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ABSTRACT
The Sun’s magnetic field exhibits coherence in space and time on much larger scales
than the turbulent convection that ultimately powers the dynamo. In this work, we
look for numerical evidence of a large-scale magnetic field as the magnetic Reynolds
number, Rm, is increased. The investigation is based on the simulations of the in-
duction equation in elongated periodic boxes. The imposed flows considered are the
standard ABC flow with wavenumber ku = 1 (small-scale) and a modulated ABC
flow with wavenumbers ku = m, 1, 1±m, where m is the wavenumber corresponding
to the long-wavelength perturbation on the scale of the box. The critical magnetic
Reynolds number Rcrit

m decreases as the permitted scale separation in the system in-
creases, such that Rcrit

m ∝ [Lx/Lz]−1/2. The results show that the α-effect derived from
the mean-field theory ansatz is valid for a small range of Rm after which small scale
dynamo instability occurs and the mean-field approximation is no longer valid. The
transition from large to small-scale dynamo is smooth and takes place in two stages:
a fast transition into a predominantly small-scale magnetic energy state and a slower
transition into even smaller scales. In the range of Rm considered, the most energetic
Fourier component corresponding to the structure in the long x-direction has twice
the lengthscale of the forcing scale. The long wavelength perturbation imposed on the
ABC flow in the modulated case is not preserved in the eigenmodes of the magnetic
field.
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1 INTRODUCTION

The evolution and sustainment of the solar magnetic field
are believed to be governed by a dynamo process. In partic-
ular, small-scale fields that are spatially coherent at scales
similar to or smaller than those of the turbulent velocity
fields, are known to be produced by the small-scale dynamo
(Meneguzzi et al. 1981). It is much more difficult to explain
the generation of large-scale magnetic fields that exhibit co-
herence in space and time on much larger scales than the
turbulent convection that ultimately powers the dynamo.

Traditionally such large-scale magnetic fields are mod-
elled under the mean-field theory ansatz, which is valid un-
der the crucial assumption of a separation of scales between
the scale of the system (for example, the depth of the so-
lar convection zone) and the dominant scales of the flow
(Moffatt 1978; Krause & Rädler 1980). It enables the consid-
eration of large-scale fields, B̄, separate from the small-scale
fluctuations, u, b. The theory outlines how the small-scale
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turbulent motions produce a coherent global field through
the interaction with small-scale magnetic fields. In the basic
case, where the underlying velocity is isotropic and homoge-
neous, the induction equation that describes the evolution
of a large-scale magnetic field depends on two quantities: α,
the mean induction, and β, the turbulent diffusivity. Then
the amplification of large-scale magnetic fields occurs due
to the so-called α−effect, αB̄, which is related to the mean
electromotive force, 〈u × b〉, where 〈.〉 is a spatial average
with respect to the small length scale (Moffatt 1978).

In the limit, where the magnetic Reynolds number
(which describes the ratio between advective and diffu-
sive processes), Rm, is small, the coefficients can be cal-
culated under the first order smoothing approximation
(FOSA). However, if Rm is large, the fluctuating small-
scale magnetic field grows exponentially faster than the
large scales, thus disregarding the scale separation assump-
tion (Cattaneo & Hughes 2009). Many authors have ques-
tioned the use of mean-field theory ansatz with respect to
the solar dynamo (Galloway & Frisch 1986; Boldyrev et al.
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2005; Courvoisier et al. 2006; Cattaneo & Hughes 2009;
Cattaneo & Tobias 2014; Cameron & Alexakis 2016).

In this paper, we investigate the validity of the α−effect
approximation and its dependence on the separation of
scales in the system. We study numerically the kinematic
dynamo induced by highly helical single- and multi-scale
flows in elongated periodic boxes as a simplified model to
understand the dynamo action in astronomical bodies. We
choose to work with periodic cuboid domains, because it al-
lows us to study the dynamo properties of spatially periodic
cellular flows. We vary the scale separation in the system
through the reconstruction of the computational domain and
the characteristic lengthscale of the imposed velocity field.

