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Abstract

We investigate slow magnetic Rossby waves in convection-driven dynamos in
rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow
may account for some of the geomagnetic westward drifts observed at mid-
latitudes and have the potential to allow the toroidal field strength within
the planetary fluid core to be estimated. We extend the work of Hori et al.
(2015) to include a wider range of models, and perform a detailed analysis of
the results. We find that a predicted dispersion relation matches well with
the longitudinal drifts observed in our strong-field dynamos. We discuss the
validity of our linear theory, since we also find that the nonlinear Lorentz
terms influence the observed waveforms. These wave motions are excited by
convective instability, which determines the preferred azimuthal wavenum-
bers. Studies of linear rotating magnetoconvection have suggested that slow
magnetic Rossby modes emerge in the magnetostrophic regime, in which the
Lorentz and Coriolis forces are in balance in the vorticity equation. We con-
firm this is the predominant balance for the slow waves we have detected in
nonlinear dynamo systems. We also show that a completely different wave
regime emerges if the magnetic field is not present. Finally we report the
corresponding radial magnetic field variations observed at the surface of the
shell in our simulations and discuss the detectability of these waves in the
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geomagnetic secular variation.
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1. Introduction1

Observations of waves can provide us with information on many aspects2

of geophysical and astrophysical flows. An example is found in the study3

of Earth’s atmosphere and ocean. The rotation of the planet gives rise to4

different wave modes including inertial, Rossby, and Kelvin waves (e.g. Ped-5

losky, 1979). They often appear in stably stratified environments, leading6

to a mixture with internal gravity waves. Tropical meteorology succeeded in7

distinguishing each wave mode in cloudiness data by performing space-time8

analysis in comparison with the linear theory of equatorial shallow water9

models (see Kiladis et al. (2009) for a review). This advances the knowledge10

of the individual wave modes and their roles in, for example, transferring11

energy and momentum.12

It is hence quite natural to seek wave motions within the interior of the13

planet. The low-viscosity electrically-conducting fluid in the outer core is be-14

lieved to host dynamo action that generates the global magnetic field. This15

generated field, combined with the rapid planetary rotation, can substan-16

tially influence the dynamics of waves in the core. The study of rotating17

magnetohydrodynamic (MHD) waves therefore offers another approach to18

planetary dynamo theory. The primary effect of the magnetic field is to split19

hydrodynamic modes into fast and slow modes. This provides a wide range20

of timescales - from days to thousands of years - on which waves in the fluid21

core can operate.22

Geomagnetic secular variation and the core flow models deduced from it23

give evidence of wave motions in the core (see a recent review by Jault &24

Finlay (2015) and references therein). Axisymmetric modes have been seen25

in the core. The excitation of torsional oscillations (TOs) has become evident26

and is a plausible candidate for 6 year variations that are observed in core27

flow models and length-of-day (LOD) fluctuations (Gillet et al., 2010). This28

finding is used to infer the radial profile of the poloidal magnetic field within29

the core and to suggest a z-mean rms strength of approximately 3 mT. Buf-30

fett et al. (2016) demonstrated that 60-year signals observed in surface zonal31

flows, dipole field fluctuations, and LOD changes could be accounted for by32
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a combination of axisymmetric Magnetic-Archimedean-Coriolis (MAC) os-33

cillations excited within a thin, stably stratified layer (e.g. Braginsky, 1999).34

A comparison with the predicted frequency would imply the thickness of the35

layer is approximately 130-140 km.36

However, axisymmetric modes cannot reveal the azimuthal component37

of Earth’s magnetic field, which may be considerably stronger than the38

poloidal component, so these attempts will be naturally extended to non-39

axisymmetric modes. A prominent feature of the geomagnetic variation is40

the westward drift on timescales of 300 years, which is clearly observed in the41

Atlantic hemisphere (e.g. Finlay et al., 2010). Recent geodynamo modelling42

successfully reproduced the spatial structure of the secular variation (Aubert43

et al., 2013). Revisiting a hypothesis of Hide (1966), Hori et al. (2015) (here-44

after referred to as HJT15) demonstrated in dynamo simulations that these45

longitudinal drifts could be produced by the propagation of slow magnetic46

Rossby (MR) waves riding on mean flow advection. The advantage of their47

approach is that it did not specify the configuration of the background mag-48

netic field, but computed it from a dynamo model. This enabled them to49

estimate a z-mean strength of the internal toroidal field of about 10 mT50

at a depth of 0.8 rcore, where rcore stands for the core radius. There is a51

rich literature on non-axisymmetric modes (e.g. Malkus, 1967; Zhang et al.,52

2003; Canet et al., 2014), but it mainly uses simple imposed fields chosen for53

mathematical convenience rather than geophysical relevance.54

Chulliat et al. (2015) analysed the geomagnetic secular acceleration in55

updated global models, such as CHAOS-5, including Swarm satellite data,56

and reported a 6-8 years westward drift of the equatorially anti-symmetric57

component. They attributed this to a fast MR wave excited in the thin stable58

layer. Since current satellite missions are increasing both the temporal and59

spatial coverage of data, a solid theory and methodology will be fruitful.60

A related, but more theoretical, issue is what types of waves are found61

in strong-field dynamos, and how do they differ from the waves that oc-62

cur in weak-field dynamos. We distinguish between strong-field dynamos,63

in which the inertial and viscous forces are small compared to the magne-64

tostrophic forces, namely Coriolis, pressure, Lorentz and buoyancy forces,65

and weak-field dynamos, in which viscous or inertial forces play a significant66

role (e.g. Roberts & King, 2013). When the magnetostrophic forces are in67

balance, it is expected that Taylor’s condition (Taylor, 1963) will constrain68

the configuration of the magnetic field generated by the induction process69

and then diagnostically determine the fluid motions [see Hollerbach (1996)70
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for a review]. Some key parameters are the Elsasser number Λ, quantifying71

the relative strength of the Lorentz force to the Coriolis force, and the Ekman72

number E, measuring the strength of the viscous force. In the limit of rapid73

rotation, E → 0, the presence of magnetic field with Λ increasing to O(1)74

could destabilise rotating convection, thicken the convective rolls, and lower75

their frequency (e.g. Chandrasekhar, 1961; Fearn, 1979; Jones et al., 2003);76

the appearance of these effects was found to be highly dependent on, for77

example, the basic magnetic fields and boundary conditions (e.g. Zhang &78

Fearn (1993), Zhang & Schubert (2000), Jones (2015) and references therein).79

This led to a scenario of strong-field and weak-field dynamos. In strong-field80

dynamos the convection is influenced by the magnetic field, but the flow may81

nevertheless be quite columnar.82

Convection-driven dynamo simulations, retaining inertia and viscosity,83

have provided some evidence of approaching strong-field regimes, as well as84

quasi-Taylor states. Plane layer models for E ≤ O(10−5) have attained such85

regimes (Rotvig & Jones, 2002; Stellmach & Hansen, 2004; Hughes & Cat-86

taneo, 2016). Spherical simulations for E = O(10−4) reported some possible87

approach to a Taylor state (Aubert, 2005) but a rather minor impact on non-88

axisymmetric convective structures (Soderlund et al., 2012). The effect of the89

field on the flow seems to be model-dependent, as simulations with different90

boundary conditions and driving have increasingly demonstrated the influ-91

ence of magnetic field on convective length scales (Sakuraba & Roberts, 2009;92

Hori et al., 2010, 2012) and subcritical behaviour (Sreenivasan & Jones, 2011;93

Hori & Wicht, 2013).This model dependence is known in linear magnetocon-94

vection studies (see above). However, a clearer approach to the strong-field95

regime has been demonstrated recently by Yadav et al. (2016) as the Ekman96

number is reduced. Dormy (2016) shows that there is a relationship between97

the magnetic Prandtl number, Pm, and the Ekman number that must be98

respected to stay on the strong-field branch. Even at modest E ∼ 10−4,99

strong-field dynamos may be obtained if Pm is large enough, but if E is re-100

duced, Pm can also be gradually reduced, so as shown by Yadav et al. (2016)101

even Pm ∼ 0.5 is large enough provided E = 10−6. Teed et al. (2014, 2015)102

found that torsional waves were most clearly seen in strong-field dynamos.103

We therefore explore here whether slow MR waves are also a signature of a104

strong-field dynamo.105

Slow MR waves are symmetric about the equator, and are quasi-geostrophic106

(QG) modes with a long wavelength in the z-direction (parallel to the rota-107

tion axis) and a short wavelength in the transverse direction (e.g. Malkus,108
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1967; Zhang et al., 2003). In consequence they are faster than non-QG ro-109

tating MHD (or MC) waves and hence there is a greater likelihood for their110

detection in geomagnetic data. Also, this class of waves emerges associated111

with rotating spherical convection. The magnetic mode on which we are112

focusing is preferred at the onset of magnetoconvection when magnetic diffu-113

sion is weaker than thermal diffusion (Hori et al., 2014). Slow MR waves can114

be also excited in a thin stable layer, in which they generally travel eastward:115

we refer to Márquez-Artavia et al. (2017) for a comprehensive classification116

of linear waves in shallow water models.117

This paper extends the investigation of MR waves in spherical dynamo118

simulations, in which magnetic fields are self-consistently generated. The119

aims are threefold. (i) Guided by the previous study (HJT15), we present120

more cases in which we were able, or unable, to identify the wave modes121

by performing space-time analysis of the output data. The longitudinal122

drifts observed in the radial velocity match very well with the predicted wave123

speeds. (ii) Of particular interest are the dynamics of these waves: whether124

the identification could indeed represent a predominant magnetostrophic bal-125

ance, and to what extent assumptions required for the wave theory could be126

appropriate. (iii) In the light of the analysis of the internal dynamics, we127

examine whether these wave motions could be detected in data of the mag-128

netic field that is inferred at the top of the core. In section 2, we present129

the mathematical formulation for our numerical models and the wave mode.130

The results are detailed in section 3. Section 4 summarises our findings and131

we discuss implications for the study of planetary dynamos.132

2. Formulation133

We numerically model convection and magnetic field generation in a ro-134

tating spherical shell filled with an electrically conducting fluid. For ap-135

plications to Earth’s core, we adopt the Boussinesq approximation for an136

incompressible fluid. The details of our models are described in Teed et al.137

(2014) (hereafter referred to as TJT14), and we give only brief details here.138

The governing equations for temperature, T , velocity, u, magnetic field B,139

and pressure, p, are solved in a dimensionless form:140
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∂u

