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SUMMARY

The predominant force balance in rapidly rotating planetary cores is between Corio-
lis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a
Taylor state where the spatially averaged azimuthal Lorentz force is compelled to van-
ish on cylinders aligned with the rotation axis. Any deviation from this state leads to
a torsional oscillation, signatures of which have been observed in the Earth’s secular
variation and are thought to influence length of day variations via angular momentum
conservation. In order to investigate the dynamics of torsional oscillations, we perform
several three-dimensional dynamo simulations in a spherical shell. We find torsional
oscillations, identified by their propagation at the correct Alfvén speed, in many of our
simulations. We find that the frequency, location and direction of propagation of the
waves are influenced by the choice of parameters. Torsional waves are observed within
the tangent cylinder and also have the ability to pass through it. Several of our sim-
ulations display waves with core travel times of 4 to 6 years. We calculate the driving
terms for these waves and find that both the Reynolds force and ageostrophic convection
acting through the Lorentz force are important in driving torsional oscillations.
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1 INTRODUCTION1

Rapidly rotating planetary dynamos, including the geo-2

dynamo, are believed to be operating under the mag-3

netostrophic regime, (see, for example, Jones, 2011). In4

this regime, although the Lorentz force may be locally5

strong, the averaged azimuthal Lorentz force must vanish on6

geostrophic cylinders (Taylor, 1963). A dynamo with a mag-7

netic field organised in such a way is said to be in a Taylor8

state, which provides a severe constraint for dynamo gener-9

ated fields. Any violation of the state can be represented as10

an acceleration of the cylinders and stretches radial magnetic11

field into azimuthal field. The resultant Lorentz force acts12

like a torsional spring in an attempt to restore the Taylor13

state (Braginsky, 1970) and leads to the driving of torsional14

oscillations (TOs) of the cylinders. These oscillations, which15

are dependent only on cylindrical radius and time, are a type16

of Alfvén wave (Alfvén, 1942).17

Torsional waves are believed to be continually driven in18

the Earth’s core and are traceable in observational data.19

However, there has been some ambiguity as to the pe-20

riod for the fundamental modes of the torsional oscilla-21

tions. Early observational data (Braginsky, 1984) inferred a22

decadal timescale; however more recent data obtained from23

core flow models by Gillet et al. (2010) show a much shorter24

period of approximately 6 years. Previous work (Jault et al.,25

1988; Jackson, 1997; Zatman & Bloxham, 1997; Bloxham26

et al., 2002; Buffett et al., 2009) has suggested that tor-27

sional oscillations may be responsible for various observed28

features of the Earth’s dynamics; these include changes in29

length-of-day variations (Jault et al., 1988; Jackson, 1997)30

and geomagnetic jerks (Bloxham et al., 2002). Additionally,31

it may be possible to infer information about the magnetic32

field within the core via core flow models (Zatman & Blox-33

ham, 1997; Buffett et al., 2009). This is useful since geo-34

magnetic data from the Earth’s surface can only be reliably35

transferred down as far as the core-mantle boundary (CMB)36

(Gubbins & Bloxham, 1985).37

Numerical simulations are an obvious tool to analyse38

the dynamics of torsional waves; however, difficulties arise39

owing to the inability to reach appropriate Earth-like param-40

eter values. Previous efforts (Dumberry & Bloxham, 2003;41

Busse & Simitev, 2005; Wicht & Christensen, 2010) to lo-42

cate torsional waves in simulations have been undertaken43

with Wicht & Christensen (2010) providing the most clear44

evidence yet of their observation in the region outside the45

tangent cylinder (OTC). A recent study by Schaeffer et al.46

(2012) has focused on the reflection of Alfvén waves at47

boundaries. They suggest that simulations run with rigid48

boundary conditions cannot exhibit wave reflection when49

the viscosity is too large.50

We investigate torsional wave production and dynam-51
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ics in numerical simulations. We employ a systematic ex-52

