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ABSTRACT
The solar magnetic field displays features on a wide range of lengthscales including
spatial and temporal coherence on scales considerably larger than the chaotic con-
vection which generates the field. Explaining how the Sun generates and sustains
such large-scale magnetic field has been a major challenge of dynamo theory for many
decades. Traditionally the ‘mean-field’ approach, utilising the well-known α-effect, has
been used to explain the generation of large-scale field from small-scale turbulence.
However, with the advent of increasingly high-resolution computer simulations there
is doubt as to whether the mean-field method is applicable under solar conditions.
Models such as the ‘shear dynamo’ provide an alternative mechanism for the genera-
tion of large-scale field. In recent work we showed that while coherent magnetic field
was possible under kinematic conditions (where the kinetic energy is far greater than
magnetic energy), the saturated state typically displayed a destruction of large-scale
field and a transition to a small-scale state. In this paper we report that the quenching
of large-scale field in this way is not the only regime possible in the saturated state of
this model. Across a range of simulations we find quasi-cyclic behaviour where large-
scale field is preserved and oscillates between two preferred lengthscales. In this regime
the kinetic and magnetic energies can be of a similar order of magnitude. These re-
sults demonstrate that there is mileage in the shear dynamo as a model for the solar
dynamo.
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1 INTRODUCTION

The chaotic motions of plasma within the Sun’s convection
zone create its magnetic field via dynamo action (Moffatt
1978). Small-scale turbulence (on the order of megametres)
is able to generate magnetic field on similar lengthscales by
the local random twisting and stretching of existing field
lines (Schekochihin et al. 2004, 2007). However, the Sun also
displays coherent magnetic structures on far larger scales (up
to the size of the star itself) in particular sunspots which
exhibit changes on the 11-year solar cycle. Production of
large-scale magnetic field from small-scale motions has tra-
ditionally been explained using ‘mean-field theory’; a flow
with a global net helicity twists and stretches field lines via
the ‘α-effect’ to generate large-scale magnetic field (Moffatt
1978; Rädler & Rheinhardt 2007). However, it is question-
able whether the usual calculation of the α-effect is appli-
cable under solar conditions where the magnetic Reynolds
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number, measuring the strength of turbulence, is very large
(Cattaneo & Hughes 2006; Hughes & Cattaneo 2008).

The continued improvement in numerical simulations of
solar dynamics has contributed to doubt over mean-field the-
ory leading to the development of alternative plausible dy-
namo mechanisms that generate large-scale field without the
reliance on helicity (Courvoisier et al. 2009; Proctor 2007,
2012; Sridhar & Singh 2014; Rogachevskii & Kleeorin 2003;
Brandenburg et al. 2008; Yousef et al. 2008a). Many of these
studies incorporate a large-scale velocity shear; the pioneer-
ing work of Yousef et al. (2008a) used forced, non-helical mo-
tion in domains with large aspect ratios. This set-up there-
fore excluded the α-effect as a possible amplification mech-
anism and allowed for a more intensive exploration of pa-
rameter space than is possible using cubes. They found that
large-scale magnetic field can be generated for sufficiently
large shear with this ‘shear dynamo’ model. Several further
studies confirmed and expanded upon the initial, kinematic
results by: considering the effects of rotation Yousef et al.
(2008b), deriving theoretical explanations (Heinemann et al.
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2011; McWilliams 2012), adding forced EMFs (Squire &
Bhattacharjee 2015a,b), and analysis of the saturated regime
(Teed & Proctor 2016).

The original study by Yousef et al. (2008a) considered
only the kinematic regime of the problem, where the mag-
netic energy is much smaller than the kinetic energy and
there is effectively no back reaction of the field on the flow.
Previous studies with shear and zero helicity that have en-
tered the nonlinear regime have shown that horizontally av-
eraged mean field can be retained in after saturation (Bran-
denburg 2005; Brandenburg et al. 2008; Teed & Proctor
2016). In particular, in a recent study (Teed & Proctor
2016) we considered the saturated regime of the Yousef et al.
(2008a) model (i.e. in boxes with large aspect ratios) for the
first time allowing us to consider a wide parameter space.
For the most part we found that the saturated regime is typ-
ified by a large increase in kinetic energy, the development of
an additional large velocity shear, a quenching of the large-
scale field, and the appearance of small-scale field. However,
a small subset of the simulations performed in that study
demonstrated a secondary regime with different behaviour
where large-scale field would persist, more akin to the coher-
ent structures observed by Squire & Bhattacharjee (2015b),
where they forced EMFs directly.