∂t
+ (u · ∇)u = −Pm

E
[∇p+ 2êz × u− (∇×B)×B]

+
Pm2Ra

Pr
T êr + Pm∇2u,

(1)

∂B

∂t
= ∇× (u×B) +∇2B, (2)

∂T

∂t
+ (u · ∇)T =

Pm

Pr
∇2T − 1, (3)

∇ · u = 0, ∇ ·B = 0 , (4a,b)

with êz and êr being the unit vectors in the z- and r- directions, respectively.141

The equations are scaled by taking the shell thickness D = ro− ri for length,142

the magnetic diffusion time, D2/η, for time, (ρµ0ηΩ)1/2 for magnetic field,143

and εD2/η for temperature. Here ri and ro are the inner and outer core radii,144

respectively, η is the magnetic diffusivity, ν is the kinematic viscosity, ρ is145

the density, µ0 is the permeability of free space, Ω is the rotational angular146

velocity, and ε is the internal sink rate. We assume a volumetric sink term147

in the temperature equation for modelling compositional convection, as well148

as its boundary conditions of zero heat-flux at r = ro and a prescribed heat-149

flux at r = ri such that the energy contained in the fluid region is conserved.150

Other boundary conditions are assumed to be no-slip, electrically insulating,151

and co-rotating. The fundamental parameters are the Ekman number, E, the152

Prandtl number, Pr, the magnetic Prandtl number, Pm, and the Rayleigh153

number, Ra, which are defined as154

E =
ν

ΩD2
, P r =

ν

κ
, Pm =

ν

η
, and Ra =

αgo|ε|D5

νκη
, (5)

respectively. Here κ is the thermal diffusivity, α is the thermal expansivity,155

and go is the reference gravity at the outer boundary. We assume that gravity156

increases linearly with radius.157

2.1. Theory158

Rossby waves, whether they are hydrodynamic or MHD, are derived from159

the equation of vorticity ξ = ∇×u. Taking the curl of the momentum equa-160

tion (1) and considering its axial component gives rise to the equation that is161

relevant to our thick shell problems. For the QG modes, we consider cylindri-162

cal coordinates, denoted by (s, φ, z), and define the z-averaged (geostrophic)163
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and residual (ageostrophic) quantities as164

〈f〉(t, s, φ) =
1

2H

∫ H

−H
f dz and f a(t, s, φ, z) = f − 〈f〉, (6)

for any scalar field, f , respectively, where H =
√
r2

o − s2. We then operate165

the z-averages over the axial vorticity equation to obtain166

∂〈ξz〉
∂t

+ 〈êz · ∇ × (ξ × u)〉 − 2Pm

E
〈êz · ∇uz〉

=
Pm

E
〈êz · ∇ × (J ×B)〉+

Pm2Ra

Pr
〈êz · [∇× T êr]〉+ Pm〈∇2ξz〉, (7)

where J = ∇×B is the electric current in the present scaling. The individual167

terms of the equations are denoted and rewritten as168

ΞR = 〈u · ∇ξz − ξ · ∇uz〉 = ∇h · 〈ξzu− uzξ〉,

ΞC = −2Pm

E

〈
∂uz
∂z

〉
= −Pm

E

1

H
[uz]

+H
−H =

Pm

E

s[us(H) + us(−H)]

(r2
o − s2)

,

ΞL =
Pm

E
〈B · ∇Jz − J · ∇Bz〉 =

Pm

E
∇h · 〈JzB −BzJ〉, (8)

ΞB =
Pm2Ra

Pr

1

s

∂〈T 〉
∂φ

,

ΞV = Pm

{
∇2

h〈ξz〉+
1

2H

[
∂ξz
∂z

]+H

−H

}
,

where ∇2
hf = 1

s
∂
∂s
s∂f
∂s

+ 1
s2
∂2f
∂φ2

and ∇h ·A = 1
s
∂
∂s
sAs + 1

s
∂
∂φ
Aφ for any vector169

field, A. The integral in ΞC is performed by using the sloping boundary170

conditions, uz = ∓uss/H at z = ±H. We assume ∇ · ξ = ∇ · J = 0 as well171

as the solenoidal conditions (4a,b).172

To seek perturbations about a background state, we split the velocity and173

magnetic fields into their mean and fluctuating parts. Furthermore, to focus174

on the background state given by the axisymmetric component, we further175

separate the mean parts into axisymmetric and non-axisymmetric parts, such176

that177
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u = Ũ(s, φ, z) + u′(s, φ, z, t)

= Ũ(s, z) + Ũ
n
(s, φ, z) + 〈u′〉(s, φ, t) + u′

a
(s, φ, z, t)

(9)

B = B̃(s, φ, z) + b′(s, φ, z, t)

= B̃(s, z) + B̃
n
(s, φ, z) + b′(s, φ, z, t) .

(10)

The averaging operators and fluctuating parts appearing here are defined by178

f̃(s, φ, z) =
1

τ

∫ τ

0

f dt, f ′(t, s, φ, z) = f − f̃ , (11)

f(t, s, z) =
1

2π

∫ 2π

0

f dφ, fn(t, s, φ, z) = f − f . (12)

Substituting (10) into the Lorentz term, ΞL, we find its individual terms:179

ΞL =
Pm

E

[
〈B̃ · ∇j′z〉+ 〈b′ · ∇j′z〉

+ 〈B̃
n
· ∇j′z〉+ 〈B · ∇J̃z〉 − 〈J · ∇Bz〉

]
.

(13)

Up to this point, everything is exact and no assumptions about the relative180

magnitudes of the different components of the flow and field, or the length181

scales on which they vary. However, the equations are very complicated, and182

to get a system which we can understand we must make assumptions about183

the relative sizes of the various terms. We start by linearising the fluctuating184

parts, i.e. consider only terms of first order in the primed quantities. We185

assume that the zero order quantities describe a slowly evolving flow and field186

state, and that the first order terms describe relatively fast wave motions187

perturbing that quasi-steady state. We also ignore terms which are second188

order in the fluctuating primed quantities, though as we see later, in actual189

simulations nonlinear effects are visible. Next, we assume the azimuthal190

length scale of our disturbances is short compared with the variation in the191

s and z directions, and short compared with variations of the mean quasi-192

steady flow and field. Of the terms in (13), the second is of second order,193

and the fourth and fifth are small under our length scale assumptions. We194

eliminate the third term by assuming that the axisymmetric part of the mean195

azimuthal field is bigger than the non-axisymmetric part. We are left with196

the first term on the right-hand-side, 〈B̃ · ∇j′z〉, representing the restoring197

part for MHD waves with respect to the background field B̃. For modes198
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with reasonably large azimuthal wavenumber, say m ≥ 5, these assumptions199

are approximately true. We view the theory based on them as an ‘ideal’200

theory to serve as a starting point, and we can then explore how the actual201

simulations depart from this idealised model. Similarly, the Reynolds term202

ΞR can be expanded as203

ΞR = 〈Ũ · ∇ξ′z〉+ 〈u′ · ∇ξ′z〉+ 〈Ũ
n
· ∇ξ′z〉+ 〈u · ∇ξ̃z〉 − 〈ξ · ∇uz〉 . (14)

Here the first term, on the right-hand side, 〈Ũ ·∇ξ′z〉, describes the advection204

effect due to the background mean flow Ũ , which under our assumptions is205

the dominant term. Separating the restoring and advective terms from the206

remaining terms, we rewrite the vorticity equation as207

∂〈ξ′z〉
∂t

+ 〈Ũ · ∇ξ′z〉+
Pm

E

s[u′s(H) + u′s(−H)]

(r2
o − s2)