The first flow under consideration is the well-known
ABC flow (named after Arnold, Beltrami & Childress), re-
cently reviewed by Galloway (2012). The second is a mod-
ulated version of the first, with imposed long-wavelength
perturbation on the scale of the system. Such periodic flows
are guaranteed to produce dynamo action for a wide range of
finite values of Rm (Roberts 1970). We study the kinematic
dynamo action in domains of various aspect ratios, to exam-
ine the effect of changing the scale separation of the system
as well as the effects of imposing a two-scale perturbed flow
on the system in the kinematic regime. The first part (ABC
flow) of the problem considered here has recently been in-
vestigated in a different way by Cameron & Alexakis (2016)
who carried out a theoretical study of kinematic dynamo
using the Floquet formulation that was originally devised
for the Mathieu equation (Whittaker & Watson 1902). The
authors adopted the concepts in (Roberts 1970) to solve the
induction equation in the presence of the ABC flow for ar-
bitrary large scale separations, showing a transition from a
large- to small-scale dynamo through a change in the growth
rate. The results from this analysis are in general agreement
with the findings presented below as the scale separation
becomes arbitrarily large. However, their paper does not in-
clude the results for Floquet waves with lengthscales compa-
rable to the size of the imposed flow, although Galanti et al.
(1992) noted such eigenmodes play a crucial role in main-
taining the dynamo for large Rm. In this paper we utilise a
discrete wavenumber decomposition that is determined by
the aspect ratio of the computational domain. This allows
us to investigate the transition from a large- to small-scale
dynamo with a special emphasis on the lengthscale selection
of the fastest growing eigenmode of magnetic field and focus
on the comparison of the results from the classic ABC and
the modulated perturbed flow cases.

Our study is based on the results of numerical simu-
lations using a pseudospectral method in a triply-periodic
domain and analytic estimates based on the scale separa-
tion arguments. The choice of the imposed flows allows for
the scenario wherein a large-scale dynamo would be obtained
at the onset. We then vary magnetic diffusivity in order to
study how the dynamo mechanism changes as we increase
Rm. There are two possibilities: (i) the large-scale structure
is preserved due to either the large aspect ratio of the system
or the imposed long-wavelength modulation; or (ii) the en-
ergy is passed from the large scales to the small scales as the
system becomes less diffusive. In the second case, the tran-
sition can either be a discontinuous jump between different
modes for the different types of dynamo, or the transition is
continuous and the two processes morph into one another. A

similar study by Ponty & Plunian (2011) was performed for
the Roberts flow geometry, demonstrating that the scale of
the turbulence has an insignificant effect on the large-scale
dynamo at the onset, and yet the further increase of Rm can
give rise to a small-scale dynamo. In this work we determine
whether large-scale modes of the magnetic field persist in
elongated boxes as we increase Rm in the kinematic regime,
in the presence of the small-scale ABC flow as well as the
modulated ABC flow with imposed long-wavelength pertur-
bation. The extension into the nonlinear regime will follow
in subsequent work (Shumaylova et al. 2017).

2 NUMERICAL SET UP

2.1 Governing Equations

We consider incompressible magnetohydrodynamics (MHD)
to describe the evolution of magnetic field in the presence of
the prescribed flows, see section 2.3. The induction equation
describes the growth or decay of the magnetic field, B, as it
interacts with the velocity field, u, in the kinematic regime,

∂B

∂t
= ∇× (u×B) +R−1

m ∇2B, (1)

∇ ·B = ∇ · u = 0,

where Rm = U(ηku)−1 is the magnetic Reynolds number
based on the small velocity scale, (ku)−1, and magnetic dif-
fusivity, η.

2.2 Numerical Code

The equations are solved with triply-periodic bound-
ary conditions using the Snoopy code, described in
Lesur & Longaretti (2007), which utilises a spectral method.
In order to observe the growth of the mean magnetic field
in this model the size of the domain must be significantly
larger than the scale of the turbulent motions, ku = 1, that
corresponds to the shortest side of 2π in the computational
domain. However, this then requires simulations to be run
in computationally expensive large boxes for very long dura-
tions. Yousef et al. (2008) alleviated this problem somewhat
by using boxes with a large aspect ratio so that one direction
of the domain is much longer than the others: Lx � Ly, Lz.
It is sufficient to run with a spatial resolution of 32 to 64
points on 2π depending on Rm. In this paper we consider
dynamo action in the following periodic domains and the
wavenumber corresponding to the largest scale in the box:

Lx = [32, 20, 16, 10, 8]×2π kmin
x = 2π/Lx

Ly = 2 ×2π kmin
y = 0.5

Lz = 1 ×2π kmin
z = 1.

