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a b s t r a c t

The magnetic fields of planets and stars are thought to play an important role in the fluid motions

responsible for their field generation, as magnetic energy is ultimately derived from kinetic energy. We

investigate the influence of magnetic fields on convective dynamo models by contrasting them with

non-magnetic, but otherwise identical, simulations. This survey considers models with Prandtl number

Rayleigh numbers from near onset to more than 1000 times critical.

Two major points are addressed in this letter. First, we find that the characteristics of convection,

including convective flow structures and speeds as well as heat transfer efficiency, are not strongly

affected by the presence of magnetic fields in most of our models. While Lorentz forces must alter the

flow to limit the amplitude of magnetic field growth, we find that dynamo action does not necessitate a

significant change to the overall flow field. By directly calculating the forces in each of our simulations,

we show that the traditionally defined Elsasser number, Li , overestimates the role of the Lorentz force

in dynamos. The Coriolis force remains greater than the Lorentz force even in cases with LiC100,

explaining the persistence of columnar flows in Li41 dynamo simulations. We argue that a dynamic

Elsasser number, Ld , better represents the Lorentz to Coriolis force ratio. By applying the Ld

parametrization to planetary settings, we predict that the convective dynamics (excluding zonal flows)

in planetary interiors are only weakly influenced by their large-scale magnetic fields.

The second major point addressed here is the observed transition between dynamos with dipolar

and multipolar magnetic fields. We find that the breakdown of dipolar field generation is due to the

degradation of helicity in the flow. This helicity change does not coincide with the destruction of

columnar convection and is not strongly influenced by the presence of magnetic fields. Force

calculations suggest that this transition may be related to a competition between inertial and viscous

forces. If viscosity is indeed important for large-scale field generation, such moderate Ekman number

models may not adequately simulate the dynamics of planetary dynamos, where viscous effects are

expected to be negligible.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic fields are common throughout the solar system;
intrinsic magnetic fields have been detected on the Sun, Mercury,
Earth, the giant planets, and the Jovian satellite Ganymede
(Connerney, 2007). Evidence of extinct dynamos is also observed
on the Moon and Mars (Connerney, 2007). In addition, it is
expected that many extrasolar planets have magnetic fields
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(e.g., Gaidos et al., 2010). Planetary magnetic fields result from
dynamo action thought to be driven by convection in electrically
conducting fluid regions (e.g., Jones, 2011) and, therefore, are
linked to the planets’ internal dynamics. Convection in these
systems is subject to Coriolis forces resulting from planetary
rotation. In electrically conducting fluids, these flows can be
unstable to dynamo action. Lorentz forces then arise, via Lenz’s
law, that act to equilibrate magnetic field growth.

Insight into the forces that govern the fluid dynamics of
planetary interiors can be gained through numerical modeling:
non-magnetic rotating convection models investigate the influ-
ence of rotation on convection, and planetary dynamo models
incorporate the additional back reaction of the magnetic fields on
the fluid motions from which they arise.

The flows in non-magnetic rapidly rotating convection are
organized by the Coriolis force into axial columns (e.g., Grooms
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et al., 2010; Olson, 2011; King and Aurnou, 2012). Under the
extreme influence of rotation, the dominant force balance is
geostrophic—a balance between the Coriolis force and the pres-
sure gradient. Geostrophic flows are described by the Taylor–
Proudman constraint, which predicts that fluid motions should
not vary strongly in the direction of the rotation axis (e.g., Tritton,
1998). Furthermore, linear asymptotic analyses predict that the
azimuthal wavenumber of these columns varies as m¼OðE�1=3

Þ

as E-0 (Roberts, 1968; Jones et al., 2000; Dormy et al., 2004).
Here, m is non-dimensionalized by the shell thickness and the
Ekman number, E, characterizes the ratio of viscous to Coriolis
Table 1
Summary of non-dimensional control parameters. Symbols are defined in the text.

Parameter estimates for Earth’s core taken from King et al. (2010).

Definition Interpretation Model Earth’s

core

w¼ ri=ro Shell geometry 0.4 0.35

Ra¼ agoDTD3=nk Buoyancy/diffusion 105 oRao109
� 1024

E¼ n=2OD2 Viscous/Coriolis forces 10�3, 10�4,

10�5

� 10�15

Pr ¼ n=k Viscous/thermal diffusivities 1 � 10�1

Pm¼ n=Z Viscous/magnetic

diffusivities

0, 2, 5 � 10�6

Table 2
Summary of non-dimensional diagnostic parameters. Sy

‘B ¼ ðpD=2Þ=kB is assumed to be the characteristic quar

Parameter Definition

EK ¼
1

2Vs
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u � u dV
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K ¼ EK�EAxisymmetric
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1
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R
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ffiffiffiffiffiffiffiffiffirmo
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U
ffiffiffiffiffiffiffiffiffirmo
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q

forces (see Table 1). Thus, in rapidly rotating systems such as
planetary cores (where Et10�10), it is predicted that convection
occurs as tall, thin columns. Flows in these columns are helical,
and these corkscrew-like motions are important for large-scale
magnetic field generation (e.g., Jones, 2011).

In planetary dynamos, however, magnetic fields are also
thought to play an important dynamical role on the convection
and zonal flows. It is often argued that the influence of magnetic
fields will be important when Li\1, where the traditional
Elsasser number, Li, characterizes the relative strengths of the
Lorentz and Coriolis forces (see Table 2). In the presence of
dominant imposed magnetic fields and rotation, the first order
force balance is magnetostrophic—a balance between the Corio-
lis, pressure gradient, and Lorentz terms. Studies of linear mag-
netoconvection show that the azimuthal wavenumber of
convection decreases to m¼Oð1Þ when a strong magnetic field
(Li\Oð1Þ) is imposed in the limit E-0 (Chandrasekhar, 1961;
Eltayeb and Roberts, 1970; Fearn and Proctor, 1983; Cardin and
Olson, 1995). This behavior occurs because magnetic fields can
relax the Taylor–Proudman constraint, allowing global-scale
motions that differ fundamentally from the small-scale axial
columns typical of non-magnetic, rapidly rotating convection.

Despite having strong magnetic fields, however, axial convec-
tive flow structures are maintained in many rotating magneto-
convection and dynamo studies (e.g., Olson and Glatzmaier, 1995;
Zhang, 1995; Kageyama and Sato, 1997; Zhang et al., 1998;
mbols are defined in the text. In these definitions,

ter-wavelength of the magnetic field.