Our new work discussed here expands upon the results
of our previous study. With a more extensive study of pa-
rameter space we have established the robustness of the sec-
ondary regime found in Teed & Proctor (2016) where the
kinetic and magnetic energies equilibrate at values of sim-
ilar order. In this regime the kinetic energy remains small
enough to inhibit the manifestation of a fluctuation dynamo
Schekochihin et al. (2004, 2007), which was postulated to
be the cause of the quenched state previously observed. In
the simulations discussed in this paper, coherent large-scale
field persists deep into the saturated regime. The evolution
of large-scale magnetic field can be quasi-periodic in nature
as the solution oscillates between two different lengthscales.
These results therefore help to restore faith in the (uniform)
shear dynamo model as a tool for understanding the solar
dynamo.

2 METHODS

The mathematical set-up is as described in Teed & Proctor
(2016) where we solve the incompressible magnetohydrody-
namic (MHD) equations in the presence of a uniform shear
flow, U =−Sxŷ, in a Cartesian shear-periodic box. The flow is
forced with a white-noise non-helical homogeneous isotropic
body force, f, so the relevant equations are:

du
dt

= uxSŷ− ∇p
ρ

+
B ·∇B
4πρ

+ ν∇
2u + f, (1)

dB
dt

=−BxSŷ + B ·∇u + η∇
2B, (2)

where u and B are the velocity and magnetic fields respec-
tively, and d/dt = ∂t−Sx∂y +u ·∇. The effects of rotation and
convective forcing are not considered in this model.

The parameter values used are 0.125 ≤ S ≤ 2, 0.0075 ≤
ν ≤ 0.03 and 0.005≤ η ≤ 0.013 so that the magnetic Prandtl
number, Pm = ν/η, takes values 0.75 ≤ Pm ≤ 3. We adopt
units in which Lx and Ly, the domain widths in the x and

y directions, are set equal to unity. Forcing with constant
mean amplitude is injected in a wavenumber shell centred
at k f /2π = 3 so that the average forcing scale is l f = 1/3.

The equations are solved with shear-periodic bound-
ary conditions (Umurhan & Regev 2004; Lithwick 2007)
using the code Snoopy (Lesur & Longaretti 2005, 2007),
which utilises a spectral method. The computational do-
main is elongated in the z-direction to ensure that the box
is large enough to allow for a separation of scales. There-
fore Lx = 1 = Ly and 8≤ Lz ≤ 128 so that Lz� Lx,Ly with 32
points used for each unit of length. Modelling in boxes with
large aspect ratios allows for a broad exploration of parame-
ter space without being overly computational intensive. For
instance, it is not currently computationally feasible to per-
form adequately resolved simulations at the Reynolds num-
bers needed in cubes of 128×128×128.

Throughout we use the notation 〈·〉 and · to indicate
spatial and time averages respectively; subscripts on the an-
gle brackets indicate an average over particular spatial co-
ordinates.

3 RESULTS

Simulations are initialised with a weak seed field, 〈B〉2 ∼
10−20, and allowed to grow (or, indeed, decay) through the
kinematic (i.e. linear) regime. Confirmation of the results of
the kinematic regime of the shear dynamo (i.e. the problem
studied by Yousef et al. 2008a) using our code was presented
in our previous work (Teed & Proctor 2016), and was ad-
ditionally independently verified by Squire & Bhattacharjee
(2015a). We therefore do not present results of the kinematic
regime again here. The quantity lB defined by

1
lB

=

(
〈(∂B<

y /∂ z)2〉z
〈(B<

y )2〉z

)1/2

, (3)

gives an indication of the characteristic lengthscale of the
mean field. An equivalent quantity, lu, gives a definition for
the characteristic lengthscale of the velocity field. Super-
scripts on these quantities indicate values that are calculated
in the kinematic (k) and saturated (s) regimes.