The choice of the aspect ratios is based on the idea of al-
lowing different wavelength modes to grow in each direction
to study the magnetic field eigenmode scale selection. The
prescribed aspect ratio of the non-preferred shorter direc-
tions is selected on the basis of Galanti et al. (1992). Their
results for Rm ≤ 100 indicate the favouring of scales of the
magnetic field that are no more than twice the characteristic
scale of the imposed field. However, we find that the flow has
no impact on the structure of magnetic field in non-preferred
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directions in the mean-field limit and thus, there is no need
to run full 3D calculations in this limit. We recognise that,
nonetheless, the domain restriction may become an issue for
much larger Rm .

2.3 Prescribed Flow

We investigate the spatial scale selection for coherent struc-
tures of magnetic field produced by dynamo action in the
presence of a velocity field that has a single spatial scale
(classic ABC flow) and a two-scale velocity field with a long
wavelength modulation. The two prescribed flows are made
up of small structures on scale of 2π.

Firstly, we investigate the dynamo action associated
with the well-known ABC flow:

uABC =

A sin(kuz) + C cos(kuy)
B sin(kux) +A cos(kuz)
C sin(kuy) +B cos(kux)


The flow is considered to be a prime candidate for
the amplification of the magnetic field in periodic do-
mains due to its “twist” property of maximal helic-
ity. Many authors have studied the properties of the
ABC flows (Arnold & Korkina 1983; Galloway & Frisch
1984; Dombre et al. 1986; Galloway & O’Brian 1994;
Archontis et al. 2002), including in more recent stud-
ies (Alexakis 2011; Galloway 2012; Bouya & Dormy 2013;
Sadek et al. 2015; Cameron & Alexakis 2016). In this paper
we are considering the most studied, classic case, A = B =
C = 1 with the forcing wavenumber ku = 1 that has the
largest number of symmetries.

Secondly, we investigate the dynamo action associated
with a modulated ABC flow. We impose a long wavelength
perturbation (comparable to the size of the box) on a set of
replicated classical ABC cells, um = ∇ × (cos(mx)uABC),
where m = 2π/Lx is the wavenumber that corresponds to
the longest scale in x,

um = Dku cos(mx)

A sin(kuz) + C cos(kuy)
B sin(kux) +A cos(kuz)
C sin(kuy) +B cos(kux)



+Dm sin(mx)

 0
B cos(kux) + C sin(kuy)
−A cos(kuz)−B sin(kux)


The flow is strongly helical and able to maintain dynamo
action for a wide range of Rm. In this paper we are con-
sidering the classic setup, A = B = C = D = 1, with the
forcing wavenumber ku = 1 and varying m = 2π/Lx. Thus,
we examine the effects of the imposed flow with wavenum-
bers m, 1, 1 ± m on the evolution of magnetic field. Both
flows are constructed by replicating the [2π]3 cubes in the
directions that have an aspect ratio greater than one, i.e. x
and y, (see Figure 1).

3 RESULTS

Under the framework of kinematic mean-field theory that
addresses the growth of a weak seed field and predicts the
growth rate and structure of the generated magnetic field,
we solve the induction equation for the mean magnetic field.

Figure 1. The velocity field components for the classic ABC (top

row) and modulated (bottom row) flows in a box of aspect ratio
[10, 2, 1]. The magnitude of the body force has been chosen such

that the velocities A,B,C are all unity in code units [LT−1] and

D is in units [L], and the numerical resolution was 32 collocation
points on L = 1. The modulation of m = 1/10[L−1] produces

a visible difference from a regular ABC flow. The values range

between ±2L/T , with red values being positive and blue values
negative.