ploration of available parameter space and include analysis53

of the region inside the tangent cylinder (ITC) which was54

omitted in previous studies. This allows us to attempt to55

observe not only torsional waves ITC but also the propa-56

gation of such waves across the tangent cylinder (TC). We57

estimate core travel times for the oscillations and, by band-58

pass filtering our data, we are able to determine whether59

the timescales that identified TOs operate on are correct.60

We also explore possible excitation mechanisms by calcu-61

lating the relevant driving terms. In particular, we separate62

the Lorentz force into its constituent parts: a restoring force63

and a driving force.64

2 MATHEMATICAL FORMULATION65

We adapt the model described by Jones et al. (2011) to in-66

compressible systems (using the Boussinesq approximation).67

We shall extend to the compressible parameter space in fu-68

ture work. Our geometry is based on the Earth’s core using69

a spherical polar coordinate system, (r, θ, φ). We consider a70

spherical shell that is radially bounded above at r = ro by71

an electrically insulating mantle and below at r = ri by an72

electrically insulating inner core. The system rotates about73

the vertical (z-axis) with rotation rate Ω and gravity acts74

radially inward so that g = −gr. The fluid is assumed to75

have constant values of ρ, ν, κ and η, the outer core den-76

sity, kinematic viscosity, thermal diffusivity and magnetic77

diffusivity respectively.78

Several recent papers (Sakuraba & Roberts, 2009; Hori79

et al., 2010; Christensen et al., 2010) have argued that allow-80

ing for internal heat sources (or sinks) and imposing fixed81

heat flux (as opposed to fixed temperature) thermal bound-82

ary conditions in models may significantly influence the gen-83

eration of solutions with Earth-like magnetic field morpholo-84

gies. Therefore, following the approach of Hori et al. (2010),85

we also introduce a source of internal heating, ǫ, to the86

temperature equation. The internal heating must satisfy the87

heat flux equation so that88
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where T is the temperature. We nondimensionalize the ba-89

sic system of equations on the length scale, D = ro − ri,90

magnetic timescale, D2/η, temperature scale, ǫD2/η, and91

magnetic scale,
√

ρµ0Ωη. The relevant system of coupled92

equations for velocity, u, magnetic field, B, temperature, T ,93

and pressure, p are:94

∂u

∂t
+ (u · ∇)u = − Pm

E
[∇p + 2ẑ × u − (∇× B) × B]

+
Pm2Ra

Pr
Tr + Pm∇2

u,

(2)

∂T

∂t
+ (u · ∇)T =

Pm

Pr
∇2T + sgn(ǫ), (3)

∂B

∂t
−∇× (u × B) = ∇2

B, (4)

∇ · u = 0, (5)

∇ · B = 0. (6)

Equations (2) to (4) are the incompressible Navier-95

Stokes, temperature and induction equations respectively96

and (5) and (6) describe the solenoidal conditions for veloc-97

ity and magnetic field. The nondimensional parameters ap-98

pearing in our equations are the Rayleigh number, Ra, Ek-99

man number, E, Prandtl number, Pr, and magnetic Prandtl100

number, Pm, defined by:101

Ra =
gα|ǫ|D5

νκη
, E =

ν

ΩD2
, P r =

ν

κ
, Pm =

ν

η
. (7)

The radius ratio, β = ri/ro, is an additional parameter but102

in this work we restrict ourselves to the value appropriate103

to the Earth’s core, namely β = 0.35. Note that under the104

nondimensionalization chosen, the internal heating term has105

been scaled to unity. However, in order to maintain a consis-106

tent physical problem, via (1), the internal heating may be107

either a source or a sink resulting in the need for the sgn(ǫ)108

function in (3). The magnitude of ǫ appears only in the def-109

inition of the Rayleigh number. In this definition of Ra the110

quantity |ǫ| occupies the driving role usually taken by the111

temperature difference across the domain which appears in112

the classical definition of the Rayleigh number.113

3 THEORY AND METHODS114

3.1 Taylor’s constraint and torsional oscillations115

The analysis of torsional oscillations requires consideration116

of the forces on geostrophic cylinders and hence the intro-117

duction of a cylindrical polar coordinate system, (s, φ, z), is118

beneficial. Averages over φ and z are required and hence for119

any scalar field A we define120

Ā(t, s, z) =
1

2π

Z 2π

0

Adφ, 〈A〉(t, s, φ) =
1

h

Z z+

z
−

Adz. (8)