Interpretation

Kinetic energy density

Convective kinetic energy density

Magnetic energy density

Characteristic degree of the flow

Characteristic degree of the B field

Characteristic order of the flow

Characteristic order of the B field

Characteristic wavenumber of the

flow

Characteristic wavenumber of the B
field

Axial vorticity columnarity

2

Relative axial helicity

Total heat transfer

Conductive heat transfer

Inertial force

Viscous force
Convective inertial force

Viscous force
Magnetic induction

Magnetic diffusion

¼ roÞ dA

Þ dA

�1=2 Dipole field strength ðroÞ

Total field strength ðroÞ

Lorentz force

Coriolis force
(low Rm)

Lorentz force

Coriolisforce
(high Rm)

Lorentz force

Coriolis force
ðA¼Oð1ÞÞ

Flow speed

Alfven wave speed
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Christensen et al., 1999; Zhang and Schubert, 2000; Jones, 2007;
Jault, 2008; Busse and Simitev, 2011). Further, King et al. (2010)
have shown that heat transfer scaling laws from non-magnetic
planar convection also apply to planetary dynamo models,
regardless of magnetic field strength. These results imply that
the traditional force balance argument from linear analysis using
the Elsasser number Li may not be an adequate measure of the
dynamical influence of the Lorentz force in convection systems.
Alternate characterizations of the Lorentz to Coriolis force ratio
must therefore be considered.

Here, we contrast dynamo models with non-magnetic, but
otherwise identical, rotating convection models to quantify the
influence of magnetic fields on convective dynamics. While
comparisons between dynamo and non-magnetic simulations
have been conducted (e.g., Christensen et al., 1999; Grote and
Busse, 2001; Aubert, 2005), these studies are typically limited to
convection less than 40 times critical and dipolar magnetic field
geometries. Our survey is complementary to these earlier studies
as it extends the comparison to convection more than 1000 times
critical, considers both dipolar and multipolar magnetic fields,
and makes no assumptions of azimuthal symmetries.

We measure the strengths and structures of magnetic fields
and fluid motions, as well as heat transfer efficiency. We focus on,
in order of priority, (i) the effect of the presence of magnetic fields
on convection, (ii) the effect of varying convective vigor, and (iii)
the effect of varying the rotation rate. In Section 2, we detail the
model and methods. Behavioral regimes found in our models with
fixed E¼ 10�4 are discussed in Section 3, and we analyze para-
metrizations of the magnetic field influence in Section 4. In
Section 5, we examine the transition from dipolar to multipolar
dynamos. Section 6 investigates the influence of varying the
Ekman number, while Section 7 applies our results to planetary
cores. Our conclusions are given in Section 8.
2. Numerical model

We use the numerical model MagIC 3.38 (Wicht, 2002;
Christensen and Wicht, 2007), which is based on the original
pseudospectral code of Glatzmaier (1984). This model simulates
three-dimensional, time-dependent thermal convection of a Bous-
sinesq fluid in a spherical shell rotating with constant angular
velocity Oẑ. We conduct two sets of simulations: (i) non-magnetic
rotating convection models which employ an electrically insulat-
ing fluid and (ii) dynamo models which employ an electrically
conducting fluid. The shell geometry is defined by the ratio of the
inner to outer shell radii, w¼ ri=ro ¼ 0:4. The shell boundaries are
isothermal with an imposed (superadiabatic) temperature con-
trast DT between the inner and outer boundaries. The mechanical
boundary conditions are impenetrable and no-slip. Gravity varies
linearly with spherical radius. The region exterior to the fluid shell
is electrically insulating, and the electrical conductivity of the rigid
inner sphere is chosen to be the same as that of the convecting
fluid region.

The dimensionless governing equations for this system are

E
@u

@t
þu � ru�r2u

� �
þ ẑ � uþ

1

2
rp¼

RaE

Pr

r

ro
Tþ

1

2Pm
ðr � BÞ � B,

ð1Þ

@B

@t
¼r � ðu� BÞþ

1

Pm
r2B, ð2Þ

@T

@t
þu � rT ¼

1

Pr
r

2T , ð3Þ

r � u¼ 0, r � B¼ 0, ð4Þ
where u is the velocity vector, B is the magnetic induction, T is
the temperature, and p is the non-hydrostatic pressure. We
make use of typical non-dimensionalizations used in the plane-
tary dynamo literature: shell thickness D¼ ro�ri as length scale;
DT as temperature scale; tn �D2=n as time scale; rnO as
pressure scale; n=D as velocity scale such that the non-dimen-
sional globally averaged rms flow velocity is equal to the
Reynolds number Re¼UD=n; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmoZO

p
as magnetic induc-

tion scale such that the square of the non-dimensional globally
averaged rms magnetic field strength is equal to the tradition-
ally defined Elsasser number Li ¼ B2= 2rmoZO. In these defini-
tions, r is the density, n is the kinematic viscosity, k is the
thermal diffusivity, Z is the magnetic diffusivity, mo is the
magnetic permeability of free space, and a is the thermal
expansion coefficient.

The non-dimensional control parameters are the shell geome-
try w¼ ri=ro, the Rayleigh number Ra¼ agoDTD3=nk, the Ekman
number E¼ n=2OD2, the Prandtl number Pr¼ n=k, and the mag-
netic Prandtl number Pm¼ n=Z. The Rayleigh number charac-
terizes the ratio of buoyancy to diffusion. The Ekman number
characterizes the ratio of viscous to Coriolis forces. The Prandtl
numbers Pr and Pm characterize the ratio of viscous to thermal
and magnetic diffusivities, respectively. The control parameter
definitions are summarized in Table 1; the diagnostic parameters
are defined in Table 2.

Our suite of simulations consists of 36 planetary dynamo
models and 30 non-magnetic rotating convection models. This
survey considers Prandtl number Pr¼1, magnetic Prandtl num-
bers up to Pm¼5, Ekman numbers in the range 10�3

ZEZ10�5,
and Rayleigh numbers from near onset to more than 1000 times
critical. The critical Rayleigh number, Rac, denotes the onset of
convection. Here, we use the inferred scaling Rac ¼ 3:5E�4=3 from
King et al. (2010). The Rayleigh numbers then fall in the range
1:9Rac rRar1125Rac . This dataset, given in Supplementary
Tables 4 and 5, is among the broadest surveys of supercriticality
made to date.

