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ABSTRACT

The Torelli Group and Representations

of Mapping Class Groups

Tara E. Brendle

LetMg,b,n denote the mapping class group of an orientable surface of genus

g with b boundary components and n fixed points. We prove that certain

obstructions to the existence of a faithful linear representation do not exist in

Mg,b,n for any g, b, and n. We also make explicit the relationship of three known

representations ofMg,1,0 to each other. In particular, we show how each records

the action of mapping class groups on homology and on the winding number

of curves on the surface. The action on homology is given by the well known

symplectic representation of the mapping class group ρ : Mg,b,n → Sp(2g,Z).

The kernel of ρ, denoted Ig,b,n, is known as the Torelli group. We generalize a

construction of Dennis Johnson to find relations amongst Johnson’s finite set

of generators of Ig,1,0 and Ig,0,0 and give an alternate technique which yields

commutativity relations in these Torelli groups.
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1 Introduction

The goal of this thesis is to study certain representations and subgroups of mapping

class groups of surfaces. Our investigation has three components. First, we consider

the question of whether mapping class groups admit faithful linear representations.

We then describe connections between three known representations of certain map-

ping class groups. Finally, we construct relations among a certain generating set of

the Torelli subgroup of the mapping class group.

Let Sg,b,n denote an orientable surface of genus g with b boundary components and

n punctures. The mapping class group of Sg,b,n, denotedMg,b,n, is defined as the group

of all isotopy classes of orientation-preserving homeomorphisms of Sg,b,n to itself. In

Section 2, which consists of work conducted jointly with Hessam Hamidi-Tehrani, we

investigate a natural question which arises in the study of representations of mapping

class groups, namely, whether Mg,b,n is linear, i.e., admits a faithful representation

into GLn(K) for some field K. Mapping class groups are closely related to lattices,

which are of course linear, and also to braid groups, which were recently shown to

be linear [2],[30]. Much work has been done to try to generalize the methods used

to demonstrate linearity of braid groups to mapping class groups, but with very

limited success. On the other hand, mapping class groups are also closely related

to automorphism groups of free groups of rank n, denoted Aut(Fn). Formanek and

Procesi have demonstrated that Aut(Fn) is not linear if n ≥ 3 [14]. Hence Hamidi-

Tehrani and I took the opposite approach to the linearity question for mapping class

groups. Formanek and Procesi’s technique is to construct nonlinear groups of a

special form, which we call FP-groups. They build these groups out of two elements

of Aut(Fn) which act in a particular way on three elements of Fn. We call the group
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generated by two such maps a poison group. Hamidi-Tehrani and I hoped to find

analogous poison subgroups in Mg,0,1, which acts naturally on π1(Sg,0,1) and then

to mimic Formanek and Procesi’s construction of FP-groups in Mg,0,1. We instead

prove the following surprising result [7].

Theorem No poison subgroups embed in Mg,0,1.

We further prove a much more general result.

Theorem No FP-groups of any kind embed in Mg,b,n for any g, b, n.

In other words, not only does the particular construction of Formanek and Procesi

fail in the case of mapping class groups, but a more general obstruction to linearity

does not exist in any mapping class groups. This gives very strong evidence that

mapping class groups may in fact be linear.

We next turn our attention to known representations of mapping class groups.

In Section 3, we describe three representations of mapping class groups which arise

in very different contexts yet each carry much of the same geometric information.

Section 3 is largely expository, and seeks to fill what seems to be a gap in the literature

by clarifying some connections between the three representations.

The group Mg,b,n acts naturally on H = H1(Sg,b,n), giving rise to what is known

as the symplectic representation of the mapping class group.

ρ :Mg,b,n → Sp(2g,Z).

The kernel of this representation is known as the Torelli group, denoted Ig,b,n. In

[39], Morita constructs representations of Mg,1,0 using an extension of Johnson’s

“torsion” homomorphism τ : Ig,1,0 → Λ3H described in [20]. The map τ enables us
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to determine the action of mapping class groups on the winding number of curves

on a surface relative to some non-vanishing vector field. Morita’s representation also

contains all the information of the symplectic representation ρ.

Trapp [46] (and independently Sipe [44]) gives a linear form of Morita’s repre-

sentation interpreted explicitly in terms of the action of Mg,1,0 on winding numbers

and on homology. Perron also linearizes Morita’s representation, instead building a

representation ψ : Mg,1,0 → GL4g(Z[d1, . . . , d2g]) by extending a representation of

a certain Artin group [41]. We present a method for extracting the same winding

number and homology information directly from Perron’s representation.

The Torelli group plays a prominent role in the study of representations of mapping

class groups. Hence we focus on this fascinating and poorly understood subgroup of

Mg,b,n.

Surprisingly little is known about the structure of the Torelli group, but the first

serious progress in this direction was made by Dennis Johnson, who wrote a wonderful

series of papers on the Torelli group ([20], [21], [22], [24], [25], and [26], all summarized

nicely in [23]). One of Johnson’s most important results is that both Ig,1,0 and Ig,0,0

are finitely generated for g ≥ 3 [22]. (Mess later showed that I2,b,n is infinitely

generated [36].) Johnson also discovered an important surjective map τ : Ig,1,0 →

Λ3H, giving the first nice abelian quotient of the Torelli group.

One important question which remains open, however, is the question of whether

the Torelli group admits a finite presentation. It is known that Mg,b,n is finitely

presentable (see [16], also [48], [49], [31]). As one approach to this question, we ask

what relations can be found amongst Johnson’s generators, which remain the only

known finite set of generators of the Torelli group. This is no easy task; the order
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of Johnson’s generating set for the Torelli group is exponential in the genus g. As a

starting point, we have a technique developed by Johnson which he used to find two

families of relations amongst various elements of the Torelli group, including some

which are not in his generating set. Johnson uses so-called “lantern relations” in the

full mapping class group to obtain these relations in the Torelli group.

We first show how to generalize one of Johnson’s families of generators so as to

relate only elements from his generating set in a way that yields on the order of g3

relations for genus g ≥ 4, using his same technique. The relation is as follows.

Generalized B-Relation In Ig,1,0, for g ≥ 4 and for 2 ≤ l < k ≤ g − 1, we have

[W−1
k ∗ (PgP

−1
l )][W−1

2 ∗ Pk] = [W−1
g ∗ (PkP

−1
l )][W−1

2 ∗ Pg].

In the above relation, the Wi are a certain type of Johnson generator and the Pj are

products of two Johnson generators, which also happen to be commutators in the full

mapping class group. We obtain from the construction of the relation the following

corollary, which Johnson has already proved for genus 3 [22]).

Corollary 1.1 There are g − 2 extraneous generators of Ig,1,0 in Johnson’s set.

We then give an alternate construction, which also arises from lantern relations

but avoids some of the difficulties of Johnson’s original technique. This second method

yields a new kind of relation, in fact, a commutativity relation.

General Commutator Relation In Ig,1,0, for g ≥ 4, we have the following rela-

tion:

[(B−1
1 A1B3), (A2B

−1
2 )] = 1.
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Each curve Ai or Bj is a type of Johnson generator which will be described in

detail in Section 4. Taken together, the Ai and Bj satisfy a certain intersection

pattern. There are on the order of g5 of these commutativity relations for g ≥ 4.

We remark that each relation given here, both B-relations and commutator relations,

actually represent many more conjugate relations. For example, the simplest case

of the generalized B-relation actually yields 33 distinct relations amongst Johnson

generators (see Appendix B).

We will also briefly discuss a certain symmetry satisfied by the vast majority of

the pairs of Dehn twist curves appearing in the Johnson generating set and some

potential applications to the linearity question for the Torelli group. We then present

a list of questions, including many raised by this investigation, intended to outline a

plan for future study of the Torelli group.

It is worth elaborating at this point on the earlier claim regarding the importance

of the role played by the Torelli group in the study of representations of Mg,b,n. It

comes as no surprise that the Torelli group plays a key role in any representation con-

taining symplectic information. For example, the map τ (to be precise, the contraction

of τ) turns out to be important in the Trapp, Morita, and Perron representations of

the full mapping class group, as discussed in Section 3.

More surprising is the fact that the Torelli group appears in the study of other rep-

resentations which arise in ostensibly very different contexts. For example, Kasahara

recently showed that Johnson’s homomorphism factors through the Jones representa-

tion ofM2 restricted to I2 [27]. In addition, the representations ofMg arising from

topological quantum field theories (TQFTs) also connect with Johnson’s work in an



6

interesting way. The TQFT representations of Reshetikhin-Turaev are indexed by a

integer parameter r. Wright has calculated these representations explicitly for r = 4

and found that the restriction of the representation in this case to Ig is precisely the

sum of the Birman-Craggs homomorphisms from Ig to Z/2Z [51]. Johnson shows

in [21] that the sum of the Birman-Craggs homomorphisms is related to his map τ ,

though neither factors through the other, giving a possibly interesting connection to

the representations discussed above.
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2 On the Linearity Problem for Mapping Class

Groups

In this section we seek to provide some insight into the question of whether mapping

class groups are linear. Mapping class groups are often compared with both arithmetic

and automorphism groups, and in many ways the three groups are similar and support

analogous theories. (There is a nice discussion of this by Karen Vogtmann in [47].

Another good survey of this subject was recently given by Martin Bridson in a series

of lectures at Columbia University.) The property of linearity, however, is an area in

which these groups differ. Lattices, of course, are linear, but Formanek and Procesi

showed in [14] that Aut(Fn) is not linear for n ≥ 3 (it follows that Out(Fn) is also

not linear for n ≥ 4), leading one to ask on which side mapping class groups should

fall.

The work in this section was conducted jointly with Hessam Hamidi-Tehrani. We

present it here as it appeared in [7], with reference numbers of sections and theorems

appropriately altered.

2.1 Introduction

The question of whether mapping class groups are linear has been around for some

time. The recent work of Bigelow [2] and also Krammer [30] in determining that the

braid group is linear has renewed interest in the subject, due to the close relationship

between mapping class groups and braid groups. Let Sg,b,n denote a surface of genus g

with b boundary components and n fixed points. LetMg,b,n denote the mapping class
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group of Sg,b,n. We assume throughout that maps fix boundary components pointwise.

Bigelow and Budney [3] and independently Korkmaz [29] recently determined that

M2,0,0 is linear. Korkmaz also showed in [29] that mapping class groups contain very

large linear subgroups, namely, the hyperelliptic subgroups. However, the question

of linearity remains open for mapping class groups of surfaces of genus 3 or greater.

Let Fn denote the free group of rank n. It is well known that Out(F2) and Aut(F2)

are linear. The former fact is due to Nielsen [40], and the latter follows by [12] from

the linearity of the 4-string braid group B4, which is due to Krammer [30].

On the other hand, Formanek and Procesi demonstrated in [14] that Aut(Fn) is

not a linear group for n ≥ 3. A simple corollary of this result is that Out(Fn) is not

linear for n ≥ 4. The well-known fact due to Nielsen [33] thatMg,0,0 is isomorphic to

Out(π1(Sg,0,0)) suggests that it may be possible to apply the methods of Formanek

and Procesi to mapping class groups, though it may not be immediately clear how to

do so.

Formanek and Procesi define a class of nonlinear groups, which we will generalize

slightly and refer to as Formanek and Procesi groups, or FP-groups for short. We will

show that the existence of FP-subgroups ofMg,0,1 would imply that Mg+k,0,0 is not

linear for k ≥ 1. We will also focus our attention on a special kind of automorphism

group, which we call a poison group. We will describe the particular method of

Formanek and Procesi for constructing FP-groups from poison subgroups.

This work originated in an attempt to use the methods of Formanek and Procesi

to show that Mg,0,0 is not linear for g ≥ 3. We prove instead that the essential

building blocks of the Formanek and Procesi method do not exist in mapping class

groups, first in a special case.
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Theorem A Poison subgroups cannot be embedded in Mg,0,1.

Thus the particular technique of Formanek and Procesi fails to show that certain

mapping class groups are not linear. We then generalize this result as follows.

Theorem B FP-groups do not embed in Mg,b,n for any g, b, and n.

Our paper is organized as follows. In Section 2.2, we give an overview of the

methods of Formanek and Procesi for constructing a nonlinear subgroup of Aut(Fn)

from a poison subgroup. In Section 2.3, we establish connections between certain

mapping class groups and the automorphism group of a closed surface. In Section

2.4 we prove Theorem A. In Section 2.5 we prove Theorem B using very different

techniques from those used in Section 2.4. Though Theorem A is a special case of

Theorem B, we include a separate proof of Theorem A both for the sake of highlighting

the particular construction of Formanek and Procesi and also because the methods

used are interesting in their own right. The reader should note, however, that Sections

2.3, 2.4, and 2.5 are completely independent of one another. For example, the reader

interested only in Theorem B could read Sections 2.1, 2.2, and 2.5 without any loss

of continuity.

Acknowledgements The authors would like to express their sincere gratitude to

Joan Birman and Alex Lubotzky for suggesting the search for poison subgroups in

mapping class groups, and also to Matthew Zinno for helping to point us in the

other direction. We thank all three, as well as Walter Neumann, Brian Mangum,
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Gabriel Rosenberg, and Abhijit Champanerkar for many useful discussions. We are

also grateful to the referee for many helpful questions and suggestions.