Here h(s) = z+(s) − z−(s) and OTC we simply have that121

z± = ±
√

r2
o − s2. Within the tangent cylinder the definition122

of z± may remain the same if an average over the entire z do-123

main is desired. However, ITC we may wish to average over124

the two hemispheres separately, which we refer to as ITCN125

and ITCS for north and south of the inner core respectively.126

For ITCN (ITCS) we then have that z+ =
√

r2
o − s2 and127

z− =
p

r2
i − s2 (z+ = −

p

r2
i − s2 and z− = −

√
r2

o − s2).128

For later convenience, we also define two further quan-129

tities for a scalar, or vector, field A. The first of these quan-130

tities, Ã, is simply the time average of A over some time131

period, τ . The second quantity, A′, is the fluctuating part132

of A. Therefore we define Ã and A′ by133

Ã(s, φ, z) =
1

τ

Z τ

0

Adt and A′(t, s, φ, z) = A − Ã, (9)

respectively. A′ is useful because it removes from A the mean134

background state which only varies on a long timescale.135

Standard torsional oscillation theory relies on the ability to136

separate the timescales in this way successfully.137

The φ and z averages of the φ-component of (2) illus-138

trate the forces that can accelerate geostrophic cylinders.139

Three such forces can be identified (Wicht & Christensen,140

2010); namely the Reynolds force, Lorentz force and viscous141
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force leading to the equation142

∂〈uφ〉
∂t

= −〈φ̂ · (∇ · uu)〉 + PmE−1〈φ̂ · ((∇× B) × B)〉

+Pm〈φ̂ · ∇2u〉
≡ FR + FL + FV . (10)

The Coriolis and buoyancy forces have vanished during the143

integration process since in the former there is no net flow144

across the cylinder and no φ-component in the latter. This145

has consequences in the core where the fluid is believed, at146

leading order, to be in magnetostrophic balance (between147

Lorentz, Coriolis and Archimedean forces). Taylor (1963)148

noted that in systems where the force balance is magne-149

tostrophic the constraint150

FL = 0, (11)

arises.151

The Lorentz force can be partially integrated (see, for152

example, Wicht & Christensen (2010)) to give153

FL =
Pm

E

1

hs2

∂

∂s
s2h〈BsBφ〉 +

Pm

E

1

h

h s

z
BsBφ + BzBφ

iz+

z
−

. (12)

We are able to neglect the magnetic coupling terms in this154

expression at this stage due to our use of insulating bound-155

ary conditions at both the CMB and the inner core bound-156

ary (ICB) (Jones et al., 2011). However, if one were to allow157

for a conducting inner core (or mantle), the contribution158

from these surface terms would be nonzero resulting in an159

additional forcing in the system that is not discussed fur-160

ther here. For discussion of how this coupling term arises161

see Roberts & Aurnou (2012).162

Upon consideration of the time derivative of the expres-
sion for FL in (12) we find that we require expressions for
the time derivatives of components of the magnetic field. We
substitute from the induction equation and retain all terms

on the right-hand-side of (4), to determine that

ḞL =
Pm

E

1
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∂
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E

1
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∂
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s
(B · ∇)(sus)

fl

−
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„

u · ∇ +
2

s2

«

(BsBφ)

+

+ 〈Bs∇2Bφ + Bφ∇2Bs〉 } . (14)

In order to make further progress we use the definitions of (9)163

to split the velocity and magnetic field into mean and fluc-164

tuating parts. Previous studies (Wicht & Christensen, 2010;165

Roberts & Aurnou, 2012) have essentially assumed that the166

mean quantities, ũ and B̃, are the principal parts of the167

Taylor state and that the fluctuating quantities, u′ and B′,168

are perturbations associated with the TOs. However, this is169

not the full picture since it requires the assumption that u′
170

is purely geostrophic as explicitly stated by Taylor (1963).171

In reality the convection will be operating, to some degree,172

on all timescales and this phenomenon is likely to be an im-173

portant driving mechanism. Hence rather than assuming a174

geostrophic form for our velocity fluctuation we instead split175

it into geostrophic (sζ′) and ageostrophic parts (u′
A) so that176

u = ũ + u
′ = ũ + sζ′(s, t)φ̂ + u

′

A, B = B̃ + B
′. (15)