The value of Pm is chosen such that the magnetic Reynolds
number Rm¼ Re Pm\102, a necessary condition for dynamo
action. For most of our simulations, the parameters are fixed to
the following values, which are commonly used in the current
planetary dynamo literature: E¼ 10�4, Pr¼1, and Pm¼ ½0;2�.
Dynamo models with similar parameters values have been argued
to generate Earth-like magnetic field morphologies (Christensen
et al., 2010; Christensen, 2011).

The largest numerical grid uses 213 spherical harmonic modes,
65 radial levels in the outer shell, and 17 radial levels in the inner
core. No azimuthal symmetries are employed. Dynamo models
are initialized using the results of prior dynamo simulations. Non-
magnetic models are initialized by turning off the magnetic field
of the associated dynamo model, similar to Zhang et al. (1998)
among others. Some studies have found initial conditions to be
important (e.g., Simitev and Busse, 2009; Sreenivasan and Jones,
2011; Dormy, 2011), owing to bistable dynamo states. Thus, we
test for bistability by comparing results obtained with different
initial conditions for a limited number of cases and find no
significant differences in time-averaged behaviors. Once the
initial transient behavior has subsided, time-averaged properties
for cases with Rar11Rac are averaged over at least tO � tn=pE4
1500 rotations, cases with 11Rac oRar56Rac are averaged over
at least 500 rotations, and all other cases are averaged over at
least 30 rotations.

Hyperdiffusion is used in five of our 66 simulations. It is applied
in our most supercritical models (RaZ562Rac for E¼ 10�4;
Ra¼ 12:5Rac for E¼ 10�5) to increase numerical stability by damp-
ing the small-scale components of the velocity, thermal, and mag-
netic fields. In these models, the viscous, thermal, and magnetic



Table 3
Summary of the hyperdiffusion parameters used in this study. Parameter defini-

tions are given in (5).

Ra Ra=Rac E Pm lmax AHD lHD b

2.10�107 28 10�4 2 128 10 20 2

4.24�108 562 10�4 2 192 5 50 2

4.24�108 562 10�4 0 192 5 50 2

8.48�108 1125 10�4 2 192 10 20 2

2.00�108 12.5 10�5 2 213 0.05 150 2
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diffusivities are multiplied by a factor

dðlÞ ¼ 1þAHD
lþ1�lHD

lmaxþ1�lHD

� �b

, ð5Þ

where AHD is the hyperdiffusion amplitude, l is the spherical
harmonic degree, lHD is the degree above which hyperdiffusion starts
to act, lmax is the maximum harmonic degree, and b is the exponent
of hyperdiffusion. As shown in Table 3, the strongest form of
hyperdiffusion used in this study has AHD ¼ 10, lHD ¼ 20, b¼ 2, and
lmax ¼ 192. The harmonic degree above which hyperdiffusion applies,
lHD, was chosen to be greater than the characteristic harmonic degree
of the flows, lu . By comparing a hyperdiffusive dynamo model at
Ra¼ 28Rac and E¼ 10�4 to an otherwise identical non-hyperdiffu-
sive model, we have determined that this hyperdiffusion does not
significantly affect the flow speeds or heat transfer. The Reynolds and
Nusselt numbers differ by less than 3%. However, the characteristic
harmonic wavenumber of the flow decreases by 16% in the hyper-
diffusive model, and the traditional Elsasser number and dipolarity
both increase by about 35%. Thus, the use of hyperdiffusion generally
leads to broader scale flows (Zhang and Schubert, 2000) and
strengthens the dipole component of the magnetic field. We further
note that none of the five models that use hyperdiffusion are near
the dipolarity or columnarity transitions discussed below.
Fig. 1. Time-averaged dipolarity, f, versus the Rayleigh number for the E¼ 10�4

models. Error bars represent 71 standard deviation of dipolarity over time. The

solid vertical line at Ra¼ 3:82� 106 indicates the sharp transition between dipolar

and multipolar dynamos, and the long-dashed vertical line at Ra¼ 1:42� 107

indicates where the convective flow structures are no longer dominantly axial,

based on the columnarity calculations shown in Fig. 3a.
3. Results of the E¼ 10�4 survey

We focus first on the role of magnetic fields in our models with
E¼ 10�4. As the Rayleigh number is varied, we observe three
behavioral regimes based on magnetic field morphology and
convective planform. Models in Regime I ðRar5:0RacÞ are char-
acterized by columnar convection and dipole-dominated mag-
netic fields, while models in Regime II ð5:1Rac rRat19RacÞ have
columnar convection and multipolar magnetic fields. In Regime III
ðRa\19RacÞ, models are characterized by three-dimensional
convection and multipolar magnetic fields. In this section, we
discuss the characteristics of model-generated flows and fields in
the context of these three regimes.

3.1. Magnetic field morphology

The basic magnetic field morphology is quantified by its
dipolarity

f ¼

R
Bl ¼ 1ðr¼ roÞ � Bl ¼ 1ðr¼ roÞdAR

Bðr¼ roÞ � Bðr¼ roÞ dA

� �1=2

, ð6Þ

here Bðr¼ roÞ is the magnetic induction vector at the outer shell
boundary, l¼1 indicates the dipolar component, and

R
dA inte-

grates over the outer spherical shell surface. The magnetic field is
perfectly dipolar when f¼1. We consider cases with f \0:5 to be
dipole-dominated. The dipolarity of Earth’s magnetic field at the
core–mantle boundary up to spherical harmonic degree 12 is
f � 0:68. Previous dynamo studies characterize magnetic field
dipolarity using surface fields up to harmonic degree l¼12
(Christensen and Aubert, 2006) and l¼8 (Christensen et al.,
2010). Here, we calculate f using the full spectrum in order to
best characterize the model-generated fields. The f(Ra) behavior is
similar when the calculation of dipolarity is truncated at l¼12.

Fig. 1 shows the time-averaged dipolarity plotted versus the
Rayleigh number for the E¼ 10�4 models. A first order transition
between dipole-dominated ðf \0:55Þ and multipolar ðf t0:21Þ
magnetic fields occurs at Ra¼ 5:1Rac . This defines the boundary
between Regimes I and II. The boundary between Regimes II and
III (dashed vertical line) is defined based on columnarity, dis-
cussed in Section 3.2.