3.1 Quasi-cyclic behaviour

The completion of the kinematic regime is achieved when the
magnetic field saturates and the kinetic (EK) and magnetic
(EM) energies equilibrate. This time is given by ts in Table
1 along with other input and output parameters for each
simulation. Many simulations (runs A1-A10) exhibit what
we deem to be ‘quasi-cyclic’ behaviour in the mean field,
which will be explained below. The saturated values of the
energies, and their ratio, indicate which regime (quenched
or quasi-cyclic) is achieved by the final state of the solu-
tion. Fig. 1 shows the energies and their ratio for a typical
simulation that displays quasi-cyclic behaviour in its sat-
urated state. The magnetic energy grows during the kine-
matic phase, saturating (at time ts ∼ 4×103) thereafter tak-
ing an average value of EM ∼ 0.1. Upon entering the satu-
rated regime, the kinetic energy remains broadly unchanged
from its kinematic value with an average value of EK ∼ 0.8.
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Figure 1. Kinetic energy, EK (black) and magnetic energy, EM
(red) as a function of time for the run A3.

Figure 2. Kinetic energy, EK (black) and magnetic energy, EM
(red) as a function of time for the run C1.

The energies therefore equilibrate with values of approxi-
mately the same order and this is more clearly seen in the
ratio of the energies, EK/EM which, upon saturation, obtains
an O(1) value. The behaviour shown in Fig. 1 can be con-
trasted with that of Fig. 2, which shows the same quantities
for a typical simulation where the mechanism that drives
the large-scale magnetic field is quenched during saturation
(run S2L16, see Teed & Proctor 2016). Here the kinetic en-
ergy grows rapidly after the saturation of the magnetic field
reaching a value that is ∼ 3 orders of magnitude greater than
the magnetic field. As discussed in Teed & Proctor (2016)
this coincides with the formation of a large-scale z-dependent
shear flow in addition to the imposed x-dependent shear.
This in turn leads to a quenching of large-scale field result-
ing in a saturated state dominated by small-scale magnetic
structures.

It is clear from Figs. 1 and 2 that there exist (at least)
two separate saturated states that the solution can obtain
depending upon the choice of input parameters. In this paper
we focus on the properties of the final state demonstrated
by Fig. 1, which, as we shall see, retains large-scale field.
For further details of the quenched state shown in Fig. 2,
see Teed & Proctor (2016).

Fig. 3 displays 〈By〉xy, as a function of time and z for run
A8. Upon saturating (at t ∼ 1.15×104) the lengthscale of the
magnetic field grows to fill the box (Lz = 16 in this case). This
is also a feature of the quenched runs that was observed in
our previous study. However, unlike the quenched runs the
simulation shown in Fig. 3 show a persistence of large-scale
magnetic field. In the saturated state the field fluctuates
between periods of two different types of activity. One is
typified by field on the scale of the box that wanders slowly
in space (i.e. the field remains at near-constant z-values).
This can be seen, for example, when 1.75× 104 ≤ t ≤ 2.1×
104. The second type of activity exhibits mean field on a
scale smaller than the box that wanders in space, often very
rapidly. One such period of activity can be seen, for example,
during 1.5×104 ≤ t ≤ 1.7×104.

Figure 3. By, averaged over x and y and normalised using Brms,

as a function of z and t for simulation A8.

Figure 4. Velocity lengthscale, lu (black) and magnetic length-

scale, lB (red) for the run A8.

Figure 5. Velocity lengthscale, lu (black) and magnetic length-
scale, lB (red) for the run C1.

The two different lengthscales of the magnetic field can
be observed in Fig. 4. Periods where lB ∼ 16 (i.e. the scale of
the box) are interrupted by typically briefer periods where
lB is considerably smaller. In fact, during such times the
lengthscale of the mean field returns to values seen during
the kinematic regime. This indicates that these two scales in
the saturated state are the box size and the intrinsic scale
determined by the linear phase of the problem. In any simu-
lation we define a quasi-cycle to be a period of time that con-
tains a single instance of both lB ' Lz behaviour and lB ' lk

B
behaviour. For comparison, Fig. 5 shows the lengthscales in
a quenched case (the same case as displayed in Fig. 2). Here
the separation of scales in the saturated state is striking: the
large velocity shear operates on the size of the box whereas
the magnetic field is small-scale (considerably smaller than
lk
B).

