detailed model
would be to balance the buoyant driving and vortex stretching in the z-vorticity equation with
the magnetic friction torque from the Bφ component of the magnetic field. One might reasonably
assume that the length scale L⊥ is set by the balance of induction and diffusion in the induction
equation, leading to B∗U∗ ∼ ημj∗, which in the vorticity equation gives

B∗ ∼ (�ρμη)1/2
(

L⊥
d

)1/2

. (33)

In the range of simulations, none of the three estimates given in Equations 31–33 is very different,
and each depends on how L⊥ scales at low RaQ, which is unclear because, as mentioned above, it
seems unlikely that Equation 23a continues to be valid in the asymptotic limit. It is also worth
noting that Equation 31 estimates B∗ from the total magnetic energy rather than the average of the
modulus of the field. At large Rm there may be concentrated flux ropes at which the field is locally
much larger than its typical value. The magnetic energy B2/μ is then dominated by these flux
ropes, and the estimate given in Equation 31 would be significantly larger than the typical value
outside the ropes. The estimate given in Equation 33, alternatively, might relate to the lowest
values of the Bφ field, where the magnetic damping of the convective rolls is weaker. It is clear
that more work needs to be done before we can be confident about the correct scaling laws, but
nevertheless an encouraging start has been made.
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7. MODELS OF THE MAGNETIC FIELDS OF INDIVIDUAL PLANETS

7.1. Mercury

Mercury has a radius of only 2,440 km, but it has a relatively large fluid core, with a radius of about
1,900 km. Space missions have enabled the dipole moment, 4.2 × 1012 Tm3, and the low-order
Gauss coefficients to be determined (Uno et al. 2009), and the radial component of the field at the
CMB is shown in Figure 14. The field pattern is not too dissimilar from the geomagnetic field
truncated at degree 3, but the field strength is about 500 times weaker than the Earth’s CMB field.
This difference has been considered to result from Mercury’s slow rotation period, 59 days, but the
more recent view is that field strength is only weakly dependent on rotation, provided the Rossby
number is small. Two dynamo models accounting for Mercury’s weak field have been proposed.
Christensen (2006) suggested that only the deepest part of Mercury’s outer core is convecting;
the upper parts may be stably stratified [as has been proposed for the Earth by Willis et al. (2007),
although Mercury’s stable layer is assumed much deeper]. The dynamo in the lower core is then
operating in essentially the same way as the geodynamo, but the stable conducting regions only
allow a small fraction of the field to escape to the surface, and they filter out all the high-degree
harmonics. Hence the observed field of Mercury appears much weaker. An alternative thin-shell
model was proposed by Stanley et al. (2005). Compositional convection may be more advanced
in Mercury, leaving only a thin shell of liquid with a high concentration of light material, the
rest being solid iron. A thin-shell dynamo would have more power in the higher harmonics, not
observable (so far) from space missions, and a relatively weak dipolar component. Also they argue
that the ω-effect could be more important in thin-shell dynamos, with the field being limited by
a large unobservable toroidal component. As these two theories make quite different predictions
for the magnetic spectrum, the new missions to Mercury might help decide between them.

7.2. Earth

There is a large literature on models of the Earth’s magnetic field, a good source being volume 5
of the Treatise of Geophysics edited by Kono (2007). Here we briefly overview a selection of topics
that have attracted attention recently.

–1,600 nT 1,600 nT

Radial magnetic field

Figure 14
The radial component of Mercury’s magnetic field at its core-mantle boundary, centered on longitude zero.
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7.2.1. Polar vortices. Dynamo models often show a significant difference between the polar
regions inside the tangent cylinder and the rest of the outer core, a consequence of the columnar
structure of the convection. Olson & Aurnou (1999) found geomagnetic evidence that the polar
regions have an anticyclonic vortex. They suggested this might be due to excess heat and light
material released from the ICB. From the thermal wind equation, the φ component of the vorticity
equation,

2�
∂uφ

∂z
= gα

r
∂T
∂θ

, (34)

the resulting latitudinal temperature gradient (or composition gradient) makes the flow anticy-
clonic near the CMB and cyclonic near the ICB. Glatzmaier & Roberts (1996a) proposed that this
might mean that the inner core is rotating slightly faster than the mantle, for which there has been
some seismological evidence. More recently, this inner-core super-rotation has been questioned,
and Buffett & Glatzmaier (2000) suggested that gravitational coupling between a slightly nonax-
isymmetric inner core and mantle might in fact lock the rotation of the inner core to the mantle.
Aurnou et al. (2003) showed that polar vortices of the correct sign of vorticity could be produced in
laboratory convection with a hemispherical inner core. Sreenivasan & Jones (2005, 2006b) found
polar vortices in dynamo simulations but noted that the Lorentz force played a significant role in
the thermal wind equation.