Fig. 2 (top row) shows the radial magnetic field intensity near
the outer shell boundary for four dynamo models with
Ra¼ 1:9Rac , 4:9Rac , 5:6Rac , and 562Rac . These visualizations
illustrate how the magnetic field structure changes across the
three regimes.

3.2. Characteristics of convection

Convection is characterized visually, as well as quantitatively
via measurements of length scales, columnarity, helicity, flow
speeds, and heat transfer.

3.2.1. Flow visualizations

Fig. 2 also shows snapshots of axial vorticity oz ¼ ẑ � ðr � uÞ
isosurfaces for select dynamo and non-magnetic models. These
flow visualizations illustrate that the axial alignment of convec-
tive structures outside of the tangent cylinder persists from near
onset to Ra� 19Rac , regardless of the presence of strong magnetic
fields. (The tangent cylinder is the imaginary right cylinder that
circumscribes the inner shell’s equator.) Above Ra� 19Rac , the
columnar nature of the flow is destroyed in both dynamo and
non-magnetic models. This transition in flow field morphology
defines the boundary between Regimes II and III. In Regime III,
convection becomes strongly three-dimensional.

3.2.2. Length scales

Linear theory predicts a fundamental change in characteristic
length scale between m¼OðE�1=3DÞ as E-0 in non-magnetic
systems and m¼OðDÞ when a strong magnetic field with



Fig. 2. Instantaneous radial magnetic fields near the outer shell boundary (top row) and isosurfaces of instantaneous axial vorticity for select E¼ 10�4 dynamo (middle

row) and non-magnetic (bottom row) models. Purple (green) indicates radially outward (inward) directed magnetic fields. Red (blue) indicates cyclonic (anticyclonic)

vorticity. Each subplot has its own color scale. The inner yellow sphere represents the inner shell boundary. The outer boundary layer has been excluded for clarity. Below

each image is either the dipolarity, f, or the axial vorticity columnarity, Coz . (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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Li\Oð1Þ is imposed in the limit E-0 (Chandrasekhar, 1961).
This prediction is tested by comparing the characteristic wave-
numbers of the flow field in the dynamo and non-magnetic
models

ku ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lu

2
þmu

2

q
, ð7aÞ

where

lu ¼
Xl ¼ lmax

l ¼ 0

lðul � ulÞ

2EK
ð7bÞ

and

mu ¼
Xm ¼ mmax

m ¼ 0

mðum � umÞ

2EK
, ð7cÞ

here ul is the velocity at spherical harmonic degree l, um is the
velocity at spherical harmonic order m, and EK is the kinetic
energy. The time-averaged values, given in Supplementary
Table 6, show that the presence of dynamo-generated magnetic
fields alters the value of ku by at most 14% in comparison to the
associated non-magnetic cases. Thus, these dynamo models do
not produce the fundamental change in length scale that linear
theory predicts.

3.2.3. Columnarity

We can also quantify the style of convection using axial
vorticity measurements. Quasigeostrophic convection is domi-
nated by axial, vortical columns that extend in ẑ across the entire
shell. We define ‘columnarity’ using a measure of the axial
variations of axial vorticity, oz, in the bulk fluid outside of the
tangent cylinder

Coz ¼

P
s,f9/x0 � ẑSz9P

s,f/9x09Sz

, ð8Þ

here /Sz indicates averages in the axial ẑ direction, x0 indicates
vorticity calculated using only the non-axisymmetric velocity
field, and the summation occurs over the equatorial plane ðs,fÞ.
Columnar convection has relatively large columnarity, Coz\0:5,
because vorticity, x0, is dominated by its axial component, x0 � ẑ.
We consider cases with Coz\0:5 to be columnar, similar to our
convention for f. Thus, we define the transition between Regimes
II and III to occur where C � 0:5. Comparison of axial vorticity
isosurfaces shows this convention to be an adequate proxy for the
breakdown of columnar convection.

Fig. 3a shows columnarity as a function of the Rayleigh number
for the E¼ 10�4 models. The Coz values agree to within an average
of 4% between the dynamo and non-magnetic models, with a
maximum difference of 14%. The presence of magnetic fields,
therefore, does not change the basic planform of convection.

Columnar convection breaks down near Ra¼ 19Rac , where
Cozo0:5 (Fig. 3a). King et al. (2009, 2010) argue that the break-
down of columnar convection occurs when the thermal boundary
layer becomes thinner than the Ekman boundary layer. We
calculate these boundary layer thicknesses and find that they
indeed cross at the transition between Regimes II and III.

This columnarity transition does not, however, coincide with
the magnetic field morphology transition at Ra¼ 5:1Rac . There-
fore, columnar convection can generate both dipolar (Regime I)
and multipolar (Regime II) magnetic fields. It is also worth noting



Fig. 3. (a) Instantaneous axial vorticity columnarity, Coz , (b) instantaneous relative axial helicity, 9Hrel
z 9, (c) time-averaged convective flow speeds, Rec, and (d) time-

averaged heat transfer efficiency, Nu, as a function of the Rayleigh number for the E¼ 10�4 models. The dotted lines indicate classic scalings for non-rotating, non-magnetic

convection: (c) RecpRa1=2 and (d) NupRa2=7. In each plot, the solid and long-dashed vertical lines indicate transitions in dipolarity and columnarity, respectively, defined

in the Fig. 1 caption.

K.M. Soderlund et al. / Earth and Planetary Science Letters 333–334 (2012) 9–2014
that, in contrast to the sharp transition in dipolarity, Coz tends to
decrease gradually with increased Rayleigh number such that a
first order transition does not occur.