The behaviour shown in Fig. 3, for run A3, has been
observed across several simulations of varying shear rates
and box sizes. For instance, Fig. 6, for run A7, shows the be-
haviour in another simulation with a larger box and different
value of Pm. The quasi-cycle is particularly evident in this
run as evidenced by Fig. 7. Saturation occurs at t ∼ 9×103,
after which the magnetic field gradually grows to the size
of the box (lB ' 32) before equally slowly returning to a
state where lB ' lk

B. The process then begins to repeat at
t ∼ 1.8×104. This run also demonstrates two properties that
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Table 1. Table displaying the input and output parameters of the simulations performed in this study. Superscripts on lB indicate that
the quantities were calculated for the kinematic regime (k), the whole saturated regime (s), the saturated regime when ls

B ' Lz (L), and

the saturated regime when ls
B ' lk

B, respectively. Runs are split into three sections in the table: i) the top section for runs displaying clear

quasi-cyclic behaviour; ii) the middle section for runs displaying that are highly likely to be quasi-cyclic but have yet to complete a full
quasi-cycle; iii) the bottom section for a run where large-scale magnetic field is very small (taken from Teed & Proctor 2016).

Run S Lz ν η Pm ts lk
B lk

u max(ls
B) min(ls

B) τL τ l lL
B ll

B

A1 0.25 32 0.010 0.010 1.00 18000 11.01 18.06 30.55 13.83 4680 420 27.78 15.51

A2 0.50 16 0.010 0.010 1.00 8500 7.64 9.03 15.76 5.36 2552 755 14.19 7.98
A3 0.50 16 0.010 0.005 2.00 4300 5.03 8.86 14.96 5.18 560 127 13.41 6.85

A4 0.50 16 0.020 0.010 2.00 28000 10.07 11.14 15.10 6.86 2660 1513 13.72 10.07

A5 0.50 16 0.010 0.013 0.75 30000 8.96 9.26 14.68 6.54 700 2050 14.20 9.91
A6 0.50 16 0.0075 0.010 0.75 5250 7.14 9.00 15.52 5.78 1603 333 12.96 8.38

A7 0.50 32 0.010 0.013 0.75 9000 10.23 15.40 29.64 7.94 2840 400 28.21 10.00

A8 1.00 16 0.020 0.010 2.00 11500 7.46 10.81 15.24 5.44 1607 900 12.81 8.66
A9 2.00 16 0.020 0.010 2.00 7500 5.46 9.05 15.18 5.54 720 295 12.14 8.09

A10 2.00 16 0.030 0.010 3.00 9000 7.53 11.01 15.33 4.79 1665 352 13.75 8.14

B1 0.125 64 0.010 0.01 1.00 35000 12.84 31.16 - - - - - -

B2 0.25 64 0.010 0.01 1.00 14000 10.24 29.69 - - - - - -

B3 0.25 128 0.010 0.01 1.00 12000 10.57 36.83 - - - - - -
B4 0.5 64 0.010 0.01 1.00 5000 7.99 17.04 - - - - - -

B5 0.5 128 0.010 0.01 1.00 5000 7.86 21.11 - - - - - -

C1 2.00 16 0.010 0.010 1.00 1750 4.11 6.94 8.35 1.21 - - - -

Figure 6. By, averaged over x and y and normalised using Brms,
as a function of z and t for simulation A7.

Figure 7. Velocity lengthscale, lu (black) and magnetic length-

scale, lB (red) for the run A7.

are typical across the suite of runs. First, the magnetic field
wanders very slowly when lB ' Lz demonstrated by the near
constant z-locations of the field in Fig. 6. Second, periods
where lB ' lk

B can be extremely brief compared to periods
with lB ' Lz, evidenced in Fig. 7.

In addition to runs that display clear and persistent
quasi-cyclic behaviour, several further simulations (runs B1-
B5) are highly likely to be quasi-cyclic in nature; these are
shown in the middle section of Table 1. Upon saturation
all of these runs exhibit large-scale field on a scale larger
than that of the kinematic regime for the remainder of the
simulation. In all cases we have integrated into the saturated
regime for at least as long as the kinematic phase. Since these

runs are amongst the most computationally intensive runs
we have performed, it has not yet been possible to reach the
end of a quasi-cycle (assuming such phenomena exist in these
runs!). However, although we cannot categorically state that
quasi-cycles will appear, we can say with near certainty that
the mechanism generating large-scale field will not quench in
these runs. This is because, unlike runs from Teed & Proc-
tor (2016) that exhibit quenching, the kinetic energy here
remains of the same order as the kinematic regime.