The mean field is amplified by the α−effect described in
section 1. We derive the α coefficients under the assumption
of a separation of scales and Rm � 1 by averaging over small
scales:

αABC =
A2

η
ku (2)

αm =
A2D2

η
ku cos2(mx) (3)

The derived α coefficients can be used to solve the mean-
field induction equation as an eigenvalue problem, in order
to find the onset of dynamo action for the fastest growing
mode, its growth rate and spatial structure. Moffatt (1978)
noted that the isotropic α-coefficients like αABC that are
constant in space, provide an estimate for the growth rate
for the solution of the form exp(ikx+ σt):

σ = αABCk − ηk2.

The spatially dependent α−effect for the modulated flow
yields two solutions: odd- and even-wavenumber eigenmodes
that grow with different exponential rates. We compare the
asymptotic approximation with the results from the simula-
tion runs for boxes of various aspect ratios.

Simulations are initialised with a random, zero-mean,
weak seed magnetic field of amplitude 10−5 and the pre-
scribed velocity fields in section 2.3. The magnetic Reynolds
number is defined according to Galanti et al. (1992),

Rm =
〈u · u〉√

3〈w ·w〉1/2
η−1, (4)

w = ∇× u,

such that Rm = η−1 for the classic ABC flow. In the kine-
matic regime, this is the critical parameter that determines
the onset of dynamo action. Rcrit

m is the threshold for the am-
plification of the magnetic field, i.e. σ(Rcrit

m ) = 0. The onset
can be predicted analytically under the mean-field theory
framework that relies on the scale separation in the system.
Numerically, Rcrit

m is determined using linear interpolation
between the values of Rm, corresponding to the decay of the
magnetic field and the slowest growing dynamo. The results
for the critical magnetic Reynolds number as a function of
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Figure 2. Rcrit
m as a function of domain aspect ratio in elongated

periodic boxes in the presence of a single-scale flow, uABC, (red)

and a two-scale flow, um (black). The filled circle corresponds
to the value of Rcrit

m obtained from direct numerical simulations.

The dashed lines show the mean field approximation based on the

α-effect mechanism. Two black dashed lines refer to two different
eigenmodes (odd-wavenumber solution onsets at an earlier Rm in

comparison to the even one).

aspect ratio, Lx/Lz, are shown in Figure 2. The analytical
approximation is shown with dashed lines. We find that the
onset of dynamo action in the kinematic regime occurs at
lower values of Rm depending on the aspect ratio of the
periodic domain, scaling as

Rcrit
m ∝ (Lx/Lz)−1/2, where Lz ∼ 1/ku (5)

for large enough aspect ratio (Lx/Lz > 8), which allows
large-wavelength modes to grow in the system. Hence, the
mean-field approximation given by the dashed lines in Figure
2 provides a fairly good estimate for the onset of dynamo
action, as expected, since the ansatz is only valid in the limit
of large-scale separation.

Figure 3 presents the evolution of the maximum growth
rate of the magnetic field as a function of Rm in domains of
various aspect ratios. Here we calculate the growth rate, σ, of
Brms = 〈B2〉1/2 over the total duration of the linear regime.
Each point in the figure corresponds to a three-dimensional
simulation. The approximation curves are determined from
the eigenvalue problem based on the derived α−effect coef-
ficients. The curves and the results from the numerical runs
show a smooth transition from the large-scale fastest grow-
ing mode at Rm � 1 to dominant modes that are smaller
than the size of the box itself but longer than the characteris-
tic velocity scale. What the figure does not show is that the
no-longer-dominant large-scale modes continue to grow in
the system with smaller growth rates than the shorter dom-
inant modes. We also found that in the elongated domains,
we do not reproduce the classic ‘two-window’ cube result of
the classic ABC dynamo with ku = 1 (Galloway & Frisch
1984).