The first author was partially supported under NSF Grant DMS-9973232. The

second author was partially supported by PSC-CUNY Research Grant 63463 00 32.

2.2 The Method of Formanek and Procesi

Let G be any group, and let H(G) denote the following HNN-extension of G×G:

H(G) = 〈G×G, t | t(g, g)t−1 = (1, g), g ∈ G〉.

In other words, conjugation by t in the HNN-extension carries the diagonal subgroup

G × G onto its second factor. Formanek and Procesi show in the following theorem

that such groups exhibit special behavior under a linear representation.

Theorem 2.1 (Formanek and Procesi, [14]) Let G be a group. Then the image

of the subgroup G × {1} under any linear representation of H(G) is nilpotent-by-

abelian-by-finite.

Corollary 2.2 Let G be a group, and K a normal subgroup of H(G) such that the

image of G× {1} in H(G)/K is not nilpotent-by-abelian-by-finite. Then H(G)/K is

not linear.

Proof. Let ρ : H(G)/K → GLN(k) be a linear representation where k is a field.

Let π : H(G) → H(G)/K be the natural projection map. Then ρ ◦ π is a linear

representation of H(G) and hence by Theorem 2.1, ρ(π(G × {1})) is nilpotent-by-

abelian-by-finite. Thus ρ is not faithful.
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We will call a group of the type described in Corollary 2.2 a Formanek and Pro-

cesi group, or FP-group for short. We now describe the particular construction of

Formanek and Procesi in demonstrating the nonlinearity of Aut(Fn) for n ≥ 3.

Let G be any group. Let x1, x2, x3 be elements of G such that 〈x1, x2, x3〉 ∼= F3.

Let φ1, φ2 ∈ Aut(G) be two maps such that

1. φi(xj) = xj, i, j = 1, 2, and

2. φi(x3) = x3xi, i = 1, 2.

We will call the subgroup 〈φ1, φ2〉 a poison subgroup of Aut(G). We can define poi-

son subgroups of the mapping class group Mg,0,1 analogously, since in this case the

mapping class group acts on π1(Sg,0,1). Notice that the second condition implies that

〈φ1, φ2〉 ∼= F2. Thus poison groups, being isomorphic to the linear group F2, are

not themselves a kind of FP-group. However, as the following lemma shows, their

existence in an automorphism group Aut(G) implies that Aut(G) is not linear (hence

the name “poison groups”, though it suggests a bias towards linearity).

Lemma 2.3 Let G be any group. If Aut(G) contains a poison subgroup, then it

contains an FP-subgroup isomorphic to H(F2).

Proof. Let 〈φ1, φ2〉 be a poison subgroup in Aut(G). Following Formanek and Pro-

cesi’s argument in [14], let αi ∈ Aut(G) denote conjugation by xi. Consider the

group

H = 〈φ1, φ2, α1, α2, α3〉.

First, note that 〈α1, α2, α3〉 is a normal subgroup of H since both φ1 and φ2 preserve

the subgroup 〈x1, x2, x3〉. Now let w(a, b) denote any non-trivial reduced word in
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the free group on the letters a and b. By definition of a poison subgroup, we know

that w(φ1, φ2)(xi) = xi for i = 1,2. This tells us that if w(φ1, φ2) is in 〈α1, α2, α3〉,

then w(φ1, φ2) must induce conjugation by an element in 〈x1, x2, x3〉 ∼= F3, which

commutes with x1 and x2. But the only such element is the identity. Hence w(φ1, φ2)

must be the identity map. But we know this is not the case since

w(φ1, φ2)(x3) = x3w(x1, x2). (1)

This tells us that the images of φ1 and φ2 mod 〈α1, α2, α3〉 will generate a free group.

Clearly, the images of φ1 and φ2 also generate the quotient of H by 〈α1, α2, α3〉 , and

so we have a split exact sequence

1→ 〈α1, α2, α3〉 → H → 〈φ1, φ2〉 → 1. (2)

Thus the only relations we have in a presentation for H are given by conjugation, as

follows:

H = 〈φ1, φ2, α1, α2, α3 | φiαjφ
−1
i = αj, φiα3φ

−1
i = α3αi, i, j = 1, 2〉. (3)

Rewriting the second set of relations, we obtain α3(αiφi)α
−1
3 = φi, i = 1, 2. Since

〈φ1, φ2〉 ∼= 〈α1, α2〉 ∼= F2, we have that H ∼= H(F2), with α3 playing the role of the

element t. Since F2 is not nilpotent-by-abelian-by-finite, H(F2) is an FP-group.

2.3 The Connection with Mapping Class Groups

Our motivation for the work in this paper is the following observation, the proof of

which we defer to the end of the section.
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Claim 2.4 If a poison subgroup exists in Mg,0,1 for g ≥ 2, then the groups Mg+k,0,0

are not linear for k ≥ 1.

We have been abusing terminology a bit by talking about poison subgroups in

Mg,0,1 and also in the context of automorphism groups. The distinction between the

two contexts is unnecessary for our purposes, as the following lemma shows, since

these mapping class groups are isomorphic to automorphism groups.

Lemma 2.5 Mg,0,1
∼= Aut(π1(Sg,0,0)), for g ≥ 2.

Proof. We begin with the exact sequence

1→ Inn(π1(Sg,0,0))→ Aut(π1(Sg,0,0))→ Out(π1(Sg,0,0))→ 1.

By the well-known theorem of Nielsen [33], we have that Out(π1(Sg,0,0)) ∼= Mg,0,0.

In addition, since π1(Sg,0,0) is centerless, we can replace Inn(π1(Sg,0,0)) with π1(Sg,0,0)

(see, for example, [8]) to obtain

1→ π1(Sg,0,0)→ Aut(π1(Sg,0,0))→Mg,0,0 → 1. (4)

By [4], we also have the following exact sequence:

1→ π1(Sg,0,0)→Mg,0,1 →Mg,0,0 → 1. (5)

Every short exact sequence 1 → N → E → G → 1 induces a homomorphism

G → Out(N), defined as follows. Let g ∈ G, and let eg be a lift of g ∈ E. Now, E

acts onN by conjugation, hence we can think of eg as an element of Aut(N). However,

since N is not necessarily abelian, this map is only well defined up to conjugation

by an element of N . Thus we get a map G → Out(N). According to Corollary 6.8
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of [8], given any short exact sequence as above, with N centerless, there is a unique

“middle group” E corresponding to any given homomorphism G→ Out(N).

In Sequence 4 above, it is clear that the map induced is the Nielsen isomorphism

between Mg,0,0 and Out(π1(Sg,0,0)). In Sequence 5, as discussed in [4], the image

of a generator a of π1(Sg,0,0) is the so-called “spin map” associated to each curve,

which induces conjugation by that curve, but can be more easily understood as a

product of opposite Dehn twists about the boundary of an annular neighborhood of

the curve a. In other words, if α and β are the two boundary curves, then the spin

map associated to the curve a can be written as TαT
−1
β , where Tγ denotes the Dehn

twist about the curve γ. Let φ ∈ Mg,0,0, and let φ̃ denote a lift of φ in Mg,0,1.

Then φ̃TαT
−1
β φ̃−1 = Tφ̃(α)T

−1

φ̃(β)
, which is precisely the spin map associated to φ̃(a).

Thus, we are simply looking at the action of φ̃ on π1(Sg,0,0), but since φ does not

necessarily fix the basepoint, φ is getting mapped to the class of φ̃ in Aut, modulo

inner automorphisms. In other words, the induced map fromMg,0,0 → Out(π1(Sg,0,0))

is also the Nielsen isomorphism. Now since π1(Sg,0,0) has a trivial center, we apply

Corollary 6.8 of [8], and the lemma is proved.

Remark 2.6 The isomorphism given in Lemma 2.5 has received some attention in

the literature, though perhaps not as much as it deserves. The map itself is the

obvious one, namely, any homeomorphism of a surface with one fixed point induces a

natural automorphism of the fundamental group of the closed surface with the fixed

point taken as base point. From the geometric point of view, it is not immediately

clear that this map from Mg,0,1 to Aut(π1(Sg,0,0)) should be a surjection, i.e., it is
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not necessarily obvious that all elements of Aut(π1(Sg,0,0)) should be topologically

induced.

Lemma 2.7 If Aut(π1(Sg,0,0)) is not linear, then Mg,1,0 is not linear.

Before proving the lemma, we make a few observations. From Chapter 4, Section

1 of [4] and Lemma 2.5 we have the short exact sequence

1→ Z→Mg,1,0 → Aut(π1(Sg,0,0))→ 1. (6)

We note that Z is actually the center of Mg,1,0, generated by a Dehn twist about

the boundary curve. Now Aut(π1(Sg,0,0)) is the quotient of Mg,1,0 by Z. In general,

the quotient of a linear group is not necessarily linear, but the extra information we

have about the kernel in this case will allow us to draw the desired conclusion. The

following two theorems are proved in [50]. Note that the term “closed” refers to the

Zariski topology.

Theorem 2.8 Let G be a linear group and H a closed normal subgroup of G. Then

G/H is also linear.

Theorem 2.9 The centralizer of any subset of a linear group is closed.

Proof of Lemma 2.7 Since Z is the center of Mg,1,0, it is normal and also closed

by the above. Thus we can apply Theorem 2.8 to the surjection given in Sequence 6,

and Lemma 2.7 follows directly.
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We are now ready to prove the claim.

Proof of Claim 2.4 Suppose thatMg,0,1 contains a poison subgroup. Then by the

isomorphism of Lemma 2.5, Aut(π1(Sg,0,0)) also contains a poison subgroup. Then

Aut(π1(Sg,0,0)) is not linear by Lemma 2.3. Now by Lemma 2.7, Mg,1,0 is also not

linear. The claim follows from the fact thatMg,1,0 is a subgroup ofMg+k,0,0, for k ≥ 1.

Although this fact is well-known, for the sake of completeness we include a proof as

follows. Consider Sg,1,0 as a subsurface of Sg+k,0,0. Let h be the homomorphism

from Mg,1,0 to Mg+k,0,0 defined by extension to the identity on Sg+k,0,0 \ Sg,1,0. Let

f ∈ ker(h) such that f 6= id. The mapping class h(f) of Sg+k,0,0 keeps the subsurface

Sg,1,0 invariant up to isotopy. According to Section 7.5 in [19], h(f) induces a well

defined mapping class in π0(Diff(Sg,1,0)) (the group of homeomorphisms of Sg,1,0 up

to isotopy not necessarily fixing ∂Sg,1,0). But since h(f) = id and by the definition

of h, this implies that f induces the identity in π0(Diff(Sg,1,0)), which implies that f

could only be a non-trivial power of a Dehn twist in the ∂Sg,1,0. Then by definition,

h(f) will also be a non-trivial power of a Dehn twist, which is a contradiction.

Remark 2.10 We have defined poison subgroups in the context of Mg,0,1 and also

in the context of automorphism groups, but the definition also makes sense in the

context of any group action on another group. Thus one could use this as a general

approach to the linearity question for any such group.
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2.4 Poison Subgroups Cannot Be Embedded in Mg,0,1

Our strategy for proving this result will be to decompose the surface S = Sg,0,0

into subsurfaces in a particular way. We then use the machinery of graphs of groups

(described in detail in [1]) to analyze the action of the generators of a poison subgroup

ofMg,0,1 on the elements x1, x2, x3 ∈ π1(S). After completion of the proof of Theorem

A, we discovered that similar methods involving graphs of groups and normal forms

were used by Levitt and Vogtmann in [32] to give an algorithm for the Whitehead

problem for surface groups. There is a major difference, however, in that we are not

given the curves x1, x2, and x3, and hence we cannot apply their algorithm directly,

nor would our proof be significantly shortened by direct reference to their results.

Thus we have kept the proof of Theorem A in its original form for the sake of self-

containment. We have, however, found it useful to adopt their methods for the

decomposition of the surface S.

Throughout this section assume that g ≥ 2, since Theorem A is clear when g ≤ 1.

Fix a point ∗ ∈ S, and identify Sg,0,1 with (S, ∗). We use the point ∗ as the base

point for the fundamental group of S. Let 〈φ1, φ2〉 be a poison subgroup in Mg,0,1.

Then there are elements x1, x2, x3 ∈ π1(S, ∗) such that 〈x1, x2, x3〉 ∼= F3 and

1. φi(xj) = xj i, j = 1, 2, and

2. φi(x3) = x3xi i = 1, 2.

In what follows, we will choose appropriate representatives for φi and xj (denoted

by the same names by abuse of notation) such that, among other things, a power of

φi fixes a regular neighborhood of xj pointwise. To this end our main tool will be the
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following result of Hass and Scott [15]. For y1, y2 ∈ π1(S, ∗), let

Stab(y1, y2) = {φ ∈ Mg,0,1 | φ(yi) = yi, i = 1, 2}.

Lemma 2.11 Let y1, y2 be distinct elements of π1(S, ∗), which are not proper powers.