3.2 Quantifying length- and time-scales

Given that two lengthscales clearly exist in the saturated
states observed in Figs. 3-7, it is desirable to quantify both
the lengthscales and the time spent in each configuration.
In order to do this we define several quantities, the values
of which are displayed in Table 1. The values max(ls

B) and
min(ls

B) are simply the maximum and minimum values that
lB takes during the saturated regime (i.e. for t > ts).

Using the time series data of lB we also calculate times
for which dlB/dt ∼ 0 since this indicates periods when the
lengthscale of the magnetic field is approximately constant.
During such periods we then determine whether lB falls
within a certain range of values. These intervals are based
on fractions of Lz and lk

B and stipulate that either −lk
B/4 ≤

lB− lk
B≤ lk

B/4 or −Lz/4≤ lB−Lz. This method provides a mea-
sure of periods of the simulation when the magnetic field is
contained within one of its two chosen regimes (i.e. extended
periods when ls

B ∼ lk
B or when ls

B ∼ Lz). The values τL and τ l

are the average periods of time spent in the ls
B ∼ Lz and the

ls
B ∼ lk

B regime, respectively. Likewise the values lL
B and ll

B
are the averages of lB calculated during the respective time
periods.

The measures of the lengthscale of the magnetic field
shown in both Table 1 and Fig. 8 demonstrate the two
lengthscales across the suite of simulations. Fig. 8a shows
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that the maximum value of ls
B achieved is always on the scale

of the box (' 16 for most runs) whilst the minimum value
is linearly dependent on lk

B, the lengthscale in the kinematic
regime. The latter indicates that the smaller of the two scales
observed in the saturated state is indeed the intrinsic scale
of the kinematic problem. This is borne out in Fig. 8b where
ll
B ' lk

B across a range of simulations. There also appears to
be a slight linear dependence of lL

B (the large lengthscale)
on the kinematic lengthscale, at least for runs with Lz = 16
(there are too few points to determine the behaviour when
Lz = 32).

The average period of time spent during an episode of
each magnetic scale is also linearly dependent on lk

B as shown
in Fig. 9. Other than a few outlying points both τ l and τL

scale linearly with the intrinsic magnetic scale of the kine-
matic regime. In general the periods spent when ls

B ' Lz are
longer than those when ls

B ' lk
B. Assuming that a pertur-

bation of some sort is required to move between the two
regimes, this indicates that larger magnetic scales are more
stable to such transitions. Since both time periods scale lin-
early with the intrinsic magnetic scale, then, consequently,
the average period of a ‘quasi-cycle’ does so also. This quan-
tity is measured by τL + τ l and is also shown in Fig. 9. The
periods of the quasi-cycles range from ∼ 1000 to ∼ 5000 in
this suite of runs.

Data in Figs. 8 and 9 are plotted against lk
B, rather

than the input parameters of the system (i.e. S, ν, η or
Pm), because of the clear dependence it demonstrates. Plots
of parameters measuring the saturated regime against in-
put parameters do not show such clear correlation. This is
because, although the quasi-cyclic state has been observed
across a range of S, ν and η, the simulations are performed
using a small number of distinct values of these parameters.
Broadly speaking the linear dependence on lk

B of both the
magnetic lengthscales and periods of quasi-cycles translates
to a S−1/2 dependence on shear, as expected from the known
kinematic results where lk

B ∼ S−1/2 (Yousef et al. 2008a). We
are currently unable to identify a clear dependence on the
diffusion parameters, or even on Pm = ν/η, which is further
complicated because any distinct value of Pm can be formed
by infinitely-many different combinations of ν and η. The
identification of further runs with quasi-cyclic behaviour is
required to fully understand the dependence of the state on
the shear and the diffusion parameters. This should be con-
ducted as part of a broader study that also determines the
dependence of the manifestation of the quasi-cyclic versus
quenched state on S, ν and η. This is work in progress.