3.2.4. Helicity

Helicity is common to rotating convection systems and is
thought to be essential to large-scale magnetic field generation
(e.g., Parker, 1955; Moffatt, 1978; Roberts, 2007). Helical flow is
the corkscrew-like motion produced by correlations between
velocity and vorticity fields. Here, we consider axial helicity,
Hz ¼ uzoz. Relative axial helicity is defined as axial helicity
normalized by its maximum possible value

Hrel
z ¼

/HzSh

ð/uzuzSh/ozozShÞ
1=2

, ð9Þ

where /Sh is the volumetric average in each hemisphere exclud-
ing boundary layers (e.g., Olson et al., 1999; Schmitz and Tilgner,
2010, cf. Sreenivasan and Jones, 2011). Since axial helicity tends
to be anti-symmetric across the equator, we report the average
helicity magnitude averaged over both hemispheres, 9Hrel

z 9.
Fig. 3b shows calculations of relative axial helicity plotted

versus the Rayleigh number. Helicity is not appreciably sensitive
to the presence of magnetic fields in these models; our dynamo
and non-magnetic simulations produce 9Hrel

z 9 values that typically
differ by less than 10%. Helicity is diminished by increased
thermal forcing (Ra). Regime I models exhibit strongly helical
flows with 9Hrel

z 9\0:4. Near the Regimes I and II boundary
(3:8rRa=Rac r8:0), helicity drops off significantly. The three-
dimensional flows in Regime III models are poorly correlated,
such that 9Hrel

z 9t0:1.
The degradation of helical flow occurs at lower Rayleigh

numbers than where columnar convection breaks down. This
implies that changes in axial vorticity are not responsible for the
helicity decrease. The breakdown of helicity is, however, coin-
cident with the dipolarity transition in Fig. 1. We discuss this in
further detail in Section 5.

3.2.5. Convective flow speeds

Convective flow speeds are given by the convective Reynolds
number Rec ¼UcD=n, where Uc is the rms flow speed excluding
the axisymmetric zonal flow component. Zonal flows are weak in
our models due to the no-slip boundaries; non-zonal flow speeds,
Rec, and total flow speeds, Re, differ by than less than 13% in all of
our E¼ 10�4 models. This difference is maximum for the strongly
supercritical models where relatively strong zonal flows can
develop.

Fig. 3c plots the time-averaged convective Reynolds number
versus the Rayleigh number. The non-magnetic models have Rec

values that are on average 13% stronger than those of associated
dynamos, with a maximum difference of 21%. This indicates that
flow speeds are reduced by the Lorentz force as kinetic energy is
transferred to magnetic energy. Fig. 3c shows that the convective
flow speeds, however, are more sensitive to thermal driving (Ra)
than the presence of magnetic fields.

The dotted line in Fig. 3c shows the classic RepRa1=2 ‘free-fall’
scaling law found in non-magnetic, non-rotating turbulent con-
vection (e.g., Sano et al., 1989; Castaing et al., 1989; Siggia, 1994;
Tilgner, 1996). Our data roughly follow this scaling in Regime III,
which suggests that neither magnetic fields nor rotation strongly
influence these cases.

3.2.6. Heat transfer

Fig. 3d shows the time-averaged heat transfer behavior plotted
versus the Rayleigh number. The Nusselt number, Nu, is the ratio
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of total to conductive heat transfer

Nu¼
ro

ri

qD

rCpkDT
, ð10Þ

where q is the heat flux per unit area on the outer shell boundary
and Cp is the specific heat capacity. Between the dynamo and non-
magnetic models, the Nusselt numbers agree to within an average of
3%, with a maximum difference of 10%. In Regime I, the presence of
magnetic fields tends to produce slightly larger radial length scales
(see Supplementary Table 4) that transport heat more efficiently. In
Regime III, magnetic fields weakly damp flow speeds (Fig. 3c),
tending to reduce heat transport. Overall, the magnetic field has a
second order influence on heat transport in these models. The classic
NupRa2=7 scaling law often found in non-magnetic, non-rotating
turbulent convection systems (e.g., Castaing et al., 1989; Glazier
et al., 1999) is superimposed in Fig. 3d. A comparison of our data
against this scaling further supports our contention that inertially
dominated convection occurs in Regime III.

3.3. Force integrals

The competition between Lorentz (FL), Coriolis (FC), inertial (FI),
and viscous (FV) forces can be quantified by comparing terms in the
momentum equation. Toward this end, the forces are integrated
over the entire spherical shell volume: F ¼

R
V ðF

2
r þF2

yþF 2
fÞ

1=2 dV

where F is a generic force density. Boundary layers are included in
the integration, but their exclusion does not significantly affect the
results, with the exception of the viscous force integral where up to
50% of the force is contained within the boundary layer.

Fig. 4 shows these force integral calculations and their ratios
for all dynamo and non-magnetic models with E¼ 10�4. In both
sets of models, the Coriolis term dominates in Regimes I and II,
indicating that these models are in quasigeostrophic balance,
Fig. 4. (a) and (c), respectively, plot instantaneous integrals of the rms Coriolis, Lorentz

and non-magnetic models. Ratios of the force integrals are shown in (b) and (d) for the

dashed vertical lines indicate transitions in dipolarity and columnarity, respectively, d
consistent with the prevalence of columnar convection within
these regimes.

The Lorentz force is not a dominant influence on convection
dynamics in these models. The ratio of Lorentz to Coriolis forces
does not exceed 0.3 in Regimes I and II, while the ratio of Lorentz
to inertial forces is less than 0.7 in Regimes II and III. This
subdominance of the Lorentz force explains why our dynamo
and rotating convection models exhibit similar behaviors. In
similar models, it has been found that the Lorentz force is
spatially intermittent (e.g., Sreenivasan and Jones, 2006; Aubert
et al., 2008). So although the Lorentz force is globally subdomi-
nant, it can be dynamically important in the sparse regions of
strong magnetic field intensification.
3.4. Zonal flows

While we are primarily focused on the convective, non-zonal
dynamics in this paper, we also note that a first order change in
the style of zonal flow occurs between dipolar and multipolar
dynamo models. Aubert (2005) shows that dipolar magnetic fields
play a critical role in the zonal flow power budget, yet we find
that the non-zonal convection tends not to be strongly sensitive
to magnetic fields in our E¼ 10�4 models. This difference in
behavior occurs because the pressure gradient term can balance
the Coriolis force in the full momentum equation, but is identi-
cally zero in the axisymmetric azimuthal momentum equation. As
a result, the convective flows are quasigeostrophic, while the
geostrophic force balance cannot be established for the zonal flow
(e.g., Roberts and Aurnou, 2011). The Lorentz force must then
balance the Coriolis force in the zonal momentum equation when
the inertial and viscous forces are weak. Consequently, this leads
to first order differences in zonal flows between the dynamo and
associated non-magnetic models.
, inertial, and viscous forces versus the Rayleigh number for the E¼ 10�4 dynamo

dynamo and non-magnetic models, respectively. In each plot, the solid and long-

efined in the Fig. 1 caption.
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4. Parametrization of magnetic field influence

In this section, we compare calculations and parametrizations
of the Lorentz to Coriolis force ratios in our E¼ 10�4 models.