7.2.2. History of the geodynamo and reversals. Models of the thermal history of the Earth
suggest that the inner core only started forming about 1 Gyr ago (Labrosse et al. 2001), much
less than the age of the Earth, 4.5 Gyr. Because the inner core generates most of the heat flux
and all the mass flux in the standard model, Roberts et al. (2003) suggested that there must be
radioactivity in the core to provide the heat flux necessary to drive the dynamo prior to inner-core
formation. Paleomagnetic evidence suggests that the dynamo has been working at more or less
its present strength for at least 3.5 Gyr. Aubert et al. (2009) have examined the secular changes in
dynamo activity as heat and composition sources evolve.

Glatzmaier & Roberts (1995) found a dynamo that had quite earthlike reversals. Sarson &
Jones (1999) analyzed a reversing dynamo and suggested that the origin of the reversals lay in
fluid breaking out of the thermal boundary layer near the ICB, giving rise to buoyancy surges.
Large Ra was necessary for this to occur, which is numerically difficult. Kutzner & Christensen
(2004) explored earthlike reversals near the transition between the inertia and inertia-free regimes,
an idea developed by Olson & Christensen (2006), who gave criteria for a dynamo to be in this
reversing regime.

7.2.3. Mantle heterogeneity. The heat flux taken out of the core by the mantle is likely to vary
strongly with position, being highest where cool descending slabs from subducting plates reach
the CMB. This heterogeneity can be estimated using seismic tomography (see, e.g., Gubbins
et al. 2007) and will couple dynamo activity in the core to long geological timescales. Glatzmaier
et al. (1999) found that reversals in dynamo models were strongly affected by the distribution of
heat flux over the CMB, with some arrangements preventing reversals and others encouraging
them. They proposed that the long Cretaceous superchron, 40 Myr during which there were
no reversals, resulted from mantle convection giving rise to a CMB heat flux distribution that
suppressed reversals. Heterogeneous CMB heat flux has also been proposed as an explanation
for the preferred reversal paths noted by Hoffman (1992) and the persistent flux patches over
Canada and Siberia (Gubbins & Kelly 1993). The effects of heterogeneous CMB heat flux on
dynamo models have been investigated by Willis et al. (2007). Mantle inhomogeneity might affect
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convection throughout the outer core, and hence lead to inhomogeneity in the way freezing takes
place at the ICB (Aubert et al. 2008a).

7.3. Mars

The Mars Global Surveyor discovered strong remanent magnetism on Mars (Acuña et al. 2001),
suggesting that it had an ancient dynamo. The age at which it stopped working, around 350 Myr
after the formation of the planet, can be estimated by studying the geology of Mars (Lillis et al.
2008). It is known that Mars still has a liquid core (Yoder et al. 2003), so the simplest explanation
is that the core stopped convecting and hence the power source failed. Kuang et al. (2008) used a
dynamo model to show that a dynamo can collapse quite suddenly, due to its subcritical nature.
The martian magnetic field is predominantly in one hemisphere, which led Stanley et al. (2008)
to propose a model based on an asymmetric convection pattern, which might have been induced
by the crustal asymmetry of that planet, the northern hemisphere crust being significantly thinner
than that of the southern hemisphere uplands.