3.3 Kinetic and magnetic correlation

Some simulations show strong correlation between both the
energies and lengthscales of the velocity and magnetic fields
which allows the quasi-cycle to be examined in further detail.
Fig. 10 displays the energies for such a run where growth in
kinetic energy is frequently curtailed shortly after a drop in
the magnetic energy. For example, at t ∼ 1.48×104, the mag-
netic energy suffers a sharp reduction shortly followed by a
similar fall in kinetic energy. This modification of the veloc-
ity by the magnetic field appears to stop run-away growth of
the kinetic energy that would otherwise lead to a quenched
state such as that seen in Fig. 2. The behaviour is also ob-
served in the lengthscales of the two fields evidenced by

(a) (b)

Figure 8. Plots showing (a) the extrema values and (b) the av-

eraged values of ls
B (the lengthscale of the magnetic field in the

saturated regime) against the intrinsic magnetic scale from the
kinematic regime, lk

B, for our suite of runs. In (a) triangles and

squares represent the maximum and minimum values obtained

by ls
B, respectively. In (b) triangles and squares represent the val-

ues of lL
B and ll

B, respectively.

Figs. 11 and 12. A dramatic drop in the scale of magnetic
field (at t ∼ 1.48×104) is immediately followed by an equiv-
alent drop in the scale of the velocity. This demonstrates
the magnetic field’s ability to influence the scale of the flow
via the Lorentz forces in this quasi-cyclic saturated regime.
Conversely, in the quenched state the magnetic field is effec-
tively a slave to the velocity because of the large disparity
in the magnitudes of the energies and hence the dominance
of inertia over Lorentz forces.

The cause of the initial drop in magnetic lengthscale
while the velocity lengthscale remains large is unclear. How-
ever, the subsequent drop in velocity lengthscale allows the
magnetic scale to grow to fill the box, in a repeat of the pro-
cess seen at the very start of the saturated regime. This, in
turn, allows new growth of flows on the size of the box and
a steady increase in kinetic energy. At t ∼ 1.75×104 the pro-
cess begins to repeat with a new sharp reduction in magnetic
energy and lengthscale. Another clear feature seen in Fig. 11
is the reversal of magnetic field with each quasi-cycle. Loca-
tions of positive field when ls

B ' Lz are replaced with negative
field in a new quasi-cycle and vice-versa. This occurs because
of the fast migration of field during each short-term ls

B ' lk
B

event.
The sort of quasi-periodic behaviour demonstrated in

run A6 is reminiscent of features seen in other contexts
of (magneto)hydrodynamics. One such example, in rotating
(non-magnetic) convection, is a competition between shear
flows and convection known as ‘convective bursts’ (Morin &
Dormy 2004; Teed et al. 2012). In this case convection gener-
ates strong zonal flows through the Reynolds stresses. These
shearing flows then inhibit the convection and hence reduce
the source of energy for themselves, returning the system to
a convective state whereby the cycle repeats. We postulate
that a similar mechanism may exist in this shear dynamo
model as the magnetic field oscillates between its two in-
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Figure 9. Plot showing the average length of time spent in each

part of the quasi-cycle for our suite of runs. Green triangles rep-

resent τL (the period of Ls
B ' Lz behaviour) and red squares τ l (the

period of ls
B ' lk

B behaviour). Also plotted is τL + τ l , the average

length of a quasi-cycle, represented by blue crosses.

trinsic lengthscales of kinematic and saturated states. Upon
saturation it is clear from all runs that we have performed
that the magnetic field first attempts to reach a new pre-
ferred lengthscale (different to that of the kinematic phase)
and this in turn produces a growing large shear flow on the
scale of the box. It is feasible that this large-scale shear-
ing flow is of a similar nature to that described by Käpylä
et al. (2009). This flow can appear spontaneously in nonmag-
netic calculations with a large imposed shear by a process
referred to as the ‘vorticity dynamo’. However, amongst our
nonmagnetic simulations (not shown here) we observe some
instances when this flow emerges and others where it does
not. It is also of note that in our MHD runs the large-scale
flow never materialises during the kinematic phase of the
problem; i.e. when the field is weak. This leads us to believe
that the manifestation of the flow is, at least in some param-
eter regimes, dependent on the existence of magnetic field
in the problem.