Then there exists a representative of yi (denoted by ỹi) and a subsurface A formed

by a regular neighborhood N of ỹ1 ∪ ỹ2 together with all disk components of S \ N ,

such that, for any φ ∈ Stab(y1, y2), φ has a representative homeomorphism φ̃ such

that φ̃(A) = A.

This lemma follows from Theorem 2.1 in [15] together with the discussion in the

beginning of page 32 in the same paper. For further details see Section 2.1 in [32].

Remark 2.12 Notice that, in Lemma 2.11, if φ ∈ Stab(y1, y2), the map φ induces a

unique mapping class in π0(Diff(A, ∗)) (see Section 7.5 in [19]).

Since it is possible that x1 and x2 are proper powers, we need the following well-

known lemma, adapted from [32].

Lemma 2.13 Given a nontrivial element x ∈ π1(S, ∗) , there exists a unique y ∈

π1(S, ∗) and a unique t ≥ 1 such that y is not a proper power and x = yt.

Proof. A proof is given in [32] (Lemma 2.3). Though we will not give details, we note

that it is also possible to prove this lemma by elementary hyperbolic geometry, using

the discrete action of π1(S, ∗) on the upper half plane by hyperbolic isometries.
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Corollary 2.14 Let z1, z2 ∈ π1(S, ∗) be such that zN
1 = zN

2 for some N ≥ 1. Then

z1 = z2.

Proof. Using Lemma 2.13 let yti
i = zi such that yi is not a proper power and ti ≥ 1,

for i = 1, 2. Let x = yt1N
1 = yt2N

2 . By the uniqueness guaranteed by Lemma 2.13, we

have y1 = y2 and t1N = t2N . Hence z1 = z2, as desired.

Using Lemma 2.13, we can choose elements yi which are not proper powers and

ti ≥ 1 such that xi = yti
i for i = 1, 2. Then we know that φi(y

tj
j ) = y

tj
j , which

implies that φi(yj) = yj, by Corollary 2.14. Notice that y1 and y2 are distinct since

〈x1, x2〉 ∼= F2. We choose ỹi and A according to Lemma 2.11. Let π0(Diff(S,A))

be the subgroup ofMg,0,1 consisting of mapping classes which have a representative

keeping A fixed pointwise. We now adapt Lemma 3.1 of [32] to our purposes, and

repeat their argument nearly verbatim.

Lemma 2.15 The subgroup π0(Diff(S,A)) has finite index in Stab(y1, y2).

Proof. First note that A is not an annulus, since x1 and x2 generate a free group.

Using Lemma 2.11 (and noting Remark 2.12), we can define a map ρ from Stab(y1, y2)

to π0(Diff(A, ∗)). Now we claim that the image of ρ is finite. To see this, let k be any

positive integer. Let Tk denote the set of homotopy classes of simple closed curves

in A whose intersection number with y1 and y2 is at most k. Then Tk is finite, since

A\ (ỹ1 ∪ ỹ2) is composed entirely of disks and annuli. Any map φ ∈ Stab(y1, y2) will

preserve the intersection number of a curve with y1 and y2, and hence Stab(y1, y2)

acts on the set Tk. Now choose a finite set W of simple closed curves in A whose

image completely determines an element of π0(Diff(A, ∗)). Let k be bigger than the
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intersection number of any element in W with y1 and y2. Thus the class of φ restricted

to A in π0(Diff(A, ∗)) is completely determined by the action of φ on Tk. But the set

of permutations of Tk is finite, and hence the image of Stab(y1, y2) under ρ is finite.

Now let ι : π0(Diff(A, ∗)) → Out(π1(A, ∗)) be the natural homomorphism. The

image of ι ◦ ρ is also finite by the above argument. Now any element φ ∈ ker(ι ◦ ρ)

induces an inner automorphism on π1(A, ∗), i.e., φ(z) = czc−1. The element c has to

commute with both y1 and y2, which implies that c has to be a power of both y1 and

y2 since the centralizer of an element in a surface group is cyclic (this is an exercise

in elementary hyperbolic geometry), and y1 and y2 are not proper powers. But this

implies that c = 1 since x1 and x2 generate a free group. Hence φ induces the identity

on π1(A, ∗). Picking a set of simple generators for π1(A, ∗), one can use an isotopy

of the surface to make sure that φ keeps them fixed pointwise, by [13]. Then one can

further isotope φ to make sure φ keeps A invariant pointwise by Alexander’s lemma

[43]. Hence ker(ι ◦ ρ) is contained in π0(Diff(S,A)), which proves the lemma.

Proposition 2.16 There exists an integer M such that φM
i fixes A pointwise (up to

isotopy).

Proof. We know φi ∈ Stab(y1, y2) for i = 1, 2. Hence by Lemma 2.15, there is an

integer Mi ≥ 0 such that φMi

i ∈ π0(Diff(S,A)). Letting M = LCM(M1,M2), we have

φM
i ∈ π0(Diff(S,A)) for i = 1, 2.

From this point on, we assume that we are working with the particular represen-

tative of φM
i which fixes A pointwise.
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Figure 1: The decomposition of the surface S.
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Figure 2: The subarcs of ej,k.
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Let B1, · · · ,Br be the respective closures of each component of S \ A. Each com-

ponent is Bj attached to A along one or more circles. Hence A∩Bj consists of nj ≥ 1

circles, which we denote by γj,1, · · · , γj,nj
.

In what follows we will use this decomposition of S into the subsurfaces A,Bj to

construct a graph of groups G whose fundamental group will give a decomposition of

π1(S, ∗). To that end, we introduce some notation.

For an oriented arc e let start(e) and end(e) be the starting and ending points

of the arc e, respectively. Also, let ē be the same arc with the opposite orientation.

In the following discussion, let the pair of indices j, k be such that 1 ≤ j ≤ r, and

1 ≤ k ≤ nj.

Choose base points bj ∈ Bj. Notice that φM
i fixes each Bj setwise. Hence we

further isotope φM
i so that it fixes bj, for i = 1, 2. See Figure 1.

Choose oriented arcs ej,k connecting ∗ to bj for 1 ≤ j ≤ r and 1 ≤ k ≤ nj. Choose

each arc ei,j such that it intersects γj,k exactly once, and does not intersect any other

γ’s. Moreover, we make the choices in such a way that if (j, k) 6= (j ′, k′), then ej,k

and ej′,k′ do not intersect except possibly at the endpoints. Let cj,k be the point of

intersection of ej,k with γj,k. Also, let e′j,k be the subarc of ej,k connecting ∗ to cj,k,

and let e′′j,k be the subarc from cj,k to bj. See Figure 2.

Let G be the graph embedded in S with vertices ∗, b1, · · · , br and geometric edges

ej,k as above. As a technical point, the arcs with the opposite orientation ēj,k are also

considered edges of the graph G but not drawn separately.

We use the graph G to construct a graph of groups. To each vertex of G we

assign the fundamental group of the subsurface in which it is located, namely, to ∗

we assign A = π1(A, ∗), to bj we assign Bj = π1(Bj, bj). To each edge ej,k we assign
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Γej,k
= π1(γj,k, cj,k) ∼= Z. Also, let Γēj,k

= Γej,k
. We also have natural injections

of the edge groups into the adjoining vertex groups as follows: for any ej,k, since

start(ej,k) = ∗, the vertex group for start(ej,k) is A. We have αej,k
: Γej,k

→ A defined

by αej,k
(x) = e′j,kxē

′

j,k. Corresponding to end(ej,k), we have ᾱej,k
: Γej,k

→ Bj which

is defined by ᾱej,k
(x) = ē′′j,kxe

′′

j,k. For the edges ēj,k set αēj,k
= ᾱej,k

and ᾱēj,k
= αej,k

.

Let G be the graph of groups constructed by the above data. By the generalized

Van Kampen theorem, π1(S, ∗) is isomorphic to the fundamental group of the graph

of groups π1(G, ∗).

To understand the elements of π1(G, ∗), we quote some definitions from [1]. A loop

based at ∗ in G is a sequence

t = (g0, ε1, g1, · · · , εn, gn)

where εi are edges of G and (ε1, · · · , εn) is a loop in G with start(ε1) = ∗ and end(εn) =

∗. Also, g0 and gn are in A, and for 0 < i < n, each gi is in the group assigned to

end(εi) = start(εi+1). A loop t in G is reduced if either n = 0 and g0 6= 1, or n > 0 and

whenever εi+1 = ε̄i, we have gi /∈ αε̄i
(Γεi

). Geometrically, one can think of t as a loop

in S, with gi being loops in respective subsurfaces, and εi as arcs connecting these

loops. From this point of view, a reduced loop on S does not “travel” to a component

Bj unnecessarily.

By [1], any non-trivial element of π1(G, ∗) can be written as |t| = g0ε1g1 · · · εngn,

where t is a reduced loop as above.

Remark 2.17 The reduced loop representing 1 is the empty sequence.

Remark 2.18 A non-reduced loop can be made into a reduced loop which represents

the same element in π1(G, ∗) by the process of combing. Namely, if a loop t of length
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n > 1 is not reduced, it has a subsequence of the form (gi−1, εi, αε̄i
(hi), ε̄i). One can

replace this subsequence with (gi−1αεi
(hi)). This process reduces the length, so after

finitely many steps one arrives at a reduced loop.

The following theorem is proved in [1].

Theorem 2.19 Let t = (g0, ε1, g1, · · · , εn, gn) and t′ = (g′0, ε
′

1, g
′

1, · · · , ε
′

m, g
′

m) be two

reduced loops such that |t| = |t′| in π1(G). Then n = m, εi = ε′i for 1 ≤ i ≤ n, and

there exist hi ∈ Γεi
such that

1. g′0 = g0 αεi
(h1)

−1,

2. g′i = αε̄i
(hi) gi αεi+1

(hi+1)
−1,

3. g′n = αε̄n
(hn) gn.

Notice that in the above theorem the elements of the form αε(h) come from the

circles γj,k.

Proof of Theorem A. Suppose 〈φ1, φ2〉 ≤ Mg,0,1 is a poison subgroup with respect

to x1, x2, x3 ∈ π1(Sg,0,0, ∗). We construct the graph of groups G as above, with

π1(G, ∗) ∼= π1(Sg,0,0, ∗). In the following we will identify these two groups.

By Proposition 2.16, we can choose an integer M such that φM
i fixes A pointwise.

Since φM
i also sends each Bj to itself fixing the base points, we can see that φM

i (ej,k) =

ej,kpj,k where pj,k ∈ Bj. Similarly φM
i (ēj,k) = pj,k

−1ēj,k.
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We will now simplify notation a bit by letting φ stand for φM
1 . Let x3 = |t| where

t is the reduced loop t = (g0, ε1, g1, · · · , ε2n, g2n). Notice that since the graph G is

“star-shaped”, the length of the loop must be even. Therefore

φ(x3) = |(g0, ε1, p1φ(g1)p2
−1, ε2, g2, ε3, p3φ(g3)p4

−1, ε4, · · · , p2n−1φ(g2n−1)p2n
−1, ε2n, g2n)|

(each pi is in the group which makes this a well-defined path). Now by the condition

φ1(x3) = x3x1, which implies that φ(x3) = x3x
M
1 , we get the equality

|(g0, ε1, p1φ(g1)p2
−1, ε2, g2, ε3, p3φ(g3)p4

−1, ε4, · · · , p2n−1φ(g2n−1)p2n
−1, ε2n, g2n)| =

|(g0, ε1, g1, · · · , ε2n, g2nx
M
1 )|.

Let t′ and t′′ be the paths appearing on the left and right hand sides of the above

equation respectively. Since the path t is reduced, so is t′′. If t′ is not reduced, by

Remark 2.18 we can comb it to a reduced path t′red. By the equality and Theorem 2.19,

t′red must have the same length as t′′, which means t′ was reduced in the first place.

Using Theorem 2.19 again, there is an h1 ∈ Γε2n
such that g2nx

M
1 = αε̄2n

(h1) g2n, i.e.,

xM
1 = g2n

−1αε̄2n
(h1) g2n. Similarly, using φ2 in place of φ1, there exists an h2 ∈ Γε2n

such that xM
2 = g2n

−1αε̄2n
(h2)g2n. But Γε2n

∼= Z, therefore h1, h2 commute, which

implies xM
1 , x

M
2 commute. This is a contradiction, since 〈x1, x2〉 ∼= F2.

2.5 FP-Groups Do Not Embed in Mapping Class Groups

We begin by showing how to narrow our search for an FP-subgroup in a mapping

class group.
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Lemma 2.20 Suppose that Mg,b,n contains an FP-subgroup. Then it contains an

FP-subgroup H which is isomorphic to a quotient of H(F2). Moreover, the image of

F2 × {1} in H is isomorphic to F2.

Proof. Suppose Mg,b,n contains an FP-subgroup. Hence there is a group G and a

homomorphism ρ : H(G)→Mg,b,n such that ρ(G×{1}) is not nilpotent-by-abelian-

by-finite. Here ρ(H(G)) ∼= H(G)/ker(ρ) is the FP-subgroup of Mg,b,n. By Tits’

alternative for mapping class groups ([19] or [35]), ρ(G × {1}) is either abelian-by-

finite or contains a subgroup isomorphic to F2. By assumption, the latter holds.