7.4. Ganymede

Ganymede’s magnetic field was discovered by the Galileo spacecraft (Kivelson et al. 1996). The
first problem was whether this was a genuine dynamo or merely an amplifier of Jupiter’s magnetic
field. Models by Sarson et al. (1997) concluded that a dynamo was more likely. Ganymede has
an icy crust, a warm silicate mantle, and a metallic core. The radius is 2,634 km, but the metallic
core radius is believed to be (from gravity measurements) approximately 500 km. The dipole
moment is 1.3 × 1013 Tm3, about three times larger than that of Mercury. At the surface the field
is typically 700 nT, but at the CMB this rises to 0.12 mT, weaker than the Earth’s CMB field
but much stronger than Mercury’s field. The outstanding problem with the Ganymede dynamo
is the energy source. It is surprising that such a small body is still convecting; Showman et al.
(1997) suggested that orbital resonances might lead to tidal heating, but this is still controversial
(Bland et al. 2008). If Ganymede does indeed have a dynamo, it raises the interesting question of
how small a planetary body can be and still have a dynamo. The recent discovery of microtesla
magnetic fields on angrites (Weiss et al. 2008), meteorites that record the earliest history of the
solar system, suggests that planetesimal components that subsequently formed the planets might
have had their own dynamos.

7.5. The Giant Planets

All the outer planets are believed to be transporting heat by convection, so fluid motion is expected
in their interiors. The very high pressures found in Jupiter and Saturn lead to metallic hydrogen;
that is, the gas becomes ionized and hence electrically conducting. This electrical conductivity
rises gradually with depth, reaching a plateau of 2 × 105 Sm−1 (Nellis 2000), three times lower
than the usual estimate for the Earth’s metallic core, 6×105 Sm−1 (see, e.g., Merrill et al. 1996). In
Jupiter, the plateau is reached at a radius about 0.8 RJ, whereas in smaller Saturn, where the high
pressures needed are found only deeper, it is reached at about 0.5 RS. The Gauss coefficients for
Jupiter and Saturn up to degree 3 are reconstructed from space-mission results, and are listed in
Connerney (1993). There is some doubt as to where the dynamo is actually operating in the giant
planets, because the overall magnetic Reynolds number is large, and it may be that dynamo action
works best at moderate Rm. If this is true, regions where the electrical conductivity is below its
maximum value may be optimal, in which case the magnetic region could extend above 0.8 RJ and
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–1.2 mT 1.2 mT

–0.06 mT 0.06 mT

a

b

Radial magnetic field

Radial magnetic field

Figure 15
The radial component of (a) Jupiter’s magnetic field and (b) Saturn’s magnetic field, both at the surface using
the Hammer-Aitoff projection, centered on longitude −180◦ west.

0.5 RS. Figures 15a,b show the magnetic fields of Jupiter and Saturn at their surface. Jupiter’s field
(based on the Gauss coefficients given in Connerney 1993) is essentially a dipolar field inclined at
about 10◦ to the rotation axis, similar to the Earth. Jupiter’s rotation rate is defined by the rotation
period of its magnetic field, which is accurately known. The surface features rotate at different rates
depending on their latitude. This observation alone suggests that the typical convective velocity
in the deep interior must be much less than the fast east-west jet flows at the surface, which can
reach over 100 ms−1 in Jupiter and 300 ms−1 in Saturn. Observations of changes in the magnetic
field of Jupiter between the Voyager and Galileo missions suggest flows on the order of 10−3 ms−1

are moving the field around (Russell et al. 2001).
As is clear from Figure 15b, Saturn’s magnetic field (based on the Gauss coefficients given

in Burton et al. 2009) is remarkably axisymmetric, so much so that its rotation period cannot
be reliably determined from its magnetic field, so the rotation rate of Saturn’s deep interior
is still uncertain. Saturn’s field is also significantly weaker than Jupiter’s field, but it should be
remembered that the metallic hydrogen region in Saturn is at a depth of half its radius, so the
field at its effective CMB could be nearly 10 times larger. Cowling’s (1934) theorem tells us that
axisymmetric fields cannot be generated by dynamo action, so assuming the dynamo hypothesis
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is correct, the generated field must be nonaxisymmetric, but processes outside the main dynamo
region must be making the observed part of the field axisymmetric. Stevenson (1982) suggested
that differential rotation in a stably stratified region outside the dynamo-generating core might be
responsible, an idea supported by numerical simulations including a stably stratified outer layer
(Christensen & Wicht 2008).