− Pm

E
〈B̃ · ∇j′z〉

= −ΞRD + ΞLD + ΞB + ΞV

(15)

where ΞRD = ΞR − 〈Ũ · ∇ξ′z〉 and ΞLD = ΞL − Pm
E
〈B̃ · ∇j′z〉 denote the208

residual parts of the Reynolds and Lorentz terms, respectively. The Coriolis209

term still involves the mean and fluctuating parts; as the mean component210

is negligible in simulations, we omit this component hereafter. In the same211

manner, we rewrite the induction equation (2) as212

∂b′

∂t
+ Ũ · ∇b′ − B̃ · ∇u′ = IS − IA +∇2B , (16)

where IS = B · ∇u− B̃ · ∇u′ and IA = u · ∇B − Ũ · ∇b′.213

The terms on the left-hand sides of (15) and (16) give the basic equations214

for MR waves (HJT15). The equations are linear with respect to fluctuating215

variables, ξ′z and j′z, but are coupled to each other, and exclude nonlinear216

terms including b′ ·∇j′z in the Lorentz force and u′ ·∇ξ′z in the Reynolds force.217

To elucidate the fundamentals of the wave modes, we first concentrate on the218

linear aspects, bearing in mind that we are assuming the background field and219

flow have axisymmetric azimuthal components which are at least comparable220

to the other components, and that the azimuthal wavelengths of our modes221

are short compared to the radial and axial components. Note that this is222

not obvious in every case and other components possibly become significant,223

as we shall discuss later. However, these assumptions do surprisingly well224
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because the convection driving the modes in the models consists mainly of225

tall thin columns. We then operate d
dt

= ∂
∂t

+
〈Ũφ〉
s

∂
∂φ

over the left-hand side226

of (15) to obtain227

d2〈ξ′z〉
dt2

+
Pm

E

s

(r2
o − s2)

d

dt
[u′s(H) + u′s(−H)]− Pm

E

〈
B̃φ

s

∂

∂φ

dj′z
dt

〉
= 0 . (17)

Substitution of the left-hand side of the induction equation (16) into this and228

using our length scale assumptions gives229

d2〈ξ′z〉
dt2

+
Pm

E

s

(r2
o − s2)

d

dt
[u′s(H) + u′s(−H)]− Pm

E

〈
B̃2
φ

s2

∂2ξ′z
∂φ2

〉
= 0 . (18)

For some simple fields this equation can be solved analytically (see Canet et230

al. (2014) for detailed analysis). We instead suppose that u′s is approximately231

geostrophic, so that u′s(H) + u′s(−H) ≈ 2〈u′s〉, and that the radial gradient232

of the axial vorticity, ξ′z, is smaller than the azimuthal gradient, consistent233

with our previous assumptions, i.e. ξ′z ≈ −1
s
∂
∂φ
〈u′s〉. This is valid only for234

reasonably large m components, but it considerably simplifies the problem235

leaving236

d2

dt2
1

s

∂〈u′s〉
∂φ

− Pm

E

2s

(r2
o − s2)

d〈u′s〉
dt
− Pm

E

〈
B̃2
φ

s3

∂3u′s
∂φ3

〉
= 0 . (19)

Here we seek solutions with a form of 〈u′s〉 ∼ eı(mφ−ωt) at given s and obtain237

the dispersion relations of the fast and slow modes as238

ω = ωadv + ω̂± = ωadv + ω̂R

[
1

2
± 1

2

√
1 + 4

ω̂2
M

ω̂2
R

]
(20)

where the Rossby, Alfvén, and advection frequencies are239

ω̂R =
Pm

E

2s2

(r2
o − s2)m

, ω̂2
M =

Pm

E

m2〈B̃2
φ〉

s2
and ωadv =

m〈Ũφ〉
s

, (21)

respectively. We see that the wave frequency is the sum of the dynamical240

wave frequency plus an advective term due to the mean flow.241
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The fast modes ω̂+ essentially recall the hydrodynamic Rossby waves,242

which travel prograde with the frequency ω̂R about the advection part. They243

arise from a balance between the first two terms of (19), d〈ξz〉/dt and ΞC .244

By contrast, the slow modes ω̂− are a unique solution of rotating MHD,245

sometimes called MR waves or MC-Rossby waves. Their properties become246

evident when taking the limit ω̂2
M/ω̂

2
R � 1 on the slow mode, ω̂−, to obtain247

(using the binomial approximation)248

ω̂MR = − ω̂
2
M

ω̂R
= −

m3〈B̃2
φ〉(r2

o − s2)

2s4
, (22)

and the observed frequency will be the sum of ω̂MR and the advection fre-249

quency ωadv. This implies a much lower frequency and a retrograde propa-250

gation unless the advective flow is large and eastward. The corresponding251

phase speed is given VMR = ω̂MR/m, and similarly for the Rossby and Alfvén252

phase speeds. The magnetic Rossby speed goes up as the wavenumber m in-253

creases or the radius s decreases. A balance between the last two terms, ΞC254

and ΞL, is vital for this mode, indicating that the time variations arise from255

the induction equation while the momentum equation is almost in balance.256

These slow waves will be distinguished from Alfvén or Rossby (fast MR)257

modes in terms of dispersion relations ω = ω(m), phase velocity ω/m, and258

vorticity balances.259

At fixed s and hence 〈B̃2
φ〉, all dispersion relations (20) are comprised of260

MR branches at lower wavenumber m and Alfvén branches at higher m. The261

transition will occur when ω̂2
M/ω̂

2
R ≈ 1, i.e. m4 ≈ 2s6/(r2

o − s2)2〈B̃2
φ〉. We262

did not observe signals of Alfvén branches in our simulations, but it could263

be possible if faster or smaller-scale disturbances are provided, for instance,264

by more vigorous convection. Studies of equatorial atmospheric dynamics265

demonstrate an impressive ability to distinguish several wave modes through266

space-time spectra and theoretical dispersion relations (e.g. Kiladis et al.,267

2009).268

Our assumption of a short azimuthal length scale means terms involving269

B̃φ dominate over the terms involving the poloidal field, B̃s and B̃z. We spec-270

ulate that if these terms do become significant, the dispersion relation would271

become almost proportional to m. However, solving the linear equations in272

this case becomes difficult. Applying the assumption ξ′z ≈ −1
s
∂
∂φ
〈u′s〉 helps to273

simplify our equation considerably. To pursue analytical solutions when all274
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the field components are relevant, we are required to make further assump-275

tions, such as uniform B̃s and constant H; this would not give expressions,276

(20) and (19), for an azimuthal field.277

Whereas the consideration of the restoring forces predicts the eigenmodes,278

an excitation mechanism determines what frequencies and/or wavenumbers279

indeed set in. Any terms appearing on the right-hand-side of (7) can initi-280

ate disturbances leading to wave motions. In our simulations, excitation is281

mostly created by the instability driven by the buoyancy ΞB. This is sup-282

plied everywhere at the inner boundary r = ri. Topographic Rossby waves283

naturally occur, associated with convection in rotating spheres and spherical284

shells (e.g. Busse, 1970): thermal Rossby waves, ω̂TR = ω̂R/(1 + Pr), are285

preferred in the hydrodynamic case.286

2.2. Numerical models287

The models explored in this study and their global properties are listed288

in Table 1. The control parameters range over 1 ≤ Pm ≤ 5 and 5× 10−6 ≤289

E ≤ 10−4, while Pr = 1. In five of the runs, the Rayleigh number is fixed290

at 8.32Rac where Rac denotes the critical Rayleigh number for the onset of291

nonmagnetic convection. These are the runs selected from the previous study292

by TJT14 and partly analysed by HJT15; in this paper we shall present a293

detailed analysis of the models. We also add two new runs for Ra = 16.6Rac294

to investigate the effects of higher Ra. Unlike axisymmetric TOs, the non-295

axisymmetric waves are closely linked to the thermal instability and hence296

can be affected by the convective vigour. At the Pm regime explored here,297

the slow MR modes propagating retrograde are favoured at the onset of298

magnetoconvection, whereas other diffusive Rossby modes prevail at lower299

Pm (Hori et al., 2014).300

Monitoring the time evolution of the kinetic and magnetic energies, we301

confirmed that each model reached a quasi-steady state and then we chose a302

short time interval, τ , to analyse its time variation. The intervals τ are 0.01303

magnetic diffusion times for most models and are taken longer, τ ≤ 0.02,304

for the large-E models 4R2 and 4R5. By equating Bs at the CMB from our305

simulations to its known value from the geomagnetic data the time intervals306

can be translated to the dimensional time, τE (TJT14): all our analyses307

presented below correspond to τE less than 83 years (see HJT15).308

In our simulations magnetic fields are self-consistently generated. They309

are overall dominated by axial dipoles that do not reverse during the time310

intervals. These stable large-scale fields act as the background field (such as311
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B̃) for the disturbances (u′ and b′) discussed below. The morphology of the312

background fields will be presented in Sec. 3.1. To characterise each run for313

the magnetostrophic wave motions, we pay attention to the following output314

parameters, defined in our scaling as315

Λ = |B|2, T =
〈êφ · (∇×B)×B〉
〈|êφ · (∇×B)×B|〉

, UC =

√
|〈u′φ〉2|
|u2|

,

U ′C =

√
|〈u′φ〉2|
|u′2|

, and U s
C =

√
|〈u′s〉2|
|u2|

. (23)