Let x1, x2 ∈ G such that 〈ρ(x1, 1), ρ(x2, 1)〉 ∼= F2. Then it is easily seen that for

G1 = 〈x1, x2〉, ρ(H(G1)) is an FP-subgroup ofMg,b,n and G1
∼= F2.

We now recall the following definition from [19]. A mapping class f is called pure

if there exists a set (possibly empty) C = {c1, · · · , ck} of non-parallel, non-trivial,

non-intersecting simple closed curves on the surface such that:

1. The mapping class f fixes each curve in C up to isotopy.

2. The mapping class f keeps each component of S \ C invariant up to isotopy.

3. The restriction of f to each component of S \C is either the identity or pseudo-

Anosov. (Recall that the restriction of f to a surface U is pseudo-Anosov if and

only if for any non-trivial simple closed curve c in U not isotopic to ∂U and for

any N > 0, fN(c) is not isotopic to c.)

For an integer m, let H1(S,Z/mZ) be the first homology group of S with coef-

ficients in Z/mZ. We have an action of Mg,b,n on H1(S,Z/mZ), which defines a
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natural homomorphism Mg,b,n → Aut(H1(S,Z/mZ)). The following theorem is due

to Ivanov ([19], 1.8).

Theorem 2.21 For any integer m ≥ 3, the group

Γm = ker(Mg,b,n → Aut(H1(S,Z/mZ)))

is a normal subgroup of finite index in Mg,b,n consisting only of pure elements.

In the following discussion we will only need one such subgroup, so we set m = 3

for simplicity. Any value m ≥ 3 would work as well.

The reader should note that in the following theorem, the generators φi, αj, and

t do not have precisely the same meaning as in Section 2.2.

Theorem 2.22 Assume Mg,b,n contains an FP-subgroup. Then there exists an FP-

subgroup of the form H = 〈φ1, φ2, α1, α2, t〉 such that φ1, φ2, α1 and α2 are in Γ3 (in

particular they are pure), and

1. 〈φ1, φ2〉 ∼= F2,

2. αi commutes with φj,

3. t(φiαi)t
−1 = αi.

Proof. Let H be an FP-subgroup of the form ρ(H(F2)) as in Lemma 2.20, where

F2 = 〈x1, x2〉. Let αi = ρ(1, xi) and φi = ρ(xi, 1). By abuse of notation, we denote

ρ(t) by t. Then H = 〈φ1, φ2, α1, α2, t〉 is an FP-subgroup satisfying (1) - (3) above, by
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definition of an FP-subgroup and Lemma 2.20. Using Theorem 2.21, Γ3 is a normal

subgroup of Mg,b,n of finite index. Let N = [Mg,b,n : Γ3]. Then αN
i , φ

N
i ∈ Γ3 are

pure, and 〈φN
1 , φ

N
2 〉
∼= F2. Replacing each of αi, φj with their Nth powers and keeping

the same t, we get an FP-subgroup satisfying the conditions of the theorem.

In the rest of this paper we assume that αi, φj and t are maps as given in Theo-

rem 2.22.

We can now exploit the machinery of pure mapping classes as developed in [19].

For a pure mapping class f , one can always find a representative homeomorphism

(which we will also denote by f) which fixes each curve in C and each component

setwise. Moreover, the mapping class f induces well-defined mapping classes on

components of S \ C (see Section 7.5 in [19]). As an important technical point, for

a component T of S \ C, in order to get a well-defined mapping class f |T in the

mapping class group of T , one should allow the isotopies in T to move the points in

the components of ∂T which are created as a result of cutting S open. Otherwise, an

ambiguity results from combining f |T with a Dehn twist in a component of ∂T . In

other words, when the surface is cut open along C, all the new boundary components

which appear will be dealt with essentially as punctures. The same remark holds

when considering the mapping class group of a connected subsurface of S. In what

follows, the phrase “up to isotopy” will usually be dropped, but should be understood

in any discussion of topological equivalence.

In the above discussion, the collection C corresponding to a pure mapping class

f may not be canonical, but in fact one can always choose a canonical collection of

isotopy classes of disjoint simple closed curves, denoted by σ(f), which we will define
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shortly. For two 1-submanifolds C1 and C2 of S, let

i(C1, C2) = min{|C ′1 ∩ C
′

2| | C
′

i is isotopic to Ci}.

In other words, i(C1, C2) is the geometric intersection number of C1 and C2. We then

define σ(f) by saying c ∈ σ(f) if the two following conditions hold:

1. f(c) = c.

2. For any simple closed curve γ, if i(γ, c) 6= 0, then f(γ) 6= γ.

The collection σ(f) is called the essential reduction system for f . It is proved in [19]

(see Chapter 7) that σ(f) is a finite collection of disjoint simple closed curves, and f

restricted to each component of S \ σ(f) is either the identity or pseudo-Anosov.

If f ∈ Mg,b,n is not pure, then as discussed above there is some N > 0 such

that fN is pure. Thus we can extend the definition of essential reduction systems by

defining σ(f) to be equal to σ(fN). The notion of an essential reduction system was

originally defined in [6] for a mapping class, and was generalized in [19] to an arbitrary

subgroup ofMg,b,n. Note that σ(f) is a topological invariant of the mapping class f .

We use this notion to define an invariant for a pair of mapping classes inMg,b,n.

Definition 2.23 For two mapping classes f, h ∈ Mg,b,n, we let

i(f, h) = i(σ(f), σ(h)).

Notice that this is invariant under simultaneous conjugacy:

Proposition 2.24 For t, f, h ∈ Mg,b,n, i(tft
−1, tht−1) = i(f, h).
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Proof. First notice that σ(tft−1) = t(σ(f)), for f, t ∈ Mg,b,n (again see [19], Chapter

7). Then we have that

i(tft−1, tht−1) = i(σ(tft−1), σ(tht−1))

= i(t(σ(f)), t(σ(h)))

= i(σ(f), σ(h))

= i(f, h).

The invariant i(f, h) for f, h ∈ Mg,b,n will be crucial in the proof of Theorem B.

We recall the following lemma, proved in [19].

Lemma 2.25 (Ivanov) Let f be a pure mapping class. If X is a subsurface or a

simple closed curve on the surface such that fN(X) = X for some N ≥ 1, then

f(X) = X.

The following definition is also inspired by [19].

Definition 2.26 Let f ∈ Mg,b,n, and let T be the isotopy class of a connected

subsurface of S. We say f keeps T precisely invariant if f(T ) = T and if f(c) 6= c for

each curve c such that i(c, ∂T ) 6= 0.

In particular we note that a pure mapping class f ∈ Mg,b,n keeps all components

of S \ σ(f) precisely invariant, by the basic property of σ(f). Similarly, f keeps each

regular neighborhood of c ∈ σ(f) precisely invariant. We now develop a series of

lemmas to prove Theorem B.
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Lemma 2.27 Let f, α be pure mapping classes in Mg,b,n such that αf = fα. Let T

be a component of S \ σ(f). Then we have

(i) α(T ) = T , up to isotopy.

(ii) α(c) = c for each c ∈ σ(f).

(iii) i(f, α) = 0; i.e., σ(f) and σ(α) can be isotoped off each other.

Proof. For any integer N , αN commutes with f . This implies that f(αN(T )) =

αN(f(T )) = αN(T ). Suppose a simple closed curve c intersects ∂αN (T ) non-trivially.

Then α−N(c) intersects ∂T non-trivially, and so f(α−N(c)) 6= α−N(c), by assumption.

Applying αN to both sides, we get f(c) 6= c. Hence f keeps αN(T ) precisely invariant.

By the basic property of the essential reduction system, either f |T = id or f |T is

pseudo-Anosov.

Case 1. Assume f |T = id. Since f |αN (T ) = (αN |T )f |T (αN |T )−1, we have f |αN (T ) =

id for all N . Notice that i(∂αN (T ), ∂T ) = 0, since f keeps αN(T ) precisely invariant

for all N . Moreover, we claim that no component c of ∂αN (T ) can be isotopic to a

simple closed curve in T which is not isotopic to a component of ∂T . Otherwise, one

can find a simple closed curve γ in T such that i(c, γ) 6= 0. But f(γ) = γ, which

contradicts the fact that f keeps αN(T ) precisely invariant. Similarly one can show

that no component of ∂T can be isotopic to a simple closed curve in αN(T ) which is

not isotopic to ∂αN (T ). This shows that either αN(T ) = T or αN(T ) can be isotoped

off T . This in turn implies that the collection of subsurfaces {αN(T ) | N ∈ Z} is a

collection of disjoint homeomorphic subsurfaces up to isotopy, and hence it is a finite
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collection. This shows that αN(T ) = T for some N , and since α is pure, α(T ) = T,

up to isotopy, by Lemma 2.25.

Case 2. Let f |T be pseudo-Anosov. Again, since f |αN (T ) = (αN |T )f |T (αN |T )−1,

we have f |αN (T ) is pseudo-Anosov for allN . Also, notice that i(∂αN (T ), ∂T ) = 0, since

f keeps αN(T ) precisely invariant for all N . Moreover, we claim that no component

c of ∂αN (T ) can be isotopic to a simple closed curve in T which is not isotopic to a

component of ∂T . Otherwise, since c ∈ ∂αN (T ) and f is pure and pseudo-Anosov

on αN(T ), we have f(c) = c. On the other hand, c is in the interior of T and f is

pseudo-Anosov on T , hence f(c) 6= c, which is a contradiction. Similarly one can

show that no component of ∂T can be isotopic to a simple closed curve in αN(T )

which is not isotopic to ∂αN (T ). This shows that either αN(T ) = T or αN(T ) can be

isotoped off T . The rest of the argument is exactly as in Case 1. This proves (i).

To prove (ii), let c ∈ σ(f). Let T be component of S \ σ(f) such that c is

a component of ∂T . Then α(T ) = T , by (i). This implies that α permutes the

components of ∂T , which by Lemma 2.25 implies that α(c) = c, proving (ii).

To prove (iii), let c ∈ σ(f) and γ ∈ σ(α) such that i(c, γ) > 0. Then by definition

of an essential reduction system, α(c) 6= c, which contradicts (ii).

Let H = 〈φ1, φ2, α1, α2, t〉 be an FP-subgroup of the type described in Theo-

rem 2.22. Notice that by Lemma 2.27(iii), σ(φi)∪σ(αj) is collection of non-intersecting

simple closed curves. For i = 1, 2, let Ci = σ(αi) ∩ σ(φi), Ai = σ(αi) \ Ci and

Di = σ(φi) \ Ci. Note that each of Ai, Ci or Di could be empty.

Lemma 2.28 For i = 1, 2, Ai ∪Di ⊂ σ(αiφi).
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Proof. Without loss of generality, we prove Ai ⊂ σ(αiφi). Let c ∈ Ai. Notice that by

Lemma 2.27(ii), αi(c) = φi(c) = c. If c /∈ σ(αiφi), by definition, there is a subsurface

U containing c where U is a component of S \ σ(αiφi). Since αiφi|U fixes c, it is

not pseudo-Anosov and hence is the identity. Similarly since c /∈ σ(φi), there is a

subsurface V containing c where V is a component of S \ σ(φi) such that φi|V = id.

Therefore αi|U∩V = id. Since c is not isotopic to any component of ∂U or ∂V , and

i(∂U, ∂V ) = 0, c is not isotopic to any component of ∂(U ∩ V ). Then one can find a

simple closed curve γ in U ∩ V such that i(c, γ) > 0. But αi|U∩V = id, so αi(γ) = γ,

which contradicts the fact that c ∈ σ(αi).

Lemma 2.29 i(φ1, φ2) = 0.

Proof. Recall that σ(αi) = Ai ∪ Ci and σ(φi) = Ci ∪ Di. By definition of essential

reduction system and Lemma 2.27(ii), i(αi, φj) = 0 and so

i(Ai, Cj) = i(Ai, Dj) = i(C1, C2) = i(Ci, Dj) = 0,

for i, j = 1, 2. Therefore i(α1, α2) = i(A1, A2). Now by Lemma 2.28,

i(α1φ1, α2φ2) ≥ i(A1, A2) + i(A1, D2) + i(D1, A2) + i(D1, D2)

= i(A1, A2) + i(D1, D2).

By part (3) of Theorem 2.22 and Proposition 2.24, we have that

i(A1, A2) = i(α1, α2)

= i(t(φ1α1)t
−1, t(φ2α2)t

−1)

= i(φ1α1, φ2α2)

≥ i(A1, A2) + i(D1, D2).
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Thus i(D1, D2) = 0. Hence

i(φ1, φ2) = i(σ(φ1), σ(φ2))

= i(C1 ∪D1, C2 ∪D2)

= i(C1, C2) + i(C1, D2) + i(D1, C2) + i(D1, D2)

= 0,

which proves the lemma.

For a connected subsurface U of S, we define a subgroup Γ3(U) of the mapping

class group of U as follows:

Γ3(U) = {f |U | f ∈ Γ3 and f(U) = U}.

Notice that all elements of Γ3(U) are pure. Also notice that if αi(respectively φi) keeps

U invariant, then by Theorem 2.22 we have αi|U ∈ Γ3(U) (respectively φi|U ∈ Γ3(U)).