Upon substitution of these forms into our expression for ḞL,177

we find that ζ′ only appears in the first term on the right-178

hand-side of (14). Considering only the mean magnetic field179

parts of this term and calling it ḞLR gives180

ḞLR =
1

hs2

∂

∂s

„

s3hU2
A

∂ζ

∂s

«

, UA =

r

Pm

E
〈B̃2

s 〉, (16)

where we have defined the Alfvén speed, UA. Equation (14)181

can then be written as182

ḞL = ḞLR + ḞLD, (17)

where ḞLD is a complicated expression made up of the re-183

maining terms on the right-hand-side of (14). Thus it in-184

volves terms containing the components of B̃, B′, ũ, u′
A, as185

well as ζ′.186

If we now take the time derivative of (10) and use the187

result of (17) we find that188

sζ̈′ = ḞLR + ḞLD + ḞR + ḞV , (18)

noting that 〈φ̂ · u′
A〉 = 0 by definition. By writing the ex-189

pression for ζ̈′ in this way we have been able to separate190

the term involved in the balance of the torsional wave equa-191

tion from the remaining terms. The standard canonical wave192

equation as found in previous work (see, for example, Bra-193

ginsky, 1970) is represented by sζ̈′ = ḞLR. Consequently, if194

we time integrate (18) to acquire195

sζ̇′ − FLR = FLD + FR + FV , (19)

we find that FLR is the restoring force whereas FLD, FR and196

FV are driving forces.197

Torsional waves in the core must be driven and dissi-198

pated by some mechanism(s) and hence the terms on the199

right-hand-side of (19), namely FR, FV and FLD, fulfil this200

role. They are driving (and dissipative) forces which are able201

to create, destroy and alter the nature of propagating tor-202

sional waves. When performing diagnostics on our simula-203

tions, one of our interests will be analysing the terms on the204

right-hand-side of (19). This will allow us to identify which205

forces are able to act as excitation mechanisms at various206

points in the domain. We look at this in section 4.5.207

3.2 Output parameters208

In addition to quantities described in subsection 3.1 we also
output several other parameters from our simulations. The
magnetic Reynolds number, Elsasser number, Rossby num-
ber and dipole moment are defined by

Rm =
UD

η
, (20)

Λ =
|B|2
ρµηΩ

, (21)

Ro =
U

ΩD
, (22)

fdip =

 

E
(1,0)
M (ro)

P12
l=1

Pl
m=0 E

(l,m)
M (ro)

!1/2

, (23)
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respectively. Here E
(l,m)
M (r) represents the magnetic energy209