The transition from large- to small-scale dynamo can
also be seen in Figure 4. We measure the lengthscale of the
magnetic field using two scales,

lB̄ = max
i

[
〈(∂B̄i/∂x)2〉x
〈(B̄i)2〉x

]−1/2

, (6)

lB =

[
〈(∇×B)2〉
〈B2〉

]−1/2

, (7)

where eq. (6) is the measure of the characteristic lengthscale

Figure 3. Growth rate of Brms, σ, versus magnetic Reynolds

number in the presence of uABC (left) and um (right). Asymp-
totic approximation for σ is given by the solid and dashed (modu-

lated case yields odd and even mode solutions) lines. Solid circles

correspond to the growth rates from direct numerical simulations.

of the mean field (calculated by isolating large-scale depen-
dence on x by low-pass filtering in Fourier space) as proposed
by Yousef et al. (2008). Eq. (7) is the measure of the kine-
matic dissipation lengthscale as defined in Oruba & Dormy
(2014). Both scales are measured at the final state of the
simulation at the end of the period of exponential growth of
the magnetic field. The derivatives are calculated in Fourier
space. The values of lB̄ and lB are plotted against Rm in
Figure 4. The scale separation leads to a remarkable differ-
ence in the structure of the mean magnetic field at low Rm,
i.e. the field grows on the scale of the box. As we increase
Rm, both the mean-field and the dissipation scales decrease
and are roughly matched by the scaling ∝ R−1/2

m . The dom-
inance of the large-scale magnetic field is replaced by the
fast growing small scales as the magnetic Reynolds num-
ber increases. This is not a surprising result for the classic
ABC flow that is known to generate structures comparable
in size to the flow itself at Rm outside the mean-field limit
(Galanti et al. 1992). However, the result is unexpected in
the modulated case: in the kinematic regime the presence of
a long wavelength perturbation in the prescribed flow (um)
is not preserved in the fastest growing eigenmodes of the
magnetic field.

In Figure 4 we can distinguish two separate stages of the
transition from large- to small-scale dynamo, more clearly
shown in Figure 5 using the magnetic field dissipation scale.
We find that the measure of the magnetic field given in eq.
(7) scales as ∼ R−1

m at low Rm when magnetic energy is
predominantly in large scales (k < ku/2). This result can be
obtained by considering the approximation for the fluctuat-
ing magnetic field in terms of the mean-field, b ∼ RmB̂ and
the scaling law for the critical Rcrit

m in (5) that can be used to
show that lB ∝ R−1

m in the mean-field limit. For Rm > O(1),
the rate of scaling with Rm goes down to ∼ R−0.5

m in both
cases. This observation is especially apparent in the boxes
of larger aspect ratios. This result is assumed to be due to
the effect of the boundary layers of thickness R

−1/2
m forming

in the domain for large Rm (Proctor & Weiss 2014).

Therefore, we may conclude that the dynamo scale in
the kinematic regime primarily depends on the magnetic
Reynolds number preassigned to the system as a parameter.
The long wavelength perturbation imposed on the ABC flow
in the modulated case is not preserved in the eigenmodes of
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Figure 4. Measure of the kinematic lengthscale in eq. (7) (filled circle) and mean-field in eq.(6) (filled triangle) from direct numerical

simulations of kinematic dynamo in the presence of uABC (red) and um (black).

the magnetic field and large-scale structures are diminished
as we leave the mean-field limit.

Archontis et al. (2002) noticed that there are two stages
to the kinematic regime: in the first stage the magnetic field
evolves according to the symmetry of the imposed flow, and
in the second stage symmetry breaking occurs, i.e. the topol-
ogy of the magnetic field changes and the field grows expo-
nentially while maintaining this topology. In Figure 6 we
plot the scale of the structure in the long x-direction, k−1

x ,
that has the most energy at every time step of the second
stage of the kinematic regime (note that it does not neces-
sarily correspond to the peak of the energy spectrum). The
lengthscale, k−1

x , is equal to the size of the box at the onset
of dynamo action in boxes of all aspect ratios. However, as
we increase Rm, the large-scale field is replaced by smaller
structures that are still much greater than the forcing length-
scale, ku−1 = 1. Interestingly, in the considered interval of
Rm ∈ (1, 40),