The following lemma is proved in [19] (Lemma 8.13).

Lemma 2.30 Let Γ be a subgroup of the mapping class group of a connected surface U

consisting of pure elements. If f ∈ Γ is a pseudo-Anosov element, then its centralizer

in Γ is an infinite cyclic group generated by a pseudo-Anosov element.

Corollary 2.31 Let Γ be a subgroup of the mapping class group of a connected surface

U consisting of pure elements. If f, h ∈ Γ are pseudo-Anosov elements, then either f

commutes with h or their respective centralizers in Γ intersect trivially.

Proof. Let CΓ(f) denote the centralizer of f in Γ. Suppose there is an element

1 6= θ ∈ CΓ(f) ∩ CΓ(h). Then f, h ∈ CΓ(θ), which is cyclic by Lemma 2.30, so f

commutes with h.
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We are going to encounter the following particular situation in different contexts,

so we declare it a lemma:

Lemma 2.32 Let U be a component of S \ σ(φi) for i = 1 or i = 2 such that Γ3(U)

is non-trivial. Assume that αi|U = id and φi(U) = U for i = 1, 2. Then the respective

centralizers of φ1|U and φ2|U in Γ3(U) intersect non-trivially.

Proof. Without loss of generality, let U be a component of S \ σ(φ1). Assume on

the contrary that the centralizers of φ1|U and φ2|U in the mapping class group of U

have only the identity map in common. This in particular implies that φi|U 6= id

for i = 1, 2. The map φ1|U is pseudo-Anosov, since U is a component of S \ σ(φ1).

Consider the subsurface t(U). By part (3) of Theorem 2.22, we have

αi|t(U) = (t|U)(φi|Uαi|U)(t|U)−1 = (t|U)(φi|U)(t|U)−1. (7)

This implies that αi|t(U) 6= id keeps t(U) invariant, since it is conjugate to φi|U , for

i = 1, 2. Moreover, α1|t(U) is pseudo-Anosov. This in particular implies that t(U) is a

component of S \ σ(α1), and t(U) can be isotoped off U , since α1|U = id. Moreover,

by assumption and by (7), the centralizers of α1|t(U) and α2|t(U) intersect trivially in

Γ3(t(U)). By Lemma 2.27(i), φi keeps t(U) invariant for i = 1, 2, since φi commutes

with α1. Again, since φi|t(U) commutes with αj|t(U) and by the assumption about

the centralizers, we have φi|t(U) = id, for i, j = 1, 2. Now we can prove the following

statements for N ≥ 1 simultaneously by induction on N :

1. αi|tN (U) 6= id keeps tN(U) invariant, for i = 1, 2.

2. α1|tN (U) is pseudo-Anosov (hence, φi keeps tN(U) invariant for i = 1, 2).
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3. The respective centralizers of αi|tN (U) in Γ3(t
N (U)) intersect trivially, for i =

1, 2.

4. φi|tN (U) = id, for i = 1, 2.

We have already established all four statements for N = 1. The passage from N to

N + 1 follows similarly from the relation

αi|tN+1(U) = (t|tN (U))(φi|tN (U)αi|tN (U))(t|tN (U))
−1 = (t|tN (U))(αi|tN (U))(t|tN (U))

−1.

The second statement above shows that tN (U) can be isotoped off U , since α1|U =

id. Therefore, tM(U) can be isotoped off tN(U) for all M 6= N . This is clearly a

contradiction, since the Euler characteristic of S is finite.

Lemma 2.33 For i = 1, 2, let Ui be a component of S \ σ(φi) such that φi|Ui
is

pseudo-Anosov. Then either U1 and U2 are disjoint up to isotopy, or U1 is isotopic

to U2.

Proof. First we show that if U1 and U2 are not disjoint, then either U1 ⊆ U2 or U2 ⊆

U1. Suppose U1 * U2 and U2 * U1 but U1 cannot be isotoped off U2. Throughout

the proof, let j, k ∈ {1, 2} be arbitrary such that j 6= k. Since i(∂U1, ∂U2) = 0,

there is some component cj of ∂Uj such that cj ⊂ Uk and cj is not isotopic to any

component of ∂Uk. By Lemma 2.27(i), αi keeps U1 and U2 invariant for i = 1, 2. Since

αi ∈ Γ3, we have αi|Uj
∈ Γ3(Uj). Since cj is in the interior of Uk and αi(cj) = cj by

Lemma 2.27(ii), this implies that αi|Uk
is not pseudo-Anosov, hence by Lemma 2.30,

αi|Uk
= id for i, k = 1, 2.
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Let U = U1 ∪ U2. At this point we apply a similar argument as in the proof of

Lemma 2.32, as follows. By the relation

αi|t(Ui) = (t|Ui
)(φi|Ui

αi|Ui
)(t|Ui

)−1 = (t|Ui
)(φi|Ui

)(t|Ui
)−1, (8)

we see that αi|t(Ui) is pseudo-Anosov. This in particular implies that t(U) = t(U1) ∪

t(U2) can be isotoped off U , since αi|U = id. Note that t(Ui) is a component of

S \ σ(αi), so φj keeps t(Ui) invariant for i, j = 1, 2, by Lemma 2.27(i). Since φi is

pure, and t(cj) is a boundary component of t(Uj), we have φi(t(cj)) = t(cj). By the

choice of cj we know that t(cj) is in the interior of t(Uk). By Lemma 2.30 and the

fact that φi|t(Uk) ∈ Γ3(Uk), we have φi|t(Uk) = id, for i, k = 1, 2. Now by induction on

N we can simultaneously prove the following statements for N ≥ 1:

1. The map αi|tN (Ui) is pseudo-Anosov, for i = 1, 2.

2. We have φi|tN (Uj) = id, for i, j = 1, 2.

We have already established these two statements for N = 1. The passage from N

to N + 1 can be achieved by considering the conjugacy relation

αi|tN+1(Ui) = t|tN (Ui) φi|tN (Ui) αi|tN (Ui) t|
−1
tN (Ui)

= t|tN (Ui) αi|tN (Ui) t|
−1
tN (Ui)

. (9)

This proves statement (1) above. Now use Lemma 2.27(i) to see that φi keeps tN+1(Uj)

invariant. This implies that φi|tN+1(Uj) ∈ Γ3(t
N+1(Uj)), and by Lemma 2.30, we have

statement (2).

In particular, statement (1) shows that tN(U) can be isotoped off U for all N > 1,

which is a contradiction as in Lemma 2.32. This proves that either U1 ⊆ U2 or

U2 ⊆ U1, or U1 and U2 can be isotoped off each other.
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Now without loss of generality, suppose that U1 ⊆ U2, but U1 is not isotopic to U2.

Then there exists a component c1 of ∂U1 such that c1 is not isotopic to a component

of ∂U2. By Lemma 2.27(i), αi keeps U1 and U2 invariant for i = 1, 2. Also, by

Lemma 2.27(ii), αi(c1) = c1, which implies αi|U2
= id, by Lemma 2.30. Again, using

(8) we get statement (1) for N = 1. Hence t(Ui) is a component of S \ σ(αi). So φi

keeps Uj invariant. Thus φi(t(c1)) = t(c1), which gives φi(U2) = id, by Lemma 2.30.

This proves statement (2) for N = 1. The passage from N to N + 1 follows by using

equation (9) above. Then again we have that U2 can be isotoped off tN(U2) for all

N > 1, which is a contradiction. This proves that U1 is isotopic to U2.

Lemma 2.34 Let U be a component of both S \ σ(φ1) and S \ σ(φ2) such that φi|U

is pseudo-Anosov for i = 1, 2. Then φ1|U commutes with φ2|U .

Proof. If φ1|U and φ2|U do not commute, then their centralizers in Γ3(U) have triv-

ial intersection by Corollary 2.31. This implies that αi|U = id, which contradicts

Lemma 2.32.

We are finally ready to prove Theorem B.

Proof of Theorem B. Let U be a component of S \σ(φ1) such that φ1|U is pseudo-

Anosov. We first prove that φ2|U is either pseudo-Anosov or the identity. Suppose

φ2|U is neither pseudo-Anosov nor the identity (in particular, U is not a component

of S \ σ(φ2)). Let V1, V2, · · · , Vs be components of S \ σ(φ2), which cover U up to

isotopy. We can assume that the cover is minimal in the sense that none of the Vk

can be isotoped off U . By Lemma 2.33, φ2|Vk
= id for all 1 ≤ k ≤ s. (This does not
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mean that φ2|U = id, since φ2 may involve Dehn twists about boundary components

of Vk.) By Lemma 2.29, i(∂U, ∂Vk) = 0 for all 1 ≤ k ≤ s, which shows that φ2

keeps U invariant. Moreover, φ2|U is a non-trivial composition of Dehn twists about

disjoint simple closed curves. Using Lemma 2.27(i), αi keeps U invariant. Since

αi|U , φj|U ∈ Γ3(U) and αi|U commutes with φ2|U , using Lemma 2.30 we see that αi|U

cannot be pseudo-Anosov. Moreover, αi|U commutes with φ1|U so αi|U = id. Now by

Lemma 2.32, we get that the centralizers of φ1|U and φ2|U must intersect non-trivially.

Lemma 2.30 then implies that φ2|U is either pseudo-Anosov or the identity, which is

a contradiction.

We have proved that for a component U of S \σ(φ1) where φ1|U is pseudo-Anosov,

φ2|U is either pseudo-Anosov or the identity. In the case that φ2|U is pseudo-Anosov,

φ1|U and φ2|U commute by Lemma 2.34. Similarly, for a component V of S \ σ(φ2)

where φ2|V is pseudo-Anosov, φ1|V is either a commuting pseudo-Anosov or the iden-

tity.

Let S1 be the subsurface of S which is the union of subsurfaces T such that either

φ1|T or φ2|T is pseudo-Anosov. We have proved that φ1 and φ2 both keep S1 invariant,

and φ1|S1
commutes with φ2|S1

.

On S2 = S \ S1 both φ1 and φ2 are compositions of Dehn twists about disjoint

curves, by Lemma 2.29. Hence φ1|S2
and φ2|S2

commute. We conclude that φ1 and

φ2 commute, contradicting part (1) of Theorem 2.22. This shows that FP-groups do

not embed inMg,b,n, as desired.
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3 Winding Number and Representations of Map-

ping Class Groups

First Morita, then Trapp, and more recently Perron, all construct representations of

the mapping class group, each using very different techniques. These three separate

approaches, however, yield closely connected representations of Mg,1,0. The three

authors are probably aware of this fact (Trapp and Perron each credit Morita), yet the

precise connections amongst the three representations have not been made explicit.

Our goal in this section is to clarify these connections and hence to fill in a perceived

gap in the literature by presenting all three together as different interpretations of

what is essentially one representation.

Throughout this section we are only interested inMg,b,n in the case where n = 0,

and so we let Mg,b denote Mg,b,0, and likewise for any corresponding surfaces and

subgroups. Also, whenever we have need to make reference to a homology basis, we

will consider the standard symplectic basis used in both [20] and [46]. For reasons

which will become clear later, we now denote the symplectic representation of Mg,1

by ρ2 : Mg,1 → Sp(2g,Z). Recall that ρ2 records the action of the mapping class

group on homology, and its kernel is the Torelli group, Ig,1.

After presenting some necessary background, we describe Morita’s representa-

tion ρ3, which generalizes both the symplectic representation ρ2 as well as Johnson’s

crossed homomorphism τ : Ig,1 → Λ3H1(Sg,1,Z). We focus on a crossed homo-

morphism induced by Morita’s representation, which will serve as an important link

between Morita’s representation and that of Trapp and of Perron.
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3.1 Group Cohomology Background

The cohomology of groups is usually defined using the language of cochain complexes.

It is more useful for our purposes to understand group cohomology in terms of crossed

homomorphisms, and therefore we follow Brown’s treatment of this subject in [8].

Let E be a group. We say that E is an extension of G by A, if we have a short

exact sequence

0→ A→ E → G→ 1

(though, as Brown notes, some authors, in particular Bernard Perron in [41], would

reverse the terminology and refer to this as an extension of A by G). For our purposes,

we will only need to consider the case where the kernel A is an abelian group (hence

the use of 0 on the left). An extension is split if we have a section s : G → E, or

equivalently, if E ∼= A o G. (Recall that the semi-direct product A o G is equal to

the set A×G together with multiplication given by (a, g) · (b, h) = (a+ gb, gh).)

There is a unique split extension corresponding to any given action of G on A.

However, there are possibly many different sections which induce the split exten-

sion. Let s : G → A o G be a section of a split extension. Then the induced map

onto the first factor s : G → A is necessarily a crossed homomorphism. A crossed

homomorphism (sometimes called a derivation) is a function d : G → A such that

d(gh) = d(g) + g d(h). Let Der(G,A) denote the set of all crossed homomorphisms

d : G → A. The set of possible sections of the given split extension is in 1-1 corre-

spondence with the set Der(G,A) [8].

We now introduce an equivalence relation on crossed homomorphisms, and hence

on sections, which will clarify our use of the word “unique” in the previous paragraph.