The Elsasser number, Λ, measures the relative strength of the Lorentz to316

Coriolis forces. The smallness of the Taylorization parameter, T , indicates317

to what extent the system resembles a pure Taylor state. This parameter in-318

creases with s, as reported by Wicht & Christensen (2010), and thus suggests319

a better Taylorization nearer the rotation axis. The parameters UC and U ′C320

quantify the geostrophy of fluctuating zonal flows with respect to the total321

flows and the fluctuating parts only, respectively. The latter indicates the322

dominance of axisymmetric TOs on short timescales. Investigating extensive323

magnetoconvection runs, Teed et al. (2015) found that TOs were identified324

when the parameter U ′C & 0.4. Additionally, since the non-axisymmetric325

motions of the cylindrically radial velocity are also of interest, an equivalent326

geostrophy parameter U s
C defined with the radial component, u′s, is also to327

be checked. The values of these quantities for each run in our suite of simu-328

lations appear in Table 1. Other output parameters for lower Ra models are329

found in Table 1 of TJT14. The magnetic Reynolds number of all our runs,330

Rm =
√
|u2|, ranges from 100 to 450. The Rossby number, Ro = RmE/Pm,331

hence remains no greater than 0.001. The small Ro is consistent with the ob-332

servations of the stable dipolar field solutions (Christensen & Aubert, 2006).333

We recall the classification made by TJT14 and find strong-field solutions334

for all the presented models except 4R2. These strong-field dynamos show335

Λ greater than unity, T less than 0.2, and relevant TOs detected (Table 1).336

For the non-axisymmetric dynamics, we define measures for the length scales337

in the kinetic power spectrum: the mean harmonic degree338

` =
∑
`

`|u` · u`|/|u · u|, (24)

and the peak harmonic order, mpeak, i.e. the value of m for which339
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|um · um|/|u · u|,

is greatest, summing over all possible `-values for that particular m. These340

values are expected to be smaller for strong-field regimes and to remain large341

for weak field regimes (Sec. 1). The mean value ` is often used for recent342

dynamo simulations. The dependence of ` on E appears to retain the non-343

magnetic scaling of E−1/3 [not shown; e.g. Roberts & King (2013)]. This may344

not be a good measure when the spectrum has several peaks indicating more345

than one distinct scale. Also, spectra with respect to the harmonic order346

m, rather than `, better represents a convective structure in rapidly rotating347

spheres and spherical shells. The peaks mpeak hence indicate the enlarging348

effect, depending on the field strength. The influence of the generated mag-349

netic fields on the flows becomes evident when comparing results with the350

corresponding nonmagnetic simulation and evaluating the force balance (as351

shown below). These magnetic effects are hardly found in model 4R2, so we352

term this model a weak field solution.353

We used the Leeds spherical dynamo code to solve the full equations,354

(1)-(4a,b); see Willis et al. (2007) and Jones et al. (2011) for a detailed355

description. In the code, a predictor-corrector method is adopted for choosing356

timestep sizes, the longitudinal and latitudinal grids are expanded in the357

spherical harmonics, and the radial grid uses a finite difference method. The358

number of grid points in the r, θ, and φ directions were Nr = 160, Nθ = 288,359

and Nφ = 576 for most runs, respectively, but needed to be increased up360

to Nr = 192 for low-E or high-Ra models. Here the θ and φ resolutions361

were given by the maximum spherical harmonic degree L and order M such362

that L = 2Nθ/3− 1 and M = Nφ/3− 1. The output data was transformed363

to cylindrical polar coordinates for comparisons with the QG theory. The364

resolution was reduced for post-processing, for which grid points in the s and365

z were typically fixed at Ns = 128 and Nz = 96, respectively.366

3. Results367

3.1. Predicted wave and advection speeds368

In Figure 1a, we compare phase speeds of slow MR, VMR = |ω̂MR/m|,369

Alfvén, VM = |ω̂M/m|, and nonmagnetic Rossby waves, VR = |ω̂R/m|, as a370

function of normalised radius s/ro for model 4R5, using formulae (21) and371

(22). The magnetic modes, VMR and VM , were calculated using the z-mean372

toroidal field, 〈B̃2
φ〉 = 〈B̃2

φ〉(s), from the simulation. The nonmagnetic speed373
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VR, and the nonrotating one VM , are much greater than VMR so they have374

been rescaled down. This time-scale separation indeed helps to distinguish375

each wave mode. The Alfvén speed, VM , plotted with black solid curves, is376

a proxy for the profile of the background toroidal field: the structure of B̃φ377

is presented in Figure 2a. The field component is strengthened just beneath378

the CMB at the equator, as commonly seen in spherical dynamo simulations379

(e.g. Christensen & Wicht, 2015). This implies the VM profile is fastest at380

s ≈ 0.9ro. The blue solid and dotted curves plot VMR and VR for a chosen381

wavenumber of m = 5, respectively. This wavenumber is chosen because it382

gives the clearest image of the magnetic Rossby waves in the simulations, see383

below. The MR speed, VMR, becomes slower with increasing s, as expected384

from (22), with large values near the TC. The speed of the waves is similar to385

that defined in linear analysis of Zhang (1995) Waves are quite geostrophic,386

travel westward, and their frequency increases with wavenumber m.387

These wave motions will be observed, riding on the geostrophic mean388

zonal flow, with ζ = 〈Ũφ〉/s = ωadv/m. Figure 1b shows the profile ζ = ζ(s)389

for the same model, including the sign. The zonal flow is prograde near the390

inner boundary, when s . 0.45, but retrograde at an outer radius. So at the391

middle of the shell (s/ro = 0.5) the background flow becomes extremely slow.392

Comparing this with the ω̂MR profile allows us to ascertain at which radius393

wave propagation will dominate over mean flow advection. To explore the394

wave dynamics, we choose the mid-depth, s = 0.5ro, for analyses presented395

in the following subsections.396

Similarly, Figures 1c-d demonstrate wave and mean flow speeds for a low-397

E model, 6.5R2. The profiles are similar to those in the earlier run; there398

are differences in the details, such as the maximum speeds and the radius at399

which ζ changes sign. Fig. 2b illustrates that the field B̃φ outside the TC400

is more concentrated into low latitude. Analogous plots are found in all the401

models except 4R2, so we avoid presenting other plots.402

Figures 1e-f and 2c depict the exceptional case, 4R2. In this case the403

magnetic modes, VM and VMR, are orders of magnitude slower than those404

in other runs, indicating that the background magnetic field is rather weak405

here. This makes the bifurcation from the Alfvén to MR waves less drastic406

(see the following subsection). The s-profiles indicate that the morphology407

of the background field is more complex than others: the field is found to408

hold two wavenumbers in s outside the TC (Fig. 2c). The flow profile, ζ,409

is also remarkably distinct; it is retrograde for all s. The distinction in410
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the ζ structure is reminiscent of the work by Aubert (2005), who discussed411

the influence of magnetic fields on axisymmetric zonal flows. Indeed the412

generated field hardly affects the zonal flows in this particular model: an413

analogous profile in a nonmagnetic model is shown later in Fig. 7.414

3.2. Space-time analysis of internal radial velocity415

The wave equation (19) gives a description for the z-averaged radial ve-416

locity 〈us〉, which is the variable to be analysed in this subsection. Figure417

3a displays a snapshot of the spatial structure of 〈us〉, in the view from the418

northern pole, for model 5R5. The presence of the strong field with Λ ≈ 22419

fattens the convective structures here (cf. the nonmagnetic case in sec. 3.4).420

The raw (i.e. not averaged) radial velocity, us(z), sliced at the equatorial421

plane is very similar to 〈us〉. This is confirmed by checking meridional slices422

of us(z) (Figure 3b); columnar (i.e. z-independent) structures are found even423

for the very strong magnetic field. The geostrophy parameter U s
C for the424

cylindrically radial velocity amounts to 0.35 and ensures the dominance of425

the geostrophic component in the whole flow. Also, the equatorial plots show426

that the azimuthal gradient therein is steeper than the radial one. There-427

fore a key assumption for the theory - | ∂
∂s
〈u′φ〉| � |1

s
∂
∂φ
〈u′s〉| - leading to428

ξ′z ≈ −1
s
∂
∂φ
〈u′s〉, is found to be appropriate. Figure 3c-d, for model 6.5R2Ra,429

demonstrates similar slices to confirm the high m approximation on ξ′z and430

the two-dimensionality of the flow. The moderately strong field, Λ ≈ 6, en-431

larges azimuthal scales, compared to the corresponding nonmagnetic case,432

but they remain rather small for this lower E model.433

Figure 4 shows time-azimuthal sections of 〈u′s〉 at s = 0.5ro for runs434

4R5, 5R5, 6.5R2, 6.5R2Ra, and 4R2. The left column displays plots in the435

physical domain (i.e. t-φ space), plots in the spectral domain (i.e. f -m space,436