7.6. The Ice Giants

Uranus and Neptune both have rather irregular nondipolar fields, as illustrated in Figure 16. This
was a quite surprising discovery as all previously known planetary fields were essentially dipolar.
Indeed, it is quite surprising that these ice giants have a magnetic field at all, as they are too small
to form metallic hydrogen and have no liquid-iron core. It is believed that ionic conductivity in
the fluid ionic layer between 0.3 Rs and 0.8 Rs allows sufficient electric currents to flow (Cavazzoni
et al. 1999). However, the predicted electrical conductivity is only 3 × 103 S m−1, which does lead
to an uncomfortably small magnetic Reynolds number unless the fluid velocities in the dynamo

a

b

–0.12 mT 0.12 mT

–0.1 mT 0.1 mT

Radial magnetic field

Radial magnetic field

Figure 16
The radial component of (a) Uranus’s magnetic field and (b) Neptune’s magnetic field, both at the surface
using the Hammer-Aitoff projection, centered on longitude −180◦ west. Data taken from Holme &
Bloxham (1996).
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region are significantly larger than those in other planetary cores. The difficulty is compounded
in the case of Uranus by the small heat flux emerging from the planet, which if taken at face value
would suggest a smaller convective velocity rather than a larger one. A further problem is that
the ohmic dissipation in these ice giants turns out to be quite large (Holme & Bloxham 1996).
Nevertheless, a dynamo model has been constructed (Stanley & Bloxham 2006). Their model has
a stably stratified layer below the main dynamo region, which might also account for the low heat
flux. This region allows the generated field to move around more than in models with a solid inner
core, and this gives rise to nondipolar fields.

8. PERSPECTIVES AND FUTURE DEVELOPMENTS

Dynamo models have developed rapidly over the past 10 years, and the early successes in simulating
the geodynamo have developed into quite detailed models of the magnetic fields of other planets.
There is now a much greater coverage of the parameter space in the models, and the effects of
varying driving, boundary conditions and parameter values are beginning to be understood. It
is clear that a great diversity of behavior can arise in the models, but this is consistent with the
diversity of planetary magnetic fields themselves. Another encouraging development is that the
physical mechanisms behind dynamo action in the simulations are becoming better understood.
Until recently, the numerical codes were essentially black boxes giving rather unpredictable results
for each new parameter set. This encouraged researchers to adjust parameters, often motivated
by numerical rather than physical reasons, until they found the behavior they wanted. This era
does seem to be coming to an end, with the simulations now being used as a tool to explore new
physical ideas relevant to planetary cores.

For the geodynamo, observations have given us a data set of the geomagnetic field over the past
300 years, with high-accuracy values over the past 30 years. Work is currently in progress to try
to assimilate this data into geodynamo models (Gillet et al. 2009). The immediate aim here is to
use this data to discriminate between different dynamo models. The dynamo model is thus a given
prior, to which noisy observational data are added, the output being a time-dependent model of
the geomagnetic field. A poor dynamo model leads to large residuals, a better model to smaller
residuals. Ultimately, it may be possible to use these techniques to forecast the geomagnetic field
(Kuang et al. 2009), but it is in the nature of the geodynamo equations (as it is with weather
forecasting) that predictions far into the future will not be possible (Hulot et al. 2010).

We cannot, and probably never will be able to, use the true very low values of the dissipation
in simulations. This problem is being overcome by understanding how the models behave in the
asymptotic limit, the scaling-law approach, and although much remains to be done, the path ahead
seems clear. However, the models that emerge as new computational resources allow us to move
into the low-E, low-inertia, regime are if anything becoming less earthlike than the moderate
E ∼ 10−4 solutions, which were the lowest that could be reached 10 years ago. In particular,
recent low-E models are often very dipole dominant and show no prospect of reversing. It is too
soon to say that there must be something fundamentally wrong with our overall physical picture;
it is possible that higher Rayleigh numbers, better boundary conditions, improved modeling,
and possibly compressible effects will give more earthlike behavior. It is also true that numerical
constraints can be quite insidious, in that they force us into particular parameter regimes, leading
to a false impression of the overall behavior. However, our improving understanding of dynamo
processes and spherical convection may well make it possible to develop physically based earthlike
models in the near future.

The general outlook for the subject remains extremely promising. New models of giant planet
dynamos are ripe for progress, and the development of compressible planetary dynamo models
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is a major area for future research. There is a real possibility of discovering magnetic fields on
exoplanets, which would give a huge new impetus to the subject. Analysis of magnetic fields in the
remnants of the forming solar system may also help us to understand the origin of our planets.
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