4.1. Traditional Elsasser number

Following the developments of Christensen et al. (1999) and
Cardin et al. (2002), the ratio of the Lorentz force ðJ� B=rÞ to
Coriolis force ð2X� uÞ is parametrized by the general form of the
Elsasser number

L¼
JB

2rOU
: ð11Þ

In order to estimate L using rms magnetic field strength B, the
current density J is characterized via either Ohm’s law

J¼ sðEþu� BÞ ð12Þ

(where s¼ 1=moZ is the electrical conductivity), or Ampere’s law
under the MHD approximation

J¼
1

mo

r � B: ð13Þ

Using (12) in (11), the contribution to current density from the
electrical field E is typically discarded, giving J� sUB and yielding
the traditional form of the Elsasser number

Li ¼
B2

2rmoZO
: ð14Þ

The benefit of this parameterization is that its components can be
determined by relatively straightforward observations of plane-
tary bodies.

Fig. 5 compares Li against the ratio of the Lorentz and Coriolis
force integrals from Fig. 4b. The explicitly calculated force integral
ratios range over 0:02rFL=FC r1:6, with a mean of 0.3. This
demonstrates that the volume-averaged Lorentz force is dynamically
weak with respect to the Coriolis force in most of our models with
E¼ 10�4. In contrast, the traditional Elsasser numbers are typically
greater than unity, with a mean value of 20 and a range between
0:2rLir200. These relatively large values of Li incorrectly imply
that Lorentz forces should dominate. The traditional form of the
Elsasser number then overestimates the strength of the Lorentz force,
typically by a factor of approximately 10 in these dynamo models.
Fig. 5. Comparison of the calculated Lorentz to Coriolis force integral ratios, FL=FC ,

against the traditional and dynamic Elsasser numbers as a function of the Rayleigh

number for the E¼ 10�4 models. The solid and long-dashed vertical lines indicate

transitions in dipolarity and columnarity, respectively, defined in the Fig. 1

caption.
The misfit between Li and the actual force ratio can be
understood in terms of the two main assumptions that are made
to arrive at L¼Li. First, this formulation assumes that
9u� B9¼UB, which is not necessarily appropriate in a non-linear
system in which the flow and field can self-organize such that
interaction is more limited: 9u� B9oUB (e.g., Zhang, 1995).
Second, the assumption that E¼ 0 physically implies that the
magnetic field is not strongly time-variant. This can be seen by
combining (12) and (13) to obtain the uncurled magnetic induc-
tion equation

sEþsu� B�
1

mo

r � B¼ 0: ð15Þ

The terms from left to right represent the time evolution, induc-
tion, and diffusion of magnetic field, respectively. By ignoring the
contribution to current density from the electric field in (12) to
get Li, temporal variations of the magnetic field are neglected.
This assumption is likely valid for MHD systems with imposed

magnetic fields that do not vary strongly with time (Rmo1),
which motivates our use of the subscript ‘i’ for the traditional
Elsasser number. However, most natural and simulated dynamos
exhibit significant time variability ðRe41,Rm41Þ. Therefore, the
traditional Elsasser number, Li, may not accurately gauge the
strength of the Lorentz force in dynamos.

4.2. Dynamic Elsasser number

The strength of the Lorentz force can be estimated without
making these assumptions by using the form of current density
from Ampere’s law (13), so the current density can be parame-
trized as J� B=mo‘B. We characterize magnetic field gradients
using a typical quarter-wavelength of magnetic field variations:
‘B � ðpD=2Þ=kB , where

kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lB

2
þmB

2

q
ð16Þ

analogous to ku (see Table 2). This parametrization leads to the
dynamic Elsasser number, Ld, in which the relative strength of
Lorentz and Coriolis forces is estimated by

Ld ¼
B2

2rmoOU‘B
¼

Li

Rm

D

‘B
: ð17Þ

Fig. 5 shows calculations of Ld from our E¼ 10�4 dynamo
models. The values range over 0:01rLdr1:1 with a mean of 0.2,
correctly predicting that the influence of magnetic fields on
convection is secondary with respect to the Coriolis force in most
of our models. Further, the dynamic Elsasser number is in good
agreement with the Lorentz to Coriolis force integral ratios; the
values differ by at most a factor of two.

Christensen et al. (1999) also calculate this parameter for a
survey of dynamo models and find that the values typically range
between 0.1 and 0.5 for EZ10�4. However, they interpret their
models to be in the ‘strong-field’ regime. This interpretation
contrasts with our observation that magnetic fields have a second
order influence on convection at these Ekman numbers.

4.3. Lehnert number

Another parameter used to characterize the competing roles of
Lorentz and Coriolis forces is the Lehnert number, l (Lehnert,
1954; Fearn et al., 1988). This parameter has been employed by
recent studies that consider the effects of imposed magnetic fields
on transient motions in rapidly rotating spherical shells (Jault,
2008; Gillet et al., 2011). The Lehnert number quantifies this force
ratio by comparing the angular rotation frequency to an Alfvén
wave frequency. As such, l can be interpreted as a special case of
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the dynamic Elsasser number, Ld, where the typical flow speed U

is assumed to scale as an Alfvén wave speed, VA ¼ B=
ffiffiffiffiffiffiffiffiffirmo
p

.
Substituting U ¼ VA into (17) produces the Lehnert number

l¼
B

2‘BO
ffiffiffiffiffiffiffiffiffirmo
p ¼ ALd, ð18Þ

where the Alfvén number, A¼U=VA, is the ratio of the flow
velocity to the Alfvén wave speed. Thus, when flow speeds follow
the Alfvén wave speed scaling, A¼Oð1Þ, the Lehnert number
should aptly characterize this force balance. For example, in
studies of transient flow with strong, imposed fields (Jault,
2008) or analysis of torsional Alfvén wave propagation in Earth’s
core (Gillet et al., 2011), l is the relevant parameter. However, in
many planetary dynamo models, the typical flow speeds and
magnetic field strengths are not found to be related by A� 1 (cf.
Christensen and Aubert, 2006). Therefore, we argue that Ld

provides a more general estimation of the Lorentz to Coriolis
force ratio for dynamos.
5. Breakdown of dipolar magnetic field generation

We observe a sharp transition from dipolar to multipolar
magnetic fields at the boundary between Regimes I and II in our
E¼ 10�4 models (Fig. 1). Poloidal magnetic fields, including the
dipole component, are generated by the a-effect in planetary
dynamo models (Christensen and Wicht, 2007). The a-effect
describes the generation of large-scale fields by strongly corre-
lated flows, which, for planetary and stellar dynamos, is typically
attributed to the helical nature of rotating convection (e.g., Parker,
1955; Jones, 2011).