where f = ω/2π) are shown on the right. To calculate the spectra, we437

performed two-dimensional FFTs of 〈u′s〉 at the chosen s. These spectra are438

important for comparing with the predicted dispersion relations, but also for439

determining the dominant m or f components. With the wavenumbers being440

determined, we calculate the respective phase speeds ω̂MR and compare them441

with observed longitudinal drifts. The chosen m for each model is presented442

in the figure. In the physical domain, white dashed lines draw the advection443

speed ζ (at the chosen radius) and black solid lines indicate the combined444

phase speed, ζ + ω̂MR/m, for the selected m. Since the background flows at445

the mid-depth are very slow, the white lines appear to be almost vertical in446

all cases. No black lines are shown for model 4R2, for which we do not find447
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MR waves. Analogously in the spectral domain we continue to use white448

dashed lines for the advective dispersion relations, f = ωadv/2π = ζm/2π,449

and black solid curves for the total one, ω = (ωadv + ω̂±)/2π. In the strong450

field models the fast modes, ωadv + ω̂+, are far off the frequency window; this451

branch appears for f > 0 only in the exceptional model, 4R2. In the same452

spectra, we also indicate the Alfvén modes, f = (ωadv ± ω̂M)/2π, by white453

solid lines; these are linear in m.454

Model 4R5 - for large E and very large Λ (≈ 18) - illustrates wave iden-455

tification most clearly (Fig. 4a-b). From the spectra we find m = 5 and456

3 modes excited significantly. Migrations in t-φ space almost perfectly fit457

with the calculated total phase speeds for m = 5. As the convective rolls in458

the model spread throughout the radius (not shown), these wavenumbers are459

dominant at any s. Here recall that the theory assumes that the azimuthal460

scales are smaller than the radial ones; we hence exclude the lower wavenum-461

ber mode m = 3 for the identification. A lower E model displayed another462

successful identification for m = 5 and 8 (Fig. 4c-d). The crests and troughs463

observed there were narrower and sharper than those in the larger E model.464

Models for identical Ra/Rac but smaller Pm, 5R2 and 6.5R2, yield465

weaker generated fields of Λ ≈ 2 and larger m are significant. Figure 4e-466

f demonstrates the plots for model 6.5R2. For the weak background field the467

dispersion relation, ωadv + ω̂−, predicts a slower wave speed. The spectral468

analysis shows a strong signal of (m, f) ≈ (9,−300); however the frequency469

is higher than that of slow MR waves and too low for the Alfvén waves.470

There are some features that travel at the m = 9 MR phase speed (see471

Fig. 4e), but there also features travelling at different speeds. The signals for472

(m, f) ≈ (9,−100), m = 8 and 12, may be interfering with the m = 9 mode473

to give a more confused picture than in Figs. 4a and c. The migrations are474

very slow, but even though the phase speed is not so well-defined, the sharp475

wave forms are found to be persistent.476

In the higher-Ra moderate-Λ models, 5R2Ra and 6.5R2Ra, we also see477

more complex drift patterns. Figure 4g for model 6.5R2Ra shows that the478

duration of the migrating crests and troughs becomes shorter. Vigorous479

convection gives rise to more chaotic motions and hence interrupts wave480

patterns more frequently. Nevertheless, we are able to find signals distributed481

over the predicted dispersion relation ωadv + ω̂− (Fig. 4h). Note that the482

advective velocity ζ at s = 0.5ro is positive for this run. This may explain483

the prograde drifts seen in real space (white dashed lines). The total phase484

velocity for the preferred m = 9 mode remains retrograde and gives a correct485
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speed that matches slow retrograde drifts. However the significant signal of486

m = 7 and f > 0 cannot be met with any of the dispersion relations shown487

in the spectral domain. This indicates the limitation of the present theory;488

we may here be seeing diffusive MR waves that can propagate prograde (Hori489

et al., 2014). In larger-E model 5R2Ra, larger azimuthal scales (m = 4, 7,490

and 9) are selected and prograde migration is less clear.491

Finally, the weak field model, 4R2, demonstrates a failed case (Fig. 4i-j).492

At these parameter regimes, the present setting for fixed heat-flux boundary493

conditions can cause a mixture of very wide convective rolls, such as m =494

1, and rotationally-constrained thinner ones (Hori et al. (2012); also see495

later in sec. 3.4). This results in a hemispherical structure seen here in the496

physical domain. The spectral analysis in Figure 4j shows no relevant signals497

along the MR dispersion relations except at m = 1 and 2. They are instead498

better aligned with the Alfvén modes; however we exclude this because the499

generated field is weak here. To host Alfvén waves, a requirement is for the500

system to satisfy the very strong-field limit ω̂2
M/ω̂

2
R � 1. The force balance,501

as presented in the next subsection, shows a minor role for the Lorentz force502

in this run. This is consistent with the fact that axisymmetric TOs were also503

not identified in this dynamo model (TJT14).504

Table 2 summarises some properties of the non-axisymmetric motions of505

all the runs, all taken at s = 0.5ro. Column MR indicates whether magnetic506

Rossby waves were detected: only run 4R2 failed to show any. The value507

of m is determined by finding the largest peak in the wavenumber-frequency508

power spectrum (right hand panels of Figure 4) and VMR is the corresponding509

phase speed, which can be compared with the advective phase speed ζ. In510

all cases VMR is larger, showing that at this s-value migration is mainly due511

to wave motion rather than advection by a mean flow. V rel
M is the relative512

strength of the internal azimuthal field to the radial field as measured by the513

ratio V rel
M of Alfvén waves at s = 0.5ro. Note that in these dynamo models514

the radial field is stronger than the azimuthal field. We don’t currently know515

whether this holds for the actual field in the core.516

A striking feature of the observed MR waves are their waveforms because517

they do not show wave packets, but rather feature isolated crests and troughs.518

This is surprising as the highly dispersive waves (22) may be expected to form519

wave trains comprised of several m components. To show more details, Fig-520

ure 5 depicts the evolution of the amplitude 〈u′s〉 for model 5R5 (as shown in521

Fig. 4c). Given a disturbance, it grows to a crest or trough, whilst travelling522

retrogradely. Meanwhile, waveforms steepen and shift to the positive side:523
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for instance, a crest peaked when t = 0.005 between π/2 < φ < 2π/3. These524

are reminiscent of steepening, particularly of cnoidal (solitary) waves, which525

are typically known in the weakly-nonlinear dynamics of inviscid, dispersive526

waves (e.g. Whitham, 1974). The theory suggests that the effects will be527

more relevant as the system becomes inviscid: this agrees with our observa-528

tion that lowering E produced sharper waveforms. This indicates that the529

nonlinear terms, which we omitted for the theory, are important in creating530

the observed wave patterns, while the linear part is fundamental to determine531

the wave speeds; we shall address this in subsection 3.5.532

3.3. Vorticity balance533

To elucidate the nature of the MR waves, we evaluate the individual terms534

of the z-averaged vorticity equation (7) in terms of the migration pattern and535

the strength. Figure 6 depicts time-azimuthal sections of those terms at the536

same radius for the model 5R5. In every plot we retain the white and black537

lines from Fig. 4 to mark the predicted phase speeds. We also use identical538

colour contour steps for every plot with the maximum of the individual terms539

listed in Table 3.540

Figure 6, for model 5R5, illustrates that the vorticity equation is domi-541

nated by the Lorentz force, ΞL, and Coriolis force, ΞC , terms. Other terms542

such as the inertia, ∂〈ξ′z〉/∂t, Reynolds force, ΞR, and viscous force, ΞV , can543

become relevant locally and temporarily. Their amplitudes remain smaller544

than those of the two dominant terms (Table 3), indicating their minor roles545

throughout the time evolution. The significance of ΞC and ΞL agrees with546

the fact that this model nicely demonstrated propagation of the slow, magne-547

tostrophic waves. We recall that the analysis here is made for the geostrophic548

component. This reveals a predominant dynamical balance between the Cori-549

olis and Lorentz forces within the QG approximation. This confirms former550

findings in linear rotating magnetoconvection (Zhang, 1995): it is now seen551

in nonlinear dynamo systems.552

The buoyancy term, ΞB, at this radius is weaker than the other contri-553

butions, as can be seen from the values in Table 3, as well as the amplitude554

in Fig. 6. This term is most significant at the inner boundary, at which the555

buoyancy source is set. The disturbances arising from the bottom spread to-556

wards an outer shell and induce the longitudinal wave motions at a given s.557

Therefore, in spite of its small magnitude at mid-depth, the time-azimuthal558

patterns are found to almost perfectly correlate with those of ΞC and ΞL. The559

buoyancy term is therefore crucial for driving the observed wave motions.560
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Primary roles of ΞC and ΞL are found in all models except 4R2. Whereas561