Without modification the shearing flow grows in mag-
nitude and can ultimately destroy large-scale field, as we
observed in Teed & Proctor (2016). However, a drop in mag-
netic scale back to the kinematic lengthscale, lk

B, leads to the
generation of smaller flows via the Lorentz forces inhibiting
the shearing flow. Indeed, magnetic fields tend to suppress
the vorticity dynamo (Käpylä & Brandenburg 2009). There-
fore a strong enough magnetic field in the saturated state
could curtail the growth of the shearing flow if it is formed
by such a mechanism. Once the flow scale is adequately re-
duced, the magnetic field can then grow to a preferred sat-
urated state lengthscale, which is at least the size of the
box. The process then repeats, thus frequently regulating
kinetic energy growth so that EK/EM ∼ O(1). It is unclear

Figure 10. Kinetic energy, EK (black) and magnetic energy, EM
(red) as a function of time for the run A6.

Figure 11. By, averaged over x and y and normalised using Brms,

as a function of z and t for simulation A6.

Figure 12. Velocity lengthscale, lu (black) and magnetic length-
scale, lB (red) for the run A6.

in this process what exactly instigates the initial reduction
of the magnetic lengthscale and why this occurs under some
parameter regimes but not those of the previous quenched
runs.

4 CONCLUSIONS

The retention of large-scale magnetic field in the saturated
state discussed in this work indicates that the shear dynamo
model in its basic form (i.e. using a uniform shear profile
with non-helical forcing) can potentially form the basis of a
model for the solar dynamo. This is an improvement on our
previous work (Teed & Proctor 2016) where the outlook was
less promising because the magnetic field was found to sat-
urate as a small-scale dynamo in almost all runs performed.
The extension of parameter space into models with Pm 6= 1
has allowed us to observe the second regime across a range
of simulations.

The magnetic field of the quasi-cyclic regime exhibits
two lengthscales: one on the size of the box and another on
the intrinsic scale of the kinematic regime. It is the transition
between these scales that creates a quasi-periodic behaviour
as the system moves between periods with ls

B' Lz and ls
B' lk

B.
Periods when the mean field is on the scale of the box tend
to be longer than the interruptions by smaller-scale mean
field.
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An outstanding question is whether the larger of the
two magnetic scales observed has an intrinsic size that is re-
stricted by the scale of the boxes used. In the runs exhibiting
unquestionably quasi-cyclic behaviour the field always fills
the box. However, amongst runs where quasi-cycles are yet
to be completed, there is tentative evidence that the field
may be saturating at a scale smaller than the box. If this is
the case it indicates that the magnetic field has a parameter-
dependent preferred lengthscale in both the kinematic and
saturated regimes, although the values differ greatly. Con-
versely, it may simply be the case that the simulations (in
these computationally expensive large boxes) have yet to be
run long enough for the magnetic scale to reach the box size.
Continuation of these runs, as well as initialisation of new
runs, is required to resolve this issue.

The conditions that determine which final state (quasi-
cyclic or quenched) is selected are not well understood. How-
ever, our results suggest that the kinetic and magnetic ener-
gies must equilibrate within approximately an order of mag-
nitude of one another to avoid development of a state where
the magnetic field is small-scale. Previous results, including
one run retained here from Teed & Proctor (2016), show
that if the kinetic energy is able to grow rapidly without
hindrance at saturation then a small-scale dynamo devel-
ops. Conversely, in the quasi-cyclic regime the kinetic en-
ergy is restricted by the magnetic field which can regularly
halt its growth as the solution also adjusts its lengthscale.
One possible explanation is that the observed quasi-cyclic
behaviour operates as relaxation oscillations between a vor-
ticity dynamo (for the velocity) and a shear dynamo (for the
magnetic field). In this scenario the large z-dependent shear-
ing flow would be generated by a vorticity dynamo when
the field is weak (Käpylä et al. 2009). However, stronger
magnetic field would suppress this mechanism (Käpylä &
Brandenburg 2009), resulting in a weak vertical shear and a
shear dynamo could operate efficiently. This can only occur
if the kinetic and magnetic energies are of a similar order in
the saturated state. Simulations where this is not the case
and small-scale field arises (Teed & Proctor 2016) would
then be situations where the vorticity dynamo greatly dom-
inates and no large-scale field can be generated by a shear
dynamo mechanism. In this case the (weak) magnetic field
is generated by a fluctuation dynamo mechanism and hence
its lengthscale is reduced to that of the imposed forcing. A
systematic survey - including with different box sizes - is
required to establish the parameter space that admits each
type of saturated state. Such a survey is hindered by the
expensive nature of the simulations but nevertheless is work
in progress.