Comparing Figs. 1 and 3b, we observe that both dipole-
dominance and helical flow break down near the Regimes I and
II boundary. Since helical flow is a necessary ingredient for large-
scale dynamo generation (e.g., Parker, 1955), the degradation of
relative helicity (Fig. 3b) likely causes the collapse of the dipole
field (Fig. 1). Importantly, the change in helicity across this regime
boundary occurs even in the absence of magnetic fields, implying
that the breakdown in helicity is a hydrodynamic process. This
suggests that the Lorentz force does not strongly influence the
transition from dipolar to multipolar field generation, which is
instead a predominantly hydrodynamic transition. The mechan-
ism responsible for this hydrodynamic helicity transition, how-
ever, is not currently well understood.

Several studies have suggested that the breakdown of dipolar
field generation is the result of a competition between inertial
and Coriolis forces (e.g., Sreenivasan and Jones, 2006; Christensen
and Aubert, 2006; Olson and Christensen, 2006; Christensen,
2010). We observe in Fig. 4b, however, that the calculated Coriolis
force is an order of magnitude stronger than inertia where this
field morphology transition occurs. The dominance of the Coriolis
force in both regimes suggests that the transition in helical flow
and field morphology is caused instead by competition between
second order hydrodynamic forces. Specifically, near the Regimes
I and II boundary, we find that inertia becomes stronger than
viscosity. We then hypothesize that the role of viscosity is
important for helical flow and, therefore, for the generation of
dipolar fields in these models with E¼ 10�4.
6. Influence of varying Ekman number

Our simulations carried out at E¼ 10�4 demonstrate that the
magnetic field does not play a dominant role in convection
dynamics, including axial vorticity columnarity, relative axial
helicity, flow speeds, and heat transfer efficiency. Of these
characteristics, helicity is of particular importance since it is
found to be necessary for the generation of dipolar magnetic
fields. Our models also show that the Lorentz to Coriolis force
ratio is well-described by the dynamic Elsasser number. Here, we
test the applicability of these results to simulations with different
Ekman numbers ð10�3

ZEZ10�5
Þ.

Fig. 6a shows time-averaged dipolarity plotted versus the Ray-
leigh number for all of our models. A first order transition between
dipole-dominated ðf \0:5Þ and multipolar ðf t0:3Þ magnetic fields
occurs in the EZ10�4 models. This transition appears to be more
gradual in the E¼ 10�5 models where f \0:3 and no pronounced
dichotomy between dipolar and multipolar dynamos is found.

Fig. 6b shows that relative helicity is diminished by increasing
the Rayleigh number and by decreasing the Ekman number. Thus,
our most helical models are found to lie near the onset of
convection (low Ra) and to occur for the largest Ekman number,
where we expect the role of viscosity to be strongest. The
influence of magnetic fields on helicity also changes with the
Ekman number. While magnetic fields typically modify the
relative helicity values by less than 20% in the EZ10�4 models,
relative helicity is decreased by up to 80% by the presence of
magnetic fields in the E¼ 10�5 models. Thus, magnetic fields
produce first order changes in relative helicity in our lowest
Ekman number simulations.

A comparison between dipolarity and relative axial helicity
(panels a and b of Fig. 6) shows that the breakdown of the
magnetic dipole coincides with the degradation of helical flow for
all Ekman numbers considered. As the role of viscosity is reduced
ðEo10�4

Þ, the transition in magnetic field morphology becomes
more gradual. Since we observe that Lorentz forces play a bigger
role in the E¼ 10�5 models, we suspect that magnetic feedback
may be responsible for the changing nature of the morphology
transition.

Regarding the breakdown of dipolar field generation, a leading
hypothesis is that the dipolarity transition is controlled by the
relative strengths of inertial and Coriolis forces (e.g., Christensen
and Aubert, 2006). This is tested in Fig. 6c, which shows that the
Coriolis force exceeds the inertial force by at least an order of
magnitude across the dipolarity transition, irrespective of the
Ekman number. The dominance of the Coriolis force in both
dipolar and multipolar dynamos is consistent with the idea that
the transition is controlled, instead, by the competition between
second order forces.

In Section 5, we present an alternative hypothesis that visc-
osity plays an important role in producing helical flow, and
therefore dipolar magnetic fields, in our E¼ 10�4 models. We test
this hypothesis for all of our models in Fig. 6d, which shows
dipolarity plotted against the ratio of inertial to viscous force
integrals. We find that the transition between dipole-dominated
and multipolar dynamos occurs when the inertial and viscous
forces become comparable. This result supports our hypothesis,
which then suggests that viscous effects are important for dipolar
field generation in many present day dynamo simulations.

We have shown that magnetic fields exert a stronger influence
on helicity at lower Ekman numbers (Fig. 6b). This increase in
magnetic field effects with decreased Ekman number also occurs
for other convective properties, although to a lesser extent.
Supplementary Table 6 gives the unsigned mean and maximum
percent differences in the characteristics of convection between
the dynamo and non-magnetic models for each E considered.
These comparisons show that magnetic fields typically modify the
convective properties (ku , Coz, 9Hrel

z 9, Rec, Nu) by about 10%, for
models with EZ10�4. In contrast, for models with E¼ 10�5, the
average percent difference increases to about 30% for typical flow
length scales and columnarity and 50% for convective flow speeds
and heat transfer efficiency.



Fig. 7. Dynamic Elsasser numbers plotted against the Lorentz to Coriolis force

integral ratios for all dynamo models. The solid black line indicates a one-to-one

correlation, while the dashed gray lines indicate a factor of three difference.