Let a ∈ A, and define a crossed homomorphism da : G → A by da(g) = ga − a.
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Then we will say that d1 ∼ d2 if d2 − d1 = da for some a ∈ A. Such a function

da is called a coboundary or a principal derivation. Denote by P (G,A) the set of

all such coboundaries. We define the first cohomology of G with coefficients in A,

denoted H1(G,A), as Der(G,A)/P (G,A). The corresponding notion of equivalence

for sections is simply conjugation, i.e., if a ∈ A, and i(a) represents the inclusion of

a in AoG, then two sections s1 and s2 are equivalent if there exists an a ∈ A which

satisfies s1(g) = i(a)s2(g)i(a)
−1 for all g ∈ G [8].

There is another interpretation of H1(G,A) which will also be useful to us in

the case of mapping class groups. Thus we now follow Morita’s treatment of group

cohomology in [37] in the special case where G = Mg,1 and A = H1(Sg,1;Z) (we

will usually drop the Z from this notation, but it is to be understood). We know

that Mg,1 acts on H1(Sg,1) via the symplectic representation ρ2, and we will de-

note this by φ∗(x) = ρ2(φ)(x). If we employ the usual identification of H1(Sg,1)

with Hom(H1(Sg,1),Z), we can describe the action of Mg,1 on H1(Sg,1) by φu(x) =

u(φ−1
∗

(x)) = u(ρ2(φ
−1)(x)) for φ ∈ Mg,1, u ∈ H

1(Sg,1), and x ∈ H1(Sg,1).

Let F (Mg,1×H1(Sg,1),Z) denote the set of all functions f :Mg,1×H1(Sg,1)→ Z

such that:

1. f(φ, x+ y) = f(φ, x) + f(φ, y)

2. f(φψ, x) = f(φ, ψ∗(x)) + f(ψ, x)

Let d ∈ Der(Mg,1;H
1(Sg,1)), and let fd : Mg,1 × H1(Sg,1) → Z be given by

fd(φ, x) = d(φ−1)(x). We have a bijection given as follows:

Der(Mg,1;H
1(Sg,1)) ←→ F (Mg,1 ×H1(Sg,1),Z)

d ←→ fd (10)
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In view of this fact, Morita also refers to elements of F (Mg,1×H1(Sg,1),Z) as crossed

homomorphisms. Let a ∈ H1(Sg,1;Z). Then the bijection carries the coboundary

da ∈ Der(Mg,1;H
1(Sg,1;Z)) to a map da :Mg,1 ×H1(Sg,1),Z) defined by da(φ, x) =

a(φ∗(x) − x). Here we follow Morita in abusing notation by retaining the name da,

and we will also refer to such maps as coboundaries. Thus another way to interpret

H1(Mg,1;H
1(Sg,1)) is as the set F (Mg,1 ×H1(Sg,1),Z) modulo coboundaries.

3.2 Morita’s Representation ρ3

Let π denote the fundamental group of the surface Sg,1, and let π′ denote its com-

mutator subgroup. Also, we will use H1 as a shorthand notation for the first integral

cohomology group of Sg,1, and H1 to denote the first integral homology group. By

Poincaré duality we have H1 ∼= H1, so we will often simply use H when it is unneces-

sary to be more specific. Johnson constructs homomorphism τ : Ig,1 → Λ3H in [20]

based on the action of Mg,1 on the quotient π/[π, π′]. Morita generalizes Johnson’s

approach to the extent of finding a sequence of representations ofMg,1 based on its

action on the lower central series of the fundamental group of the surface Sg,1 in [39].

We denote the lower central series by Γj. Thus Γ1 = π1(Sg,1), and Γj+1 = [Γ1,Γj]

for j ≥ 1. The quotient group Nj = Γ1/Γj is known as the j-th nilpotent quotient of

Γ1. Note that N2 is just H, the first integral homology of Sg,1. Now if we fix a base

point on the boundary of our surface,Mg,1 acts naturally on the fundamental group

Γ1. This action induces an action on each nilpotent quotient Nj, which then yields a

sequence of representations ρj :Mg,1 → Aut N3. Since N2 = H, ρ2 is just the sym-

plectic representation of the mapping class group, and Im ρ2 = Sp(H) ∼= Sp(2g,Z).

We would like to develop a similarly useful understanding of Im ρ3. “Useful” here
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means that we can embed the image in a semi-direct product, each factor of which is a

piece which we can interpret geometrically and connect to our other representations.

Morita outlines this process very carefully in [39], and we follow his exposition here.

Though we do not give every detail, we aim to describe Morita’s construction well

enough that the reader will be able to compare his methods to those of Trapp and

Perron. We will incorporate most of Morita’s notation and terminology so that the

interested reader will have an easier time reading the more detailed version in [39].

Let Ij = ρj(Ig,1), and let I(Nj) denote the subgroup of Aut Nj whose elements

act trivially on the first homology of Nj. Morita first shows that Ij is an extension of

Sp(H) by I(Nj). Unfortunately, this extension is not split. Morita determines that

Aut Nj is an extension of GL(H) by I(Nj) (each of which contains an embedded copy

of its respective counterpart above), but again this extension is not split.

Morita turns to the Mal’cev completion of a nilpotent group (see [34] for the

definition) and considers a new representation ρj ⊗Q :Mg,1 → Aut (Nj ⊗Q). The

case k = 3 is special because there is an explicit product description for the Mal’cev

completion N3 ⊗ Q. Namely, N3 ⊗ Q ∼= Λ2HQ × HQ, where HQ = H ⊗ Q, with

multiplication defined by (ξ, u)(η, v) = (ξ+η+ 1
2
u∧v, u+v). We skip over the details,

but this product description ultimately enables Morita to give a split extension.

0→ Hom(HQ,Λ
2HQ)→ Aut (N3 ⊗Q)→ GL(HQ)→ 1

where the action of GL(HQ) on Hom(HQ,Λ
2HQ) is given by (Af)(u) = Af(A−1u)

for A ∈ GL(HQ), f ∈ Hom(HQ,Λ
2HQ), and u ∈ HQ.

For any split extension, the projection map from the semi-direct product onto

its first factor is necessarily a crossed homomorphism (see [8] or [17]). Let q :

Aut (N3 ⊗Q) → Hom(HQ,Λ
2HQ) be the crossed homomorphism associated to the
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split extension Aut (N3⊗Q) ∼= Hom(HQ,Λ
2HQ)oGL(HQ) given above. For simplic-

ity, let r = ρ3⊗Q. If we compose q with the representation r :Mg,1 → Aut (N3⊗Q),

we obtain another crossed homomorphism k̃ :Mg,1 → Aut (N3 ⊗Q), which Morita

calls the crossed homomorphism associated to r. Since Hom(HQ,Λ
2HQ) becomes an

Mg,1-module via the symplectic representation ρ2, we can express the fact that k̃ is

a crossed homomorphism as follows:

k̃(φψ) = k̃(φ) + ρ2(φ)k̃(ψ).

In addition, we can use the semi-direct product structure of Aut (N3 ⊗Q) to write

r(φ) = (k̃(φ), ρ2(φ)) for any φ ∈ Mg,1.

We now return our attention to the group Aut N3 and the representation ρ3.

Again, building on special properties of the Mal’cev completion of the nilpotent quo-

tients Nj in the case j = 3, Morita is able to show that there exists an embedding

i : N3 → N3 ⊗ Q which induces an injection i∗ : Aut N3 → Aut (N3 ⊗ Q) such

that r = i∗ ◦ ρ3. Thus Im r ∼= Im ρ3, and we have a copy of Im ρ3 embedded in

Aut (N3 ⊗Q) ∼= Hom(HQ,Λ
2HQ) o GL(HQ).

Using the respective natural embeddings of Λ2H andH into Λ2HQ andHQ, Morita

shows that Im ρ3 ⊆ Hom(H, 1
2
Λ2H) o Sp(H) [39]. We will follow Morita’s abuse of

notation and also use the symbol k̃ to denote the crossed homomorphism associated

to ρ3.

We must now examine the dependence of the above construction on the injection

i. A different embedding of N3 in N3 ⊗ Q may change our embedding of Imρ3

in Aut (N3 ⊗ Q). Suppose that i′ : N3 → N3 ⊗ Q were another such injection.

Then Morita shows in [39] that there exists an element f ∈ Hom(HQ,Λ
2HQ) ⊂

Aut (N3⊗Q) such that i′ = f ◦ i. Each i′ induces a representation r′ = i′
∗
◦ρ3 with an



46

associated crossed homomorphism k̃′ :Mg,1 → Hom(HQ,Λ
2HQ). Then the following

equation holds for all φ ∈ Mg,1:

k̃′(φ) = k̃(φ) + f − ρ2(φ)f.

But according to our previous notation from Section 3.1, f − ρ2(φ)f is just the

coboundary d(−f). If we denote this coboundary by δf , we can write simply that

k̃′ = k̃ + δf . We shall call k̃′ the crossed homomorphism associated to the map f . In

other words, any two crossed homomorphisms arising from such a construction will

differ by a coboundary and hence are identical as elements of cohomology.

Remark 3.1 There are some technical details which are being glossed over here. By

referring to i′ as “another such injection”, we mean that N3 is an extension of H by

Λ2H, N3⊗Q is an extension of HQ by Λ2HQ, and the injection i′ : N3 → N3⊗Q must

make the short exact sequences corresponding to these extensions commute with the

natural inclusions of Λ2H and H into Λ2HQ and HQ, respectively.

We can now adjust the image of our crossed homomorphisms within Hom(HQ,Λ
2HQ)

(and hence the image of ρ3 within Hom(HQ,Λ
2HQ)oSp(H)) simply by choosing dif-

ferent maps f . In [39], Morita explicitly constructs a map f ∈ Hom(H, 1
2
Λ2H) with

the property that Im(k̃ + δf) ⊂
1
2
Λ3H ⊂ Hom(H, 1

2
Λ2H). In yet another abuse of

notation, we denote by k̃ the crossed homomorphism associated to this particular

map f . We are now in a position to write down the representation ρ3 in such a way

that Im ρ3 is useful to us.

Theorem 3.2 (Morita, [39]) Let k̃ :Mg,1 →
1
2
Λ3H be the crossed homomorphism

associated to the map f given above. Then we can embed Im ρ3 into 1
2
Λ3H o Sp(H)
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and the representation ρ3 can be described explicitly by the formula

ρ3(φ) = (k̃(φ), ρ2(φ))

for any φ ∈ Mg,1. Furthermore, the restriction of the crossed homomorphism k̃ to

the Torelli group Ig,1 is precisely Johnson’s homomorphism τ : Ig,1 →
1
2
Λ3H.

Note that Johnson defined his map τ with values in Λ3H, so we make the obvi-

ous identification. The map τ carries some interesting geometric information about

mapping classes in Ig,1 [22], and we shall see that k̃ carries the same information for

all ofMg,1.

3.3 Crossed Homomorphisms Mg,1 → H

Using calculations involving projections of π1(Sg,1) onto F2, Morita constructs a

crossed homomorphism k : Mg,1 × H1(Sg,1) → Z [37]. He proceeds to show in

[39] that k is the contraction of the crossed homomorphism k̃ : Mg,1 →
1
2
Λ3H. In

other words, if we let C : Λ3H → H be the standard contraction map given by

C(x ∧ y ∧ z) = 2[(x · y)z + (y · z)x + (z · x)y]

where · denotes the intersection pairing of homology classes, then k = C ◦ k̃ :Mg,1 →

H. From either point of view, Morita’s constructions of the crossed homomorphism

k are purely algebraic. Since we will actually be more concerned with the contraction

of k̃, we understand “Morita’s representation” to refer to the map ρ3 composed with

contraction of the first factor.

However, we know that k̃ restricts to Johnson’s homomorphism τ . We now de-

scribe the geometric information carried by τ . Johnson proves in [22] that C ◦ τ is
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what is known as the Chillingworth homomorphism of Ig,1, which records how a given

element of the Torelli group acts on the winding number of curves on a surface, a

concept introduced by Chillingworth in [9]. Let X be a nonsingular vector field on

Sg,1. If γ is an oriented, direct, regular curve on Sg,1, then its winding number relative

to X, denoted ωX(γ), is the number of times the tangent vector to the curve rotates

relative to the vector field X (for more details see [9]).

Remark 3.3 Chillingworth’s winding number function is well-defined on homotopy

classes and for technical reasons must be computed using a representative curve which

is both regular and direct. We recall that a curve is regular if continuously varying

non-zero tangents exist at all points of the curve. A closed curve which self-intersects

transversally finitely many times is said to be direct if it contains no nullhomotopic

loop.

Remark 3.4 We note two interesting facts about winding numbers of curves on

surfaces:

1. Formula 1 of [9] shows how the winding number of any homotopy class is de-

termined by the winding numbers of a particular basis of π1(Sg,1).