The role of shear in dynamo models aiming to explain
the manifestation of large-scale field in the Sun and other
astrophysical bodies can be abstruse. Even in the kinematic
regime other models demonstrate conflicting roles for the
shear depending on the exact set-up. Tobias & Cattaneo
(2013) show that a sinusoidal shear bolsters large-scale field
through the suppression of the small-scale dynamo, yet Sood
et al. (2016) find (in a spherical model) that the addition of
shear suppresses dynamo action. We have seen that the (rel-
atively) simple shear used in our model can either promote
or inhibit the production of large-scale field (in the saturated
state) depending on the input parameters. The quasi-cyclic
behaviour observed is hard to identify with the solar cycle

directly. However, the fact that spatially wandering large-
scale field with quasi-cyclic behaviour (including field rever-
sals) can be generated in the fully evolved state represents
a major advance. This knowledge encourages continued in-
vestigation of shear dynamo models. Moreover, given the
ubiquitous nature of shears throughout astrophysical bodies
exhibiting magnetic fields, it is very desirable to determine
the conditions under which shear either encourages or sup-
presses large-scale dynamo action.

Further tweaking of our model’s set-up to promote more
solar-like behaviour such as periodic cycles could involve sev-
eral ideas. These include, but are not limited to, the consid-
eration of: i) different shear profiles, ii) inhomogeneous shear
profiles that vary in the long direction, iii) forcing with a
small degree of helicity. In various ways these tweaks could
promote spatially and temporally wandering large-scale field
that is periodic in nature. Indeed, one such study using a
2.5D model has shown periodic behaviour in the form of
dynamo waves Tobias & Cattaneo (2013). These ideas will
be the focus of future investigations into using shear driven
dynamos to model the solar dynamo and solar cycle.
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Rädler K.-H., Rheinhardt M., 2007, Geophysical & Astro Fluid
Dynamics, 101, 117

Rogachevskii I., Kleeorin N., 2003, Physical Review E, 68, 036301

MNRAS 000, 1–8 (2017)



8 R. J. Teed and M. R. E. Proctor

Schekochihin A. A., Cowley S. C., Taylor S. F., Maron J. L.,

McWilliams J. C., 2004, The Astrophysical Journal, 612, 276

Schekochihin A., Iskakov A., Cowley S., McWilliams J., Proctor
M. R. E., Yousef T., 2007, New Journal of Physics, 9, 300

Sood A., Hollerbach R., Kim E.-J., 2016, Journal of Physics A:

Mathematical and Theoretical, 49, 425501
Squire J., Bhattacharjee A., 2015a, Physical review letters, 115,

175003
Squire J., Bhattacharjee A., 2015b, The Astrophysical Journal,

813, 52

Sridhar S., Singh N. K., 2014, Monthly Notices of the Royal As-
tronomical Society, 445, 3770

Teed R. J., Proctor M. R. E., 2016, Monthly Notices of the Royal

Astronomical Society, 458, 2885
Teed R. J., Jones C. A., Hollerbach R., 2012, Phys. Fluids, 24,

066604

Tobias S., Cattaneo F., 2013, Nature, 497, 463
Umurhan O. M., Regev O., 2004, Astronomy & Astrophysics, 427,

855

Yousef T. A., Heinemann T., Schekochihin A. A., Kleeorin N., Ro-
gachevskii I., Iskakov A. B., Cowley S. C., McWilliams J. C.,

2008a, Physical review letters, 100, 184501
Yousef T. A., Heinemann T., Rincon F., Schekochihin A., Klee-

orin N., Rogachevskii I., Cowley S. C., McWilliams J. C.,

2008b, Astronomische Nachrichten, 329, 737

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–8 (2017)


	Introduction
	Methods
	Results
	Quasi-cyclic behaviour
	Quantifying length- and time-scales
	Kinetic and magnetic correlation

	Conclusions