the magnetically dominated run 5R5 yields a sizable ΞL, the two terms were562

almost in balance for moderate-field models, such as 5R2Ra. However Table563

3 shows that other terms can become significant locally. Despite the clear564

wave identification, the large-E model, 4R5, has significant contributions565

from ∂〈ξ′z〉/∂t, ΞR, and ΞV . Lowering E helps to suppress these terms; this566

is crucial for steepening waveforms. Table 3 also shows that a higher Ra567

seemingly increases the significance of ΞR. For some runs, ΞR can occasion-568

ally become comparable with ΞC , but it is extremely localized when it does569

so. This indicates that magnetostrophic balance remains dominant most of570

the time.571

This balance does not hold for model 4R2, in which MR waves were not572

identified. The Lorentz term, ΞL, is weaker by an order of magnitude, and573

instead ΞR, ΞV , and ∂〈ξ′z〉/∂t are stronger (Table 3). We thus confirm only574

a minor role for the magnetic field in this model, and exclude the excitation575

of Alfvén waves. One may expect that a weaker field could host fast MR576

modes, or nonmagnetic Rossby waves. However, we do not find any direct577

evidence of such waves. For the fast wave motions, a predominant balance578

between ∂〈ξ′z〉/∂t and ΞC is mandatory. The significant magnitude of ΞR579

and ΞV in the model suggests that this is not the case.580

3.4. Hydrodynamic model581

To make clear the impact of magnetic fields, we explore the corresponding582

nonmagnetic models where the induction equation is not solved and hence583

magnetic field generation is switched off. Figure 7 displays a snapshot of584

the non-axisymmetric structure of 〈us〉 for a run with E = 10−5, termed585

NM 5R5. In the absence of the magnetic field, convective rolls overall get586

thinner in azimuth and are confined to a smaller s (cf. Fig. 3a). This gives587

rise to strong background flows near the TC (Fig. 7b).588

Figure 8 shows the space-time plots at radius s = 0.5ro for the same589

model. Nondimensional time should now be the thermal diffusion time, but590

to compare with Fig. 4c, for which Pm/Pr = 5, we multiply the time by591

5. So the Fig. 8 shows an interval of 0.0012D2/κ which scales to 0.006 in592

the magnetic diffusion units. Here black solid and dotted lines indicate the593

speeds of the advection ζ plus the thermal Rossby waves ω̂TR/m for m = 9594

and 14, respectively. We then see clearly that the nonmagnetic waves travel595

prograde, and much faster than the MR waves of Fig. 4c. Compared with596

the equivalent dynamo run (Fig. 4c-d), this figure clearly illustrates that the597
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magnetic field influences not only the spatial scales but also the temporal598

variations. A feature of the non-magnetic run is that convective activity is599

somewhat nonuniform in longitude. There is relatively little convection in600

the snapshot between longitudes π and 3π/2 in Fig. 7a. The space-time601

plot Fig. 8a shows that the thermal Rossby waves occur at most longitudes,602

but not between φ = 3π/2 and φ = 2π. Brown et al. (2008) noted the603

formation of active nests of convection in anelastic rotating systems, and604

similar structures were found in fixed flux rotating convection (e.g. Takehiro605

et al., 2002; Gibbons et al., 2007). It is possible that energy transport by the606

thermal Rossby waves clearly visible in Fig. 8a could be connected with the607

formation of nests of convection.608

In Figure 9 we evaluate each term of the vorticity equation for this non-609

magnetic model. We see that ΞR is as significant as ΞC and ∂〈ξ′z〉/∂t, so610

that although the wave speed is primarily the thermal Rossby wave speed611

the nonlinear Reynolds stress is affecting the waveforms.612

3.5. Restoring force and nonlinearity613

We have seen that the formula for toroidal field, given by (20), is able to614

account for some of the observed longitudinal drifts. Meanwhile, the poloidal615

component, B̃s and B̃z, possibly acts as a restoring force. To quantify this,616

we measure the ratio, V rel
M , of Alfvén waves, VM , for the azimuthal compo-617

nent to those for the radial component, UA =

√
〈̃B2

s 〉Pm/E. Here UA is618

equivalent to the propagation speed of TOs. Table 2 lists the relative speeds619

at the mid-radius and shows that the radial field components are stronger for620

all the models except 4R2. Indeed, in standard dynamo simulations, the ax-621

isymmetric poloidal field is found to be equal to or stronger than the toroidal622

one (e.g. Christensen & Wicht, 2015). Note that the relative strength in the623

Earth’s core is unknown; some estimation has been made [Zhang & Fearn624

(1993), Shimizu et al. (1998), HJT15].625

We further evaluate each contribution to the wave motion by calculating626

three individual terms of the restoring part, 〈B̃ · ∇j′z〉. As the toroidal field627

is concentrated beneath the equator (see the VM profiles of Fig. 1), the term628

due to this component, 〈 B̃φ
s
∂j′z
∂φ
〉, is dominant by orders of magnitude at larger629

s. By contrast, the poloidal field more broadly distributes throughout the630

volume (see Figs. 3-4 in TJT14) and hence becomes significant for smaller s.631

Figure 10 compares time-azimuthal plots of the three terms for the model 5R5632
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at s = 0.5ro. The restoring part, 〈B̃s
∂j′z
∂s
〉, for the radial field is occasionally633

comparable to that for the azimuthal field but the axial field component,634

〈B̃z
∂j′z
∂z
〉, remains minor for all s. From Fig. 10 we see that the unfiltered635

restoring part of the Lorentz force does not show the waves visible in the636

〈u′s〉 plot (Fig. 4c) and in the Coriolis part of the restoring force (Fig. 6c).637

We therefore display a filtered Fig. 10a in Fig. 10d, and see that the pattern638

visible in Figs 4c and 6c has reappeared. This suggests that for wave motions639

of the preferred wavenumber mode, m = 5, the toroidal field has primary640

importance. It is, however, quite possible that the radial background field641

can have some influence over the wave speed, particularly for lower values of642

m.643

The observation of wave steepening, the surprisingly thin wave fronts644

visible in the left panels of Fig. 4, suggests a considerable nonlinear effect645

on the amplitude (Sec. 3.2). In the linear theory we omitted two types of646

nonlinear terms in the vorticity equation: Lorentz, 〈b′ · ∇Hj
′
z〉 − 〈j ′ · ∇Hb

′
z〉,647

and Reynolds, 〈u′ ·∇Hξ
′
z〉−〈ξ′ ·∇Hu

′
z〉, terms. Evaluation of these two terms648

shows that the maximum of the nonlinear Lorentz term is orders of magnitude649

greater than that of the Reynolds term at any chosen time (not shown).650

Indeed, the nonlinear Lorentz term is equivalent in magnitude to the restoring651

part. An interesting question here is whether only a limited number of terms652

from ΞL can model the pattern of ΞC , or 〈u′s〉. In Figure 11 we test this653

by taking a sum of the dominant restoring, 〈 B̃φ
s
∂j′z
∂φ
〉, and nonlinear, 〈 b

′
φ

s
∂j′z
∂φ
〉,654

terms. The selected terms reproduce some features including steepened crests655

and troughs. We hence speculate that, although the linear theory is essential656

for explaining its wave speeds, the nonlinear Lorentz term is important for657

creating the observed waveforms. This will help us to study the fundamentals658

of the nonlinear dynamics, for example, by adopting reduced models.659

3.6. Space-time analysis of surface magnetic field660

We now address the question whether MR waves could be detectable in661

geomagnetic data. The westward drift is analysed using the radial component662

of the geomagnetic field, which is inferred at the top of the core (e.g. Finlay et663

al., 2010). The QG theory, when no boundary layers are taken into account,664

suggests that the internal wave motions at given s can be seen at the top665

at latitude ≈ arc cos (s/ro) in each hemisphere. Therefore one may expect666

identification of MR waves in the secular variation if the flow is sufficiently667

two-dimensional. Note that the geostrophy varies with the Ekman number E668
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and the background magnetic field, which can be quantified by the Elsasser669

number Λ.670

Figure 12 depicts plots for space-time analyses of the radial magnetic field671

Br observed at the outer boundary r = ro in model 6.5R2, in which low E and672

Λ ≈ 2 give a well-defined geostrophy. These are analogous to the plots shown673

of the internal fluid motions discussed in Sec. 3.2. To focus on the secular674

variation, we remove the time-averaged field, B̃r, in the analysis presented675

below. Figures 12a and b show the time azimuthal sections of the residual676

field B′r at latitudes 60◦N and 39◦N in the northern hemisphere, respectively.677

Here white dashed and solid black lines indicate, respectively, the calculated678

ζ and ζ + ω̂MR/m for m = 9 at the corresponding cylindrical radius s: the679

speeds at s = 0.5ro (0.77ro) can be seen in Figs. 1c and d. The frequency680

- wavenumber spectra are shown in Figs. 12c and d, in which white dashed681

and black solid curves represent the advective dispersion relation, ωadv = ζm,682

and the total dispersion relation, ωadv + ω̂−, at both radii s, respectively.683

The spectrum at 60◦N is dominated by signals of m ≈ 9 and 12 and f < 0;684

prograde modes of f > 0 also look significant. The predicted wave speed for685

m = 9 can fit some magnetic drifts observed in the physical domain. At lower686

latitude 39◦N drift patterns seemingly get noisier. As |ζ| goes up and VMR687

does down as s increases to 0.77ro (see Fig. 1c-d), so flow advection becomes688

more relevant here. A higher m of 15 increases the contribution due to wave689

propagation, and this can be distinguished from the contribution due to690

advection. However, the spherical harmonic components of the geomagnetic691

field with m > 12 are hard to detect due to crustal field contamination, so692

these higher wavenumbers will not be easy to identify. In Figs. 12e and f, we693

further test this detectability by excluding all the wavenumber modes when694

m > 12 from the magnetic data at each latitude. The filtered plot at 60◦N695

retains the wave patterns identified in the whole data in Figure 12a. Some696

drifts at 39◦N remain visible when filtering, but they run almost parallel to697

the advection speed here.698

Figs. 12g and h display t-φ sections at 60◦S an 39◦S in the southern699

hemisphere. When the flow is quasi-geostrophic we expect the B′r signal700

in the southern hemisphere to be the same as in the northern hemisphere,701

but with a sign change. In this model, we see an excellent correspondence702

between 60◦N and 60◦S as well as between 39◦N and 39◦S, as guided by703

the black and white lines; some very small differences can be seen. The QG704

internal dynamics, regardless of predicted boundary layers and flux expulsion705

effects, is indeed visible in the magnetic data observed outside the dynamo706
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region.707