2. Let γ1, . . . , γ2g be a basis of π1(Sg,1). Then Theorem 4.2 of [9] points out that

a non-vanishing vector field X can be chosen to satisfy any given assignments

ωX(γi) = ai, ai ∈ Z.
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Following Trapp ([46]), we define a function eX :Mg,1 → H1 given by eX(f)(γ) =

ωX(f(γ)) − ωX(γ). This function measures the change in winding numbers of our

homology basis effected by a given element of the mapping class group relative to a

fixed vector field X. Johnson first defined such a function on the Torelli group in [20].

Remark 3.5 In general, winding numbers are not well defined on homology classes,

but Trapp shows in [46] that eX(f) is actually well defined on homology classes for

all f ∈ Mg,1. (An argument in the restricted case of Ig,1 is also given in [20].) Note

that we will often abuse notation by referring to both the curve and its homology

class as γ. Since H1 ∼= Z2g, we will think of elements in H1 as row vectors.

The function eX is not a homomorphism on the entire mapping class group, but it

is a crossed homomorphism in the sense that it obeys the following composition law

(as proved in [46]):

eX(fh) = eX(f)ρ2(h) + eX(h). (11)

It is easy to check that Trapp’s map eX : Mg,1 → H1 is a also crossed ho-

momorphism in the sense of Morita. We will view eX as an element of the set

F (Mg,1 × H1(Sg,1),Z). In this case, we need to check the two criteria set forth by

Morita. The first is clear. To check the composition law, let f, h ∈ Mg,1, and let

x ∈ H1. Then what we need to show is that

eX(fh)(x) = eX(f)(h∗x) + eX(h)(x) (12)

= eX(f)ρ2(h)(x) + eX(h)(x)
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since the action ofMg,1 on H1 is given by the symplectic representation. But this is

precisely the criterion described in Equation11.

In any case, it is immediately clear that eX is a homomorphism when restricted to

the Torelli group. Johnson proves this directly in [20]. It is worth noting that we also

have from Johnson the fact that eX is independent of the choice of the vector field

X when restricting to Ig,1. In particular, in the restricted case we can write e(f) or

ef for eX(f) and dualize to a homology class t(f) determined by intersection pairing:

γ · t(f) = ef(γ); Johnson refers to t(f) as the Chillingworth class of f . Then we can

think of t as a homomorphism from the Torelli group to H, which we will call the

Chillingworth homomorphism. Thus, from our previous discussion, we can now write

C ◦ τ = t.

Using the map k described at the beginning of Section 3.3, Morita establishes that

crossed homomorphisms of the formMg,b → H are essentially unique.

Theorem 3.6 (Morita, [37]) H1(Mg,1;H
1(Sg,1)) ∼= Z, with generator k.

Combining Theorem 3.6 with Theorem 3.2, we have therefore established that the

Chillingworth homomorphism t extends essentially uniquely to the full mapping class

group (up to coboundary and sign). More precisely, thinking of eX as the extension

of t toMg,1, we have:

Proposition 3.7 k = eX , as elements of H1(Mg,1;H
1(Sg,1)).

We note that Theorem 6.1 of [38] is the special case of Proposition 3.7 when the

crossed homomorphisms are restricted to Ig,1, and that the proof utilizes the bijection

given in Equation 10.
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We have established that Trapp’s crossed homomorphism eX which measures the

action of a mapping class on winding numbers is essentially equal to Morita’s crossed

homomorphism k, a fact first realized by Trapp in [46]. The result here is not new,

since both Trapp and Morita realized that the Chillingworth homomorphism extended

to the entire mapping class group, and Trapp realized that his crossed homomorphism

was “essentially” the same as Morita’s. Besides pinning down the connections, our

goal is to see the geometric interpretation of each representation. What Morita does

not explicitly state is that k carries winding number information not only for the

Torelli group, but for the whole mapping class group. Thus it is possible to extract

this winding number information directly from Morita’s representation.

3.4 Trapp’s Representation

Trapp uses his crossed homomorphism eX to construct a linear representation TX :

Mg,1 → GL(2g + 1,Z) given as follows:

TX(f) =

(
1 eX(f)
0 ρ(f)

)

where X is a given nonsingular vector field on Sg,1. We again let ρ : Mg,1 →

Sp(2g,Z) denote the symplectic representation, dropping the index 2 introduced for

other purposes in Section 3.2. The 0 in the matrix denotes a column of 2g zeros.

We note that Trapp’s representation can be factored through Mg,0, though we do

not address it here, and that Patricia Sipe previously discovered this version of the

representation in [44].

Remark 3.8 Until now, we have ignored the issue of the choice of the vector field X.

Trapp proves that eX does not depend on X when restricting to Ig,1, and moreover,
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that if X and X ′ are different vector fields on Sg,1, then TX and TX′ are conjugate

representations. We henceforth denote the above representation simply by T . It fol-

lows from Morita’s work that outside of Ig,1, different choices of X should correspond

to varying the crossed homomorphism k by a coboundary.

Trapp’s definition of this representation is particularly nice because it interprets

Morita’s purely algebraic constructions explicitly in terms of geometry, and also be-

cause it linearizes Morita’s representation. Trapp also proves that T (f) can be un-

derstood to measure the acton of Df on the first homology with Z coefficients of the

unit tangent bundle of the surface (Theorem 2.2, [46]).

We claim that Im T is a split extension of Sp(2g,Z) by 2H ∼= H. If π : Im T →

Sp(2g,Z) is the obvious map which picks out the 2g×2g lower right-hand block, then

we have the following short exact sequence

0 −→ ker π −→ Im T −→ Sp(2g,Z) −→ 1.

The splitting is given in the obvious way, by sending a matrix A ∈ Sp(2g,Z) to the

matrix
(

1 0
0 A

)

.

Also, Proposition 2.8 of [46] tells us that ker π ∼= 2H, which establishes our claim.

Trapp addresses the issue of splittings only in the case where he factors T through

Mg,0.
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3.5 Perron’s Representation

We now describe a completely different approach to the linearization of Morita’s

representation given by Bernard Perron in [41].

To any graph Γ we will associate a particular Artin group, denoted A(Γ). To each

vertex of Γ we associate a generator of A(Γ), and we shall abuse notation by using

the same symbol to denote both. If x and y are two vertices of Γ bounding a common

edge, then the corresponding generators “braid”, that is, xyx = yxy. If no such edge

exists, then x and y commute.

Remark 3.9 As noted, we are only concerned here with one specific kind of Artin

group, but the reader is probably familiar with a much more general construction.

There are different conventions for using Coxeter graphs to present an Artin group.

Here we take the definition used in [10]. A Coxeter graph consists of vertices and

labelled edges, with edge labels taken from the set {3, 4, . . . ,∞}. Then the associ-

ated Artin group has a presentation in which generators correspond to vertices, and

relations correspond to edges as follows. If s, t are vertices bounding a common edge

with label ms,t, then we have the relation ststs · · · = tstst · · ·, where the word on each

side of the equation has length ms,t. If ms,t = ∞, there is no relation. If s, t do not

bound a common edge, then we have the relation st = ts. In our case, then, any edge

in our graph would have the label 3, corresponding to the braid relation sts = tst.

Hence, for simplicity in this special case, we are simply dropping the labels.

Example 3.10 Let An be the graph in Figure 3. Then A(An) = Bn+1, where Bk
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Figure 4: The graph En+1,p

denotes the braid group on k strands.

The graph An embeds in the graph En+1,p shown in Figure 4. This inclusion

induces an injection on the corresponding groups: Bn+1 → A(En+1,p) [41]. The

connection to mapping class groups comes when we let n = 2g and p = 4, for

Matsumoto has given Mg,1 explicitly as a quotient of A(E2g+1,4) [34].

This connection between A(En+1,p) andMg,1 is easy to see if we look at Humphries’

generating set forMg,1, which consists of Dehn twists about the curves shown in Fig-

ure 5. Recall that Dehn twists about disjoint curves will commute and that Dehn

twists about curves which intersect once will braid. Then each vertex σi ∈ A(E2g+1,4)

naturally corresponds to the Dehn twist about the curve Ci, and δ corresponds to the

second meridian curve B. Hence Perron’s strategy is to begin with a representation

of the braid group, extend it to A(En+1,p), and then factor it throughMg,1.

Perron begins with the well-known (reduced) Burau representation
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C1 C3 C5C2 C4 C6 C2g

B

Figure 5: Humphries’ generating set for π1(Sg,1)

Bn+1 → GLn(Z[t, t−1]), defined as follows:

σi 7→ Ji =













Ii−2 0 0

0
1 0 0
t −t 1
0 0 1

0

0 0 In−i−1













,

where Ik stands for the k × k identity matrix. We note that in the case i = 1, n, we

have, respectively:

σ1 7→ J1 =







−t 1
0 1

0

0 In−2






, σn 7→ Jn =







In−2 0

0
1 0
t −t






.

The problem is that the Burau representation does not extend to A(En+1,p) when

p = 4. Therefore Perron extends the Burau representation slightly. Let Ri denote an

n × n block of zeros with a t placed in the (i, i)th position. It is easy to check that

the map

Bn+1 → GL2n(Z[t, t−1])

σi 7→

(
In 0
Ri Ji

)
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is a well-defined representation, which Perron refers to as the Burau bis representation.

The Burau bis representation extends to A(En+1,p) for all possible values of n and

p, in the following way. Let ~b =









b1
·
·
·
bn









, ~d =









d1

·
·
·
dn









, and λ = (λ1, . . . , λn). We

define the following n× n matrices:

A =
(

λ1
~b λ2

~b · · · λn
~b

)

B =
(

~0 · · · ~0 ~b ~0 · · · ~0
)

C =
(

λ1
~d λ2

~d · · · λn
~d

)

D =
(

~0 · · · ~0 ~d ~0 · · · ~0
)

,

where ~0 denotes a column of n zeros. Let us further assume that the bi, i = 1, . . . , n

satisfy the following conditions:

tbi = −tdi−1 + (1 + t)di − di+1, i 6= p

tbp = −tdp−1 + (1 + t)dp − dp+1 + t
n∑

i=1

λibi = −(1 + dp + t),

setting any undefined dj equal to zero. If we make the assignments

σi 7→

(
In 0
Ri Ji

)

δ 7→

(
In + A B
C In +D

)

,

then for each choice of λ, we get a linear representation ψλ : A(En+1,p) → GL2n(R),

where we can take R to be the field of rational fractions in n + 1 indeterminates

Q(t, d1, . . . , dn) (Proposition 2.2 of [41]). Perron then shows that one can obtain a

representation ofMg,1 by making choices for t and λ.
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Proposition 3.11 (Perron, [41]) The representation ψλ factors through Mg,1 if

and only if we have

t = −1

λ1 = λ3 = −1

λi = 0, i 6= 1, 3.

Thus we get a linear representation ψ :Mg,1 → GL4g(Z[d1, . . . , dn])

Immediately we can see that ψ is likely to be connected with the symplectic

representation ρ : Mg,1 → Sp(2g,Z), since it is well known that setting t = −1 in

the Burau representation will give us the associated action on homology for the σi.

In fact, Perron is able to prove the following:

Theorem 3.12 (Perron, [41]) The image of ψ is a non-split extension of Sp(2g,Z)

by 2H. However, Im ψ embeds as a finite index subgroup in H o Sp(2g,Z). Further-

more, ψ restricted to Ig,1 is precisely equal to the Chillingworth homomorphism t.

Thus we have another representation linearizing Morita’s representation, this time

coming from representations of Artin groups. We therefore could hope to “read off”

both the symplectic information as well as the winding number information straight

from the matrices in the image of ψ. The symplectic information is easy to extract,

and it turns out that the winding number information will take only a bit more work.

Even though Im ψ doesn’t split, the embedding Im ψ < H o Sp(2g,Z) induces

a crossed homomorphism from Mg,1 into H. By Theorem 3.6, we know that the

crossed homomorphism induced by ψ must be equivalent to k and hence to eX , up



58

to an integer multiple. Therefore the winding number information must somehow be

contained in Morita’s representation. The last statement in Theorem 3.12 tells us

where to look for it.

We recall that Im ψ < GL4g(Z[d1, . . . , dn]). Let ρ̄ : Im ψ → Sp(2g,Z) be the map

defined by extracting the lower right-hand 2g × 2g block from the matrix and by

setting d1 = d3 = 1 and di = 0 for i 6= 1, 3. Then Perron shows that the following

diagram of short exact sequences commutes, and thus application of ρ̄ yields the

symplectic data.

1 Ig,1 Mg,1 Sp(2g,Z) 1

0 2H Im ψ Sp(2g,Z) 1

-

-

-

-

-

-

-

-

? ? ?

t ψ id

i

ξ

ρ

ρ̄

If we want to understand how winding number information is contained in the

representation ψ, we must therefore understand the injection ξ : H → Im ψ. For an

explicit definition of ξ, see [41]. For our purposes, it suffices to know that for m ∈ H,

ξ(m) has the form

(

N1 m~b
N2 N3

)

, where the Ni are 2g×2g blocks, ~b is a column vector

of indeterminates dependent upon the di as previously defined, and m~b denotes the

2g × 2g matrix

(

m1
~b · · · m2g

~b
)

=








m1b1 · · · m2gb1
m1b2 · · · m2gb2

...
...

m1b2g · · · m2gb2g







.