kx →
ku

2
±m as Rm is increased,

where m = 2π/Lx is the wavenumber corresponding to the
longest scale on the box. That is, the fastest growing eigen-
mode of the magnetic field has a spatial period roughly twice
that of the ‘forcing’ flow (ku = 1). This cannot currently be
compared with the results of (Cameron & Alexakis 2016)
since they do not consider the possibility that kx = 0.5. We
can draw a parallel between this result and the experimen-
tal observation first made by Faraday (1831), in which he
noted that surface waves in a fluid-filled cylinder under ver-
tical excitations were generated with twice the period of the
excitation itself. And indeed, the first detailed theory rele-
vant to the study of a periodically time-varying system was
presented by Mathieu (1868), in which the problem of the
vibration of an elliptical membrane was analysed. A similar
phenomenon of unstable modes ‘choosing’ lengthscales that
are twice that of the imposed forcing has been observed in
many branches of physics and engineering. This occurring
pattern is preferred by certain restricted geometries, includ-
ing the one considered here and Galanti et al. (1994). For a
less constrained geometry, the preferred pattern may vary.

CONCLUSIONS

In this paper we have studied kinematic dynamo action in
elongated triply-periodic cuboids as a numerical solution of
the induction equation with two prescribed velocity fields.
The imposed flows are the classic 1 : 1 : 1 ABC flow and the
ABC flow modulated with a long-wavelength perturbation.
Both flows were strongly helical, which ensured that a large-
scale dynamo was operating at the onset of dynamo action.
The properties of these dynamos can be adequately modelled
by a mean field approximation, but only for Rm . 1 near the
onset. At large Rm the assumption of scale separation in the
system becomes meaningless, since small-scale modes grow
exponentially faster than the large-scale modes that were
dominant at low Rm, even in the elongated domains that
favour large scale structures and even for the modulated flow
that contains a large-scale component. Therefore, we were
able to study the transition from a large-scale dynamo at the
onset to a small-scale dynamo by increasing the magnetic
Reynolds number for both the ABC flow (single small-scale)
and modulated flow (two-scale).

At the onset, the fastest growing eigenmode is the mean-
field mode (2π/Lx, 0, 0) due to the large aspect ratio of the
computational domain. As the magnetic Reynolds number is
increased, small-scale dynamo action becomes possible, in-
creasing the overall growth rate of the dynamo. We find that
the transition between the two is continuous, i.e. the large-
scale dynamo is present even when the small-scale dynamo
is dominant in the system. The initial rate of the transition
varies slightly for the imposed flows, with the modulated flow
exciting small-scale dynamo action sooner than the classic
ABC flow. The second stage of the transition from large- to
small scales that is initiated when most magnetic energy is in
smaller scales (k > ku/2), shows a significant decrease in the
scaling rate with Rm for both flows. The critical magnetic
Reynolds number that corresponds to the onset of dynamo
action scales with the aspect ratio of the domain. This re-
sult could be of interest for groups working on experimental
dynamos.

Our future work will consider the nonlinear regime, that
is more applicable to the astrophysical context. Here, the
fluid flow u is no longer prescribed, but the influence of B
on u via the Lorentz force is included. The preliminary re-
sults from the study of dynamic dynamos (in the presence
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6 V. Shumaylova et al.

Figure 5. Measure of the kinematic lengthscale in eq. (7) vs Rm. The dotted line shows the approximation curve as a fuction of Rm

in the presence of uABC (red) and um (black) for two transition stages roughly defined by the turning point where magnetic energy is

predominately in smaller scales k > ku/2. During the first stage, the lengthscale decreases with R−1
m and R−0.5

m during the second one.

Figure 6. Measure of scale of the structure in x-direction, k−1
x , vs Rm in the presence of uABC (red) and um (black). The dotted line

shows L = 2, 2 ± 2π/m, where m = 2π/Lx is the wavenumber corresponding to the longest scale on the box.

of viscous forcing related to the velocity fields discussed in
the current paper) show that large-scale dynamo action can
be found in the nonlinear regime, whereas the same forcing
function in the kinematic regime produced a small-scale dy-
namo; it will therefore be interesting to see whether further
analysis of the parameter space in the nonlinear version of
the problem considered here yields large scale dynamo ac-
tion for a wider range of parameter values.
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