We examined the B′r signal in other models as well. We were able to708

identify some wave signals in every dynamo case, but the clarity of the signal709

strongly depends on the case examined. Figure 13 compares t-φ and f -m710

plots of B′r at r = ro for models 4R5, 5R5, and 6.5R2Ra at latitude 60◦N.711

The model 4R5 for a strong field Λ ≈ 18 demonstrates that the wave patterns712

seen in the surface field become less sharp than the equivalent 〈u′s〉 plot of713

Fig. 4a. The frequency spectrum (Fig. 13b) shows some eastward moving714

features, which were hardly visible in Fig. 4b. This becomes more obvious715

in model 5R5: despite the excellent identification in 〈u′s〉, Fig. 4c, it is diffi-716

cult to find the corresponding patterns of the surface field. Nonetheless, the717

spectrum still retains the signals, although weaker, sitting around the wave718

dispersion relation. Model 6.5R2Ra, which demonstrated an eastward drift719

of 〈u′s〉, illustrates magnetic eastward drifts even more clearly; the calculated720

wave speeds (black lines) help to identify westward drifts corresponding to721

the internal wave motions. All this shows that detecting MR waves in the722

magnetic field at the top of the core will not be straightforward, compared to723

that in the QG flow models. Our simulations indicate that the background724

magnetic field for Λ no larger than 5 provides a reasonable observation in the725

surface field. It is not entirely clear yet what determines the detectability of726

the B′r signal, but it may be that it is more strongly affected by nonlinear-727

ity than the 〈u′s〉 signal. Nonlinear interactions between the waves and the728

underlying quasi-steady state may be responsible for the appearance of east-729

ward propagating features in the frequency spectrum, but further exploration730

is needed.731

4. Discussion and concluding remarks732

We have presented further evidence of magnetic Rossby (MR) waves op-733

erating within rotating spherical dynamos, which are used for simulating734

planetary dynamos in fluid cores. The rotating MHD wave motions are non-735

axisymmetric but equatorially symmetric, representing a QG mode in a rotat-736

ing thick shell problem. Linear theory shows that these waves will propagate737

retrogradely in azimuth on magnetostrophic timescales, which are given by738

the toroidal component of the background magnetic field with respect to the739

rotational rate. It therefore has the potential to infer the ‘invisible’ toroidal740

magnetic field deep down in the core.741
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Adopting the methodology introduced by HJT15, we performed space-742

time analyses of an extended range of simulation data and reported successful743

cases as well as a failed one. In the models explored in this study, we were744

able to detect MR waves if axisymmetric torsional Alfvén waves (TOs) were745

excited. Torsional waves are most strongly excited in dynamos with larger746

values of Λ, i.e. strong field dynamos (TJT14). We found that slow MR waves747

were also found at larger values of Λ, so that TO’s and slow MR waves are748

seen together or not at all. As noted by Dormy (2016), strong field dynamos749

can be found at moderate E ∼ 10−4 if Pm is large enough (e.g. run 4R5), but750

if E is lower, Pm does not need to be quite so big (e.g. run 6.5R2). As noted751

in the introduction, the existence of MR waves in magnetostrophic balance752

does not a priori imply the dynamo itself is magnetostrophic. Nevertheless,753

our numerical experience suggest that slow MR waves are seen when Dormy754

(2016)’s criteria for a strong field dynamo are approximately satisfied, and are755

not seen when they are violated. We therefore conjecture that the existence756

of slow MR waves is a signature of a strong field dynamo.757

Dynamo models with strong magnetic fields are most easily found when758

Pm is greater than 1. Both fattened convective rolls and slower wave propa-759

gation were found even though the convection is approximately geostrophic.760

Generally, the form of the waves is consistent with that in linear analyses761

(Zhang, 1995). Pm > 1 is when the linear theory of convection predicts MR762

waves at onset (Hori et al., 2014). The geodynamo operates at small Pm, but763

at much lower E than we can reach numerically. At small Pm convective on-764

set occurs in the form of eastward propagating diffusive modes. However, we765

argue that as the magnetic Reynolds number is large in the core, westward766

propagating non-diffusive MR waves are possibly found in the geophysical767

regime. The disturbances we discuss in this paper are all associated with768

spherical convection, since the supercriticality has been kept close to the on-769

set value (Ra/Rac ≤ 16). Exploring more vigorous convective regimes would770

be useful, as computing resources improve. Alternative approaches such as771

magnetoconvection simulations and experiments (Teed et al., 2015; King &772

Aurnou, 2015) may also help in this regard.773

To examine the argument given in HJT15 that the waves found in the774

simulations are indeed MR waves, we evaluated the individual components of775

the z-vorticity equation. We found that the Coriolis and Lorentz terms are776

indeed the dominant terms, supporting the view that the waves are magnetic777

Rossby waves. The buoyancy term is weak in magnitude, but plays a crucial778

role in exciting the non-axisymmetric waves. The importance of the other779
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terms, such as the inertia, Reynolds force, and viscosity, varies with the780

model parameters. They are suppressed for an Ekman number E ≤ 10−5, in781

the presence of a strong magnetic field with an Elsasser number Λ ≥ O(1).782

We also performed some simulations with the magnetic field switched783

off. As expected, a very different picture emerges, with eastward propagat-784

ing thermal Rossby waves becoming visible. The vorticity balance is also785

completely changed, with Coriolis, inertia and Reynolds force now being786

the dominant players. We speculate that nests of convection (Brown et al.,787

2008), preferred longitudes of strong convective activity, may be connected788

with energy being transported by thermal Rossby waves into these convec-789

tively active regions.790

Of geophysical importance, we examined how the waves affect the radial791

component of the magnetic field at the CMB, as this is what is seen in the792

geomagnetic secular variation. Our results showed up a possible difficulty, as793

although the waves can be seen in the B′r signal at the top of the core (see794

Fig. 12), when the field is very strong this signal is less clear-cut than the795

〈u′s〉 signal. This could be because a very strong field with Λ > O(1) tends796

to make the flow less geostrophic, so the signal at the CMB is not directly797

related to the core flow in the interior. It could also be due to the importance798

of nonlinear terms in the induction equation. If the perturbed field is small799

compared to the mean field, then we expect a simple linear relation between800

the perturbed field and the perturbed flow, but if the perturbation fields are801

comparable to the mean field the relationship is less simple. This suggests802

that the internal core field should be Λ = O(1) to host detectable MR wave803

motions; if the field is too weak no MR waves occur, if the field is too strong,804

nonlinearity and ageostrophy make it difficult to see evidence of the linear805

dispersion relation in the observed signals.806

An interesting finding from this work is that nonlinearity can indeed in-807

fluence the waveforms. It is known that the nonlinear dynamics of dispersive808

waves is distinct from that of nondispersive -sometimes called hyperbolic-809

waves (e.g. Whitham, 1974): dispersive modes in the inviscid, weakly non-810

linear regime appear to form cnoidal or solitary waves. This may explain our811

observations of narrow wave crests and troughs in the low E simulations. In812

our simulations, however, the finite amplitude effect of the Lorentz force did813

not seem to impact on the wave speeds very greatly, as the linear theory gave814

surprisingly good results; nonlinearity has the potential to alter wavespeeds.815

It is also possible that nonlinearity is important in the induction equation.816

Since nonlinear theories on rotating MHD waves are in their infancy, this817

26



line of research could bring a new physical insight.818
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Table 1: Control parameters and global properties of our dynamo models. Prandtl number
Pr = 1 throughout. Λ, T , UC , U ′C and UsC are defined in equation (23), and `, mpeak
in equation (24) and below. The column mpeak presents the peak modes as well as the
strongest secondary modes in order. Column TO denotes whether torsional oscillations
were found or not (Yes/No). Results for nonmagnetic convection are given in parantheses.