in the (l, m) harmonic at radius r. Owing to our choice of210

nondimensionalization, the magnetic Reynolds and Elsasser211

numbers can be identified with the nondimensional velocity212

and square of the magnetic field respectively. The parame-213

ters defined in equations (20) to (23) give an indication of214

the sort regime that the dynamo is in, a point we address in215

section 4.1.216

3.3 Methods217

We perform several simulations, using the Leeds spherical218

dynamo code (Jones et al., 2011) which uses a pseudo-219

spectral numerical scheme with finite differences in the ra-220

dial direction. We run the code at parameter regimes and221

with boundary conditions that facilitate the production of222

Earth-like dynamos. Guided by previous work (Hori et al.,223

2010) we therefore employ the use of fixed flux thermal224

boundary conditions for all of our simulations. Specifically,225

we set zero flux on the CMB and the flux entering at the226

ICB is then balanced by a sink term in the temperature227

equation; that is, sgn(ǫ) = −1. This mathematical setup is,228

in a physical sense, representative of a model for composi-229

tional convection. Rigid kinematic boundary conditions are230

primarily used, although one set of simulations is repeated231

with stress-free boundaries as way of comparison.232

In parameter space we perform simulations at a range of233

Ekman numbers since the existence of torsional oscillations234

requires the dynamo to be near magnetostrophic balance,235

which in turn is dependent on a small Ekman number. Thus,236

by decreasing the Ekman number over the range 10−4 to237

10−6 torsional oscillations should become more apparent.238

We focus on Pr = 1 and each simulation is at the same value239

of criticality; that is Ra/Rac ≃ 8.32 for all runs. However,240

we do vary the magnetic Prandtl number, Pm ∈ [1, 5], in241

order to allow for a range in the magnetic field strength.242

The values of Rac used are for the onset of non-magnetic243

convection (see, for example, Dormy et al., 2004). Table 1244

displays the input parameters for the set of runs performed245

as well as the kinetic boundary conditions employed.246

Each run is initially time integrated from a random247

state for at least one tenth of a magnetic diffusion time apart248

from run 6R1 which is run for a shorter period due to resolu-249

tion constraints. In order to search for torsional oscillations250

we then analyse a period of time, τ , of every run. The value251

of τ for each run, indicated in Table 1, is run dependent and252

varies between 0.002 and 0.02 of a diffusion time.253

By including the region ITC in our analysis we present254

ourselves with a complication since it is not obvious how255

to deal with the regions north and south of the inner core.256

For example, when performing averages over z do we average257

over the entire vertical from pole to pole or instead retain the258

distinction between the hemispheres? Consequently, there is259

also the issue of how to treat waves propagating across the260

tangent cylinder since they may originate (or terminate) in261

either hemisphere. These issues were not present in the pre-262

vious work on torsional wave analysis in dynamo simulations263

(Wicht & Christensen, 2010) where the region ITC was omit-264

ted. We choose to allow for both scenarios by performing265

both sets of averages. Therefore in our analysis we average266

over the entire region ITC, but also perform averages over267

each hemisphere separately (that is over ITCN and ITCS).268

Run E Ra Pr Pm BCs τ

4R1 10−4 4.937× 106 1 1 NS 0.02
4R2 10−4 4.937× 106 1 2 NS 0.02

4R3 10−4 4.937× 106 1 3 NS 0.02
4R4 10−4 4.937× 106 1 4 NS 0.014
4R5 10−4 4.937× 106 1 5 NS 0.014

5R1 10−5 1× 108 1 1 NS 0.006
5R2 10−5 1× 108 1 2 NS 0.006
5R3 10−5 1× 108 1 3 NS 0.006
5R4 10−5 1× 108 1 4 NS 0.003
5R5 10−5 1× 108 1 5 NS 0.003

6.5R1 5× 10−6 2.493× 108 1 1 NS 0.004
6.5R2 5× 10−6 2.493× 108 1 2 NS 0.004
6.5R3 5× 10−6 2.493× 108 1 3 NS 0.004
6.5R4 5× 10−6 2.493× 108 1 4 NS 0.002
6.5R5 5× 10−6 2.493× 108 1 5 NS 0.002

6R1 10−6 2.132× 109 1 1 NS 0.002

5F1 10−5 1.265× 108 1 1 SF 0.008
5F2 10−5 1.265× 108 1 2 SF 0.005
5F3 10−5 1.265× 108 1 3 SF 0.003
5F4 10−5 1.265× 108 1 4 SF 0.003
5F5 10−5 1.265× 108 1 5 SF 0.002

Table 1. Table displaying the parameter sets used for the various
simulations. Note that all runs have fixed flux thermal boundary
conditions with zero flux on the outer boundary and an internal
heat sink.

For the region OTC, averages are always performed across269

all z-space.270

4 NUMERICAL RESULTS271

4.1 Field strength and morphology272

The output parameters calculated from our numerical re-273

sults are displayed in Table 2. In this table we also indi-274

cate, for each run, whether torsional oscillations were iden-275

tified and if so, also the region(s) of the shell that they276

were observed. Within our full set of simulations we are277

able to identify two major magnetohydrodynamic regimes278

for which the fluid in each run can organise itself. The weak279

field regime has Λ ∼ O(1) whereas the strong field regime280

has a much larger Elsasser number. As one would expect,281

the latter regime is found at larger values of the magnetic282

Prandtl number. Velocity structures are larger in the strong283

field regime. However, it should be noted that even in the284

weak field regime the convection is not as small scale as one285

may expect for such a rapidly rotating system. This is due286

to the employment of fixed flux thermal boundary condi-287

tions, which have been found to significantly affect the size288

of velocity structures (Hori et al., 2010).289

With current estimates that Rm ≈ 1000 for the Earth’s290

outer core, Table 2 indicates that only our high Pm, low E291

runs begin to approach Earth-like magnetic Reynolds num-292

bers. However, simulations in the strong field regime produce293

Elsasser numbers too large for the Earth where Λ ∼ O(1).294

The converse is true of the dipolarity, which decreases to295

near Earth-like values for our larger Pm runs.296


