Fig. 6. (a) Time-averaged dipolarity, f, and (b) instantaneous relative axial helicity, 9Hrel
z 9, versus the Rayleigh number for all dynamo models, where vertical lines denote

the transition between dipolar and multipolar dynamos (at f¼0.5). Hollow markers denote non-magnetic models in (b). Time-averaged dipolarity versus the instantaneous

(c) inertial to Coriolis and (d) inertial to viscous force integral ratios. Here, horizontal lines indicate the dipolarity transition, while vertical lines indicate force integral

ratios of unity.
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Similar trends have also been reported in the literature. For
example, Stellmach and Hansen (2004) show that the influence of
magnetic fields on typical length scales of convection tends to
increase with decreased E in Cartesian dynamo models. Sakuraba
and Roberts (2009) also point out the possibility that Lorentz
forces significantly affect dynamic length scales in low E models
when thermal boundary conditions are changed.

The increasing impact of magnetic fields for lower E is
captured by the calculated force integral ratios. While the Lorentz
to Coriolis force ratios remain less than unity, the system appears
to be trending toward magnetostrophic balance as the Ekman
number is decreased for otherwise fixed control parameters. For
example, when we fix Ra¼ 1:9Rac and Pm¼2, the Lorentz to
Coriolis force integral ratios are FL=FC ¼ 0:15 and FL=FC ¼ 0:29 for
models with E¼ 10�4 and E¼ 10�5, respectively.

Fig. 7 contrasts the calculated Ld values with the ratio of Lorentz
to Coriolis force integrals for all of our models. The dynamic Elsasser
number and the calculated force ratios typically differ by a factor of
1.5. (In contrast, the traditional Elsasser number tends to over-
estimate the actual force ratio by an order of magnitude; see
Supplementary Tables 4 and 5.) Thus, the dynamic Elsasser number
provides an adequate estimate of the Lorentz to Coriolis force ratios
for all of our planetary dynamo models.
7. Applications to planetary cores

Our results suggest that the dynamic Elsasser number, Ld, is a
good indicator of the relative influence of magnetic fields on the
field-generating flows. The difficulty in applying this parameter to
planetary settings is its dependence on quantities that are poorly
known: typical flow speeds and length scales of the magnetic field
in the dynamo generation region. In order to extrapolate Ld to the
low Ekman and magnetic Prandtl numbers appropriate for planetary
interiors, a scaling law for the dynamic Elsasser number would be
ideal. However, this is beyond the scope of the present work. Despite
this difficulty, we can make some simplifying assumptions to
estimate the role of Lorentz forces in planetary dynamos.

Metallic planetary core fluids have small magnetic Prandtl
numbers ðPmt10�5; e.g., Dobson et al., 2000). At such low Pm

values, we can assume, as a first order estimate, that the magnetic
field is predominantly large-scale (‘B �D). Then the dynamic
Elsasser number in (17) can be written as

Ld ¼
B2

2morOUD
¼

Li

Rm
: ð19Þ

Using estimates for planetary dynamo regions of Lit1 and
Rm\100 (Schubert and Soderlund, 2011), all planets with active
magnetic fields are predicted to have Ld values less than unity.
Extrapolating our results to planetary settings, we therefore
predict that convection motions, excluding axisymmetric zonal
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flows, in planetary interiors are not strongly influenced by their
large-scale magnetic fields. This is consistent with the analysis of
geomagnetic secular variation data, which suggests that large-
scale flows in Earth’s core are quasigeostrophic (Schaeffer and
Pais, 2011) and indicates that the Lorentz force is not strong
enough to release the rotational constraint. However, the role of
the Lorentz force due to smaller-scale field structures will depend
on the high-order spatial spectrum of the field, which is not well
known for any planet.

We have also hypothesized that the helical flow responsible
for large-scale magnetic field generation in the EZ10�4 simula-
tions is viscously controlled. If true, it is unlikely that such models
correctly reproduce the physical mechanisms of field generation
in planetary cores where viscosity is thought to be negligible.
Thus, we caution that moderate Ekman number models may
operate in different dynamical regimes than planets.
8. Summary

We have carried out a broad survey of dynamo and non-
magnetic rotating convection models in which the array of
behaviors are mapped as a function of thermal forcing (Ra) and
rotation rate ðE�1

Þ. Comparisons of dynamos against otherwise
identical, non-magnetic models indicate that the characteristics of
convection (axial vorticity isosurfaces, characteristic length scales,
axial vorticity columnarity, relative axial helicity, convective flow
speeds, heat transfer efficiency, and volume-integrated rms forces)
are not significantly affected by magnetic fields in our models at
moderate Ekman numbers ðEZ10�4

Þ. However, the Lorentz force
can produce stronger changes in the E¼ 10�5 models.

In addition, we calculate the mean amplitudes of the different
forces, and show that the traditional Elsasser number, Li, is not an
appropriate measure of the relative strengths of the Lorentz and
Coriolis forces. Instead, we argue that the dynamic Elsasser
number, Ld, better parameterizes this ratio of forces. The over-
estimation of the Lorentz force by Li explains why columnar
structures are maintained in many dynamo models (e.g., Olson
and Glatzmaier, 1995; Zhang, 1995; Kageyama and Sato, 1997;
Christensen et al., 1999; Zhang and Schubert, 2000; Jones, 2007;
Jault, 2008), despite having magnetic fields with Li\1. Further,
extrapolating our results to planetary cores, we predict that the
Lorentz force due to large-scale magnetic fields is weak compared
to the Coriolis force in all planets with active dynamos.

We also observe pronounced dynamical regime transitions. In
models with EZ10�4, the collapse of dipolar magnetic fields
coincides with the degradation of helical flow, which occurs even
in the absence of magnetic fields and despite no significant change
in columnarity. The comparison between dynamo and non-mag-
netic simulations suggests that the breakdown of dipolar field
generation is largely a hydrodynamic process. Calculations of the
hydrodynamic forces show that this transition occurs when the
inertial and viscous forces become comparable. We hypothesize that
helical flow is responsible for dipolar field generation, and that the
role of viscous forces is essential for helical flow in these models.

In addition, our results indicate that the dynamics may be
changing as the role of viscosity is decreased. Thus, dynamo
models with moderate Ekman numbers Et10�4 may not cor-
rectly capture the physics of planetary dynamos, where viscosity
is expected to be negligible.
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