Run E Pm Ra/Rac Λ T UC U ′C UsC ` mpeak TO

4R2 10−4 2 8.32 0.37 0.279 0.083 0.31 0.29 9.2 (8.4) 1,5 (1,6) N
4R5 10−4 5 8.32 18.2 0.181 0.15 0.55 0.31 8.0 (8.4) 2,5 (1,6) Y
5R2 10−5 2 8.32 1.78 0.164 0.11 0.73 0.37 18.6 (16.1) 7,11 (9,1) Y
5R5 10−5 5 8.32 21.7 0.122 0.12 0.64 0.35 15.6 (16.1) 3,1(9,1) Y

6.5R2 5× 10−6 2 8.32 2.26 0.148 0.12 0.68 0.39 21.8 (26.4) 9,1 (1,14) Y
5R2Ra 10−5 2 16.6 5.39 0.164 0.15 0.95 0.38 17.2 (18.4) 4,6 (6,8) Y

6.5R2Ra 5× 10−6 2 16.6 5.80 0.156 0.15 0.59 0.37 21.0(23.7) 1,9 (2,7) Y

Table 2: Properties characterizing the nonaxisymmetric motions at radius s = 0.5ro for our
models. For each run a preferred wavenumber, m, its MR-speed, VMR, and the advection
speed, ζ, are presented. The relative strength of the internal azimuthal field to the radial
field is measured by the ratio V rel

M of Alfvén waves at s = 0.5ro.

Run MR m :VMR ζ V rel
M

4R2 N — -32.2 1.3
4R5 Y 5: -139 -31.7 0.85
5R2 Y 7: -30.5 +8.93 0.69
5R5 Y 5: -162 -3.24 0.78
6.5R2 Y 9: -69.5 -11.7 0.75
5R2Ra Y 7: -90.9 +44.9 0.79
6.5R2Ra Y 9: -108. +32.7 0.62

Table 3: The maximum of each term of the vorticity equation, (7) and (8), where the two
most significant terms for each model are indicated in bold. At radius s = 0.5ro Results
for nonmagnetic convection are given in parantheses.

Run ∂〈ξ′z〉/∂t ΞR ΞC ΞL ΞB ΞV
4R2 1.5× 107 2.9× 107 1.1× 107 5.8× 106 5.1× 106 2.0× 107

4R5 2.2× 107 3.3× 107 1.5× 107 8.0× 107 1.5× 106 2.7× 107

(1.7× 108) (2.7× 108) (7.6× 107) (—) (2.2× 108) (1.1× 108)
5R2 5.8× 107 8.4× 107 1.7× 108 1.6× 108 1.0× 108 4.3× 107

5R5 1.3× 108 1.9× 108 5.9× 108 1.9× 109 3.7× 107 1.5× 108

(NM 5R5) (1.2× 109) (2.7× 109) (2.0× 109) (—) (3.8× 107) (4.5× 108)
6.5R2 1.1× 108 1.9× 108 4.8× 108 4.4× 108 2.2× 108 6.3× 107

(3.0× 108) (9.9× 108) (5.5× 108) (—) (3.3× 108) (1.3× 108)
5R2Ra 1.2× 108 2.1× 108 1.7× 108 2.4× 108 7.1× 107 6.5× 107

(2.8× 108) (7.4× 108) (2.4× 108) (—) (6.5× 107) (8.3× 107)
6.5R2Ra 1.5× 108 4.3× 108 4.6× 108 7.1× 108 1.8× 108 9.1× 107

(5.7× 108) (1.7× 109) (9.3× 108) (—) (2.7× 108) (1.6× 108)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (Left) Phase speeds of waves propagating in azimuth and (right) angular velocity,

ζ = 〈Ũφ〉/s, as a function of s/ro. From top to bottom, models 4R5 (a-b), 6.5R2 (c-d),
and 4R2 (e-f) are shown. In the left column blue solid, blue dotted, and black solid curves
represent magnetic Rossby, VMR = |ω̂MR/m|, (nonmagnetic) Rossby, VR = |ω̂R/m|, and
Alfvén, VM = |ω̂M/m|, waves, respectively. Each legend presents the wavenumber m used
to calculate VMR and VR and the factor used to rescale VR and VM .
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Figure 2: Meridional plots of time-averaged axisymmetric azimuthal field B̃φ for models
4R5 (a), 6.5R2 (b), and 4R2 (c).
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Figure 3: (Left) Spatial structures of 〈us〉 and (right) meridional slices of us at zero
longitude for models 5R5 (a-b) and 6.5R2Ra (c-d). Each snapshot is taken at the time
shown in the figure. In the left column, dotted lines indicate the radius s = 0.5ro and the
longitude φ = 0.
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Figure 4: The radial velocity, 〈u′s〉, at radius s = 0.5ro for models 4R5 (a-b), 5R5 (c-d),
6.5R2 (e-f), 6.5R2Ra (g-h), and 4R2 (i-j). (Left) Azimuth-time section. White dashed
and black solid lines represent the advective speeds, ζ, and the total speeds of advection
and MR wave propagation, ζ + ω̂MR/m, respectively. (Right) Wavenumber-frequency
power spectrum. White dashed, black dashed, black solid, and white solid lines represent
the dispersion relations of advection (ωadv/2π), waves (ω̂±/2π), advection plus waves
((ωadv + ω̂±)/2π), and advection plus Alfvén waves ((ωadv ± ω̂M )/2π), respectively.
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Figure 5: Time evolution of 〈u′s〉 at s = 0.5ro for model 5R5 (cf. Fig. 4c). Time evolves
from bottom to top.
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Figure 6: Terms of the z-averaged vorticity equation, (7) and (8), for model 5R5 at
s = 0.5ro. (a) ∂〈ξ′z〉/∂t, (b) ΞR, (c) ΞC , (d) ΞL, (e) ΞB , and (f) ΞV . Contours for
positive (negative) values are indicated by thin solid (dotted) lines. Thick black solid lines
represent the total speeds, ζ + ω̂MR/m, for m = 5. White dashed lines for advection ζ.
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Figure 7: Spatial structures of (a) z-averaged radial velocity 〈us〉 (cf. Fig. 3a) and (b)
angular velocity ζ (cf. Fig. 1b of HTJ15) for nonmagnetic model NM 5R5.

(a) (b)

Figure 8: The radial velocity, 〈u′s〉, at radius s = 0.5ro for the nonmagnetic model NM 5R5
(cf. Fig. 4c-d). White dashed, black solid, and black dotted lines represent the advective
speeds (ζ), the total speeds of advection and thermal Rossby wave propagation (ζ +
ω̂TR/m) for m = 9, and the total speeds for m = 14, respectively. (Left) Azimuth-
time section and (right) wavenumber - frequency power spectrum. In figure (b), white
dashed, black dashed, and black solid curves represent the dispersion relations of advection
(ωadv/2π), waves (ω̂TM/2π), and advection plus waves ((ζ + ω̂TM)/2π), respectively.
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Figure 9: Terms of the z-averaged vorticity equation, (7) and (8), for the nonmagnetic
run NM 5R5 at s = 0.5ro (cf. Fig. 6). (a) ∂〈ξ′z〉/∂t, (b) ΞR, (c) ΞC , (d) ΞB , and (e) ΞV .
Unlike the earlier similar plots, only the fluctuation part excluding the time averages is
shown.
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(a) (b)
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Figure 10: Azimuth-time section at r = 0.5ro of the restoring parts of the Lorentz term,

ΞL, for model 5R5. (a) Pm
E 〈

B̃φ
s
∂j′z
∂φ 〉, (b) Pm

E 〈B̃s
∂j′z
∂s 〉, (c) Pm

E 〈B̃z
∂j′z
∂z 〉, and (d) Pm

E 〈
B̃φ
s
∂j′z
∂φ 〉

bandpass filtered over m = 4 to 6.

Figure 11: A sum of dominant restoring and nonlinear Lorentz terms, Pm
E 〈

B̃φ+b
′
φ

s
∂j′z
∂φ 〉, at

r = 0.5ro for the dynamo run 5R5. Narrow waveforms observed in ΞC or 〈u′s〉 are somehow
reproduced.

40



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: The residual part B′r of the radial magnetic field at r = ro at different latitudes
for run 6.5R2. (a-b) Azimuth time sections at 60◦N (a) and 39◦N (b). Here white dashed
and black solid lines show the advective (ζ) and total MR speeds with m = 9 (ζ+ω̂MR/m),
respectively, which are calculated at s = 0.5ro (a) and 0.77ro (b). (c-d) Wavenumber -
frequency power spectrum at both latitudes. White dashed, black dashed, black solid,
and white solid curves show the dispersion relations of ωadv/2π, ω̂±/2π, (ωadv + ω̂±)/2π,
and (ωadv ± ω̂M )/2π), respectively, at both radii s. (e-f) Same as figures a-b, but all the
wavenumbers higher than m = 12 are excluded. (g-h) Azimuth time sections at 60◦S (g)
and 39◦S (h). In parts (e) and (g) the lines drawn in (a) are shown, similarly parts (f)
and (h) have the lines shown in part (b).
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Figure 13: The residual field B′r at r = ro at 60◦N for models 4R5 (a-b), 5R5 (c-d), and
6.5R2Ra (e-f). (Left) Azimuth time sections. White dashed and black solid lines represent
the speeds ζ and ζ+ω̂MR/m for a given m at s = 0.5ro, respectively. (Right) Wavenumber
- frequency power spectra. White dashed, black dashed, black solid, and white solid curves
are the dispersion relations of ωadv/2π, ω̂±/2π, (ωadv + ω̂±)/2π, and (ωadv ± ω̂M )/2π at
the s, respectively.
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