Let us now examine exactly how Im ψ embeds in H o Sp(2g,Z). Let δ∗ denote
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j

Figure 6: The involution j

the image under ψ of the Dehn twist about the curve j(B), where j is rotation

by π about the axis indicated in Figure 6. Let 〈Im ψ, δ∗〉 denote the subgroup of

GL4g(Z[d1, . . . , dn]) generated by Im ψ and δ∗. Following Perron, we can extend the

map ρ̄ : Im ψ → Sp(2g,Z) to a map ρ̄′ : 〈Im ψ, δ∗〉 → Sp(2g,Z) by setting

ρ̄′(δ∗) =









1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

0

0 I2g−4









.

Then it follows from Proposition 8.10 of [41] that we have another commutative

diagram of exact sequences.

0 2H Im ψ Sp(2g,Z) 1

0 H 〈Im ψ, δ∗〉 Sp(2g,Z) 1

-

-

-

-

-

-

-

-

? ? ?

incl incl id

ξ

ξ

ρ̄

ρ̄′

The lower sequence splits, and hence the above gives us the embedding of Im ψ

in a semidirect product, as previously mentioned. The corresponding section S :
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Sp(2g,Z)→ 〈Im ψ, δ∗〉 is given by

S(A) =

(
Ig 0
RA A

)

.

The g× g matrix RA is not relevant to our calculations; an explicit definition can be

found in [41]. Any element in H o Sp(2g,Z), and hence any element in Im ψ, can

be written uniquely as a product ξ(m)S(A) for some m ∈ H (actually, m ∈ 2H) and

some matrix A ∈ Sp(2g,Z). Since the crossed homomorphism induced by ψ comes

from the first factor, and since the first pair of commuting exact sequences tells us

that ξ restricted to Ig,1 is precisely the Chillingworth homomorphism t, ξ(m) must

carry the winding number information. A simple calculation now tells us how to “see”

winding number information in Im ψ. Let Y ∈ Im ψ. Then

Y = ξ(m)S(A) =

(

N1 m~b
N2 N3

) (
Ig 0
RA A

)

for some m ∈ H,A ∈ Sp(2g,Z). Multiplying this out tells us that any Y ∈ Im ψ is

of the form

Y =

(

N1 + (m~b)RA (m~b)A
N2 +N3RA N3A

)

.

Since ξ is an injection, we might as well think of m as carrying the winding number

information. Then winding number information is actually embedded in many places

in this matrix, as m also appears in all the Ni. But the easiest place to see it is the

2g × 2g upper right-hand block. Since A ∈ Sp(2g,Z), A is invertible and m~b can be

calculated. To be more explicit, let ρ̃ denote the process of setting d1 = d3 = 1 and

di = 0 for i 6= 1, 3. Therefore, if we have

ψ(f) =

(
M1 M2

M3 M4

)

,
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then we can compute

m~b = M3[ρ̃(A4)]
−1.

By construction of the matrix m~b, we can then “read off” the vector m and the

winding number information contained therein.

Remark 3.13 We first note that Perron’s representation cannot be equivalent to

Trapp’s, since Im ψ does not split, but, like Morita’s, construction, only embeds in

a splitting. We also remind the reader that the vector describing winding number

will depend on some choice of vector field X. The reader will note that the upper

right-hand block in ψ(σi) is 0 by definition for all i = 1, . . . , 2g, and hence the winding

number vector will be the zero vector for each, a fact which may surprise the reader

(and indeed surprised the author). However, a careful application of Theorem 4.2 and

Formula 1 in [9] (see Remark 3.4) shows that indeed a vector field X can be found on

Sg,1 satisfying this condition. Moreover, the remaining generator ofMg,1 does effect

change on winding number, i.e., does not correspond to a zero block, and therefore

winding number is still “interesting” on the full mapping class group.

For the sake of completeness, we must also mention certain linear representations

of Artin groups found by Squier in [45]. As Trapp points out, his representation

T is precisely the case where Squier’s parameters satisfy a certain condition which

allows Squier’s map to factor through mapping class groups. In this context, then,

the connection between Trapp’s representation and Perron’s construction is not so

surprising.
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In summary, therefore, we have described three representations ofMg,1, each aris-

ing in a very different context and employing vastly different methods of construction,

from Mal’cev completions to actions on tangent bundles to quotients of Artin groups.

The amazing fact is that each representation contains essentially the same informa-

tion. We hope that the above discussion has served the purpose of making explicit

the connections between these three representations, and, since the author has a bias

towards the geometric interpretation, we hope that it is now clear how the geomet-

ric information explicitly given in Trapp’s representation is encoded in Morita and

Perron’s representations. We also emphasize the important role played here by the

Torelli group, especially by Johnson’s map τ : Ig,1 → Λ3H, which motivates and lays

the groundwork for Morita’s original construction. An attempt to understand the

Torelli group better will make up the final section of this thesis.

Before closing Section 3, however, we make a few remarks concerning the po-

tential application of representations of mapping class groups to the classification

problem for Heegaard splittings of a given closed and orientable 3-manifold M . A

little background will be necessary at this point. A Heegaard splitting of M is a de-

composition of a 3-manifold into two handlebodies of genus g , F1 and F2, such that

F1 ∩ F2 = ∂F1 = ∂F2, and F1 ∪ F2 = M . We can also construct Heegaard splittings

by beginning with the two handlebodies and specifying a “gluing” homeomorphism

φ : ∂F1 → ∂F2, producing a 3-manifold M . We denote this as follows: M = F1∪φ F2.

Isotopic homeomorphisms yield homeomorphic 3-manifolds; thus we may simply spec-

ify the mapping class of φ inMg,0. Two Heegaard splittings of a given 3-manifold M

are equivalent if there exists an isotopy of M taking one splitting surface to the other.

We note that the gluing map is necessarily an element of Mg,0, while the previous
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discussion focused on representations ofMg,1. However, each of the above represen-

tations factors through Mg,0, though the details were not relevant to our discussion

here.

Equivalence classes of Heegaard splittings correspond to double cosets in Mg,0

mod Hg,0, where Hg,0 denotes the handlebody subgroup, which is the subgroup of

Mg,0 consisting of mapping classes which extend to a homeomorphism of a fixed

handlebody whose boundary is the surface Sg,0. Invariants of these double cosets,

or of any homomorphic image of these double cosets, will be invariants of Heegaard

splittings. For example, Birman found invariants of Heegaard splittings arising from

double cosets under the symplectic representation [5].

The process of adding a trivial “handle” to a Heegaard splitting is known as

stabilization. In other words, we add a 1-handle to each handlebody and glue them by

mapping the longitude of one to the meridian of the other. It is known that given any

two Heegaard splittings of any 3-manifold M , only a finite number of stabilizations

are required before the two splittings become equivalent. In fact, there are no known

examples in which more than one stabilization is necessary. The obvious question to

ask is then, does it only require one stabilization in general to render two inequivalent

splittings equivalent?

Birman’s invariant has one crucial shortcoming. It is always trivial on a stabilized

Heegaard splitting. A new, better invariant, would almost certainly shed light on the

second question raised above. Fascinating examples have been developed recently by

Moriah and separately by Menasco which may provide counterexamples, but these

examples must wait for an invariant.

In order to calculate invariants of these double cosets under some representation,
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one must first understand the image of Hg,0. Birman’s success in using the symplec-

tic representation to develop invariants of Heegaard splittings comes from the fact

that ρ(Hg,0) has a simple, algebraic description which lends itself to calculations.

Unfortunately, in general, the image of Hg,0 is quite difficult to characterize, but a

thorough study of Ig,0 might be of use here. For example, the Trapp/Sipe repre-

sentation is an excellent candidate for obtaining a “nice” image of Hg,0, since, after

all, it is a quotient of the symplectic representation together with one extra row of

winding number data. One can nearly characterize double cosets mod Hg,0 under the

Trapp/Sipe representation, but one cannot complete the calculation without knowing

Hg,0 ∩ Ig,0. Given the important role frequently played by the Torelli group in other

representations, one suspects the similar information would eventually be necessary

in calculating double cosets there as well.
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4 Relations in the Torelli Group

Obtaining information about the mapping class group of a surface from its known

representations is a difficult problem, so we now turn our attention to one of the

most important subgroups of the mapping class group, namely, the Torelli group.

We continue with the notation of Section 3 by letting Sg,b denote Sg,b,0, with similar

notation for the corresponding mapping class groups and Torelli groups.

Powell gave an infinite set of generators of the Torelli group consisting of two

kinds of maps [42]. The first type are so-called bounding pair maps (BP-maps for

short). Let Tγ denote a Dehn twist about a curve γ. A BP-map is a product of

Dehn twists TαT
−1
β , where the curves α and β are each non-separating but together

bound a subsurface. The second type are commonly called BSCC-maps, short for

bounding simple closed curves. It is interesting to note that the subgroup of Ig,1

generated by BSCC-maps is precisely the kernel of Johnson’s homomorphism τ [24].

However, it is BP-maps which play the key role in generating Ig,1. Johnson was able

to show in [26] that BP-maps whose curves bound a genus 1 subsurface generate Ig,0

and Ig,1 for g ≥ 3 (again, an infinite set), before proving in [22] that a certain finite

set of BP-maps of various genus would suffice (thus settling a problem first raised

in Kirby’s problem list [28]). The question of whether the Torelli group is finitely

presentable remains open, however. Thus we approach this problem by identifying

relations amongst Johnson’s finite generating set.
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4.1 Johnson’s finite generating set

Johnson’s finite generating set for Ig,1 is constructed to be aligned closely with

Humphries’ generating set for Mg,1, which consists of Dehn twists about the curves

pictured in Figure 5 [18]. Please note that we shall often abuse notation by con-

fusing a curve with the Dehn twist about that curve. Johnson showed in [22] that

these 2g + 1 Dehn twists generate Mg,0 as well. For simplicity, we shall restrict our

attention to the surface Sg,1, but similar results hold for Sg,0 in all that follows.

We recall Johnson’s definition of a chain on a surface as presented in [22]. A chain

is an ordered collection of oriented simple closed curves (c1, . . . , cn) on Sg,1 such that:

1. ci ∩ ci+1 transversely at a single point,

2. ci · ci+1 = 1, where a · b denotes the algebraic intersection, and

3. ci ∩ cj = ∅ if |i− j| > 1.

The term n-chain will refer to a chain with n oriented curves. Two examples of

chains are shown in Figures 7 and 8. The 2g-chain in Figure 7 is known as a straight

chain and consists of all the Humphries generators except for the second meridian

B. Figure 8 shows a (2g − 3)-chain known as a β-chain. Note that the curve β in

Figure 8 is simply the result of applying the Humphries map B to the curve C4, i.e.,

B ∗C4 = β. (Throughout this section, ∗ will denote conjugation, i.e., a ∗ b = aba−1.)

Johnson’s notion of a subchain is much more general than the obvious idea of

taking a consecutive subset of a chain. We define the sum of two oriented curves which

intersect transversally to be the oriented curve resulting from “smoothing out” points

of intersection, as shown in Figure 9. Then if (c1, . . . , cn) is chain, (c1, . . . , ci−1, ci +
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C1 C3 C5
C2 C4 C6 C2g

Figure 7: Straight chain on Sg,1

β

C5 C6 C2g

Figure 8: β-chain on Sg,1
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Figure 9: Summing oriented curves by smoothing out intersections

Figure 10: The straight 3-subchain (1349) on S4,1

· · ·+ cj, cj+1, . . . , cn) is also a chain. Any chain obtained from another chain after a

finite number of such summations will be called a subchain of the original chain. We

will only be concerned with straight subchains and β-subchains.

For example, (C1 + C2, C3, C4 + C5 + C6 + C7 + C8) is a straight 3-subchain map

for g ≥ 4 (see Figure 10). We shall require a shorthand notation for subchains of our

straight chains and β-chains. We use i to denote the curve Ci and β for the curve β.

A consecutive sequence of numbers (i, . . . , j) will stand for the consecutive subchain

(Ci, . . . , Cj). A gap in a sequence of numbers (i1, . . . , ij, ik, . . . , in), where ik 6= ij + 1,

will indicate the subchain (Ci1 , . . . , Cij +Cij+1 + · · ·+Cik−1, Cik , . . . , Cin). Thus, the

straight subchain given above would be denoted (1349). Note that in this example,

the curve C9 is not included in the subchain. In fact, in the case g = 4, no such curve

exists in the straight chain. In this case the number 9 merely serves as a “cut-off”,
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Figure 11: The straight 3-subchain map [1349] on S4,1

an indication that the last curve included in the summation is C8.

In order to obtain elements of the Torelli group from these subchains, we take a

regular neighborhood K of an n-chain. If n is odd, K has two boundary components,

α and β (choose α to lie to the left of the odd-indexed curves c1, c3, . . . in the chain).

By construction, the product TαT
−1
β is a BP-map of genus n−1

2
and hence an element

of Ig,1. We call such a map a chain map and denote it by replacing the parentheses

in the chain notation with brackets. For example, the chain map associated to the 3-

subchain given in the proceeding paragraph will be denoted [1349]. The curves which

define this BP-map are shown in Figure 11. Note that Figure 11 shows two distinct

curves. One curve is solid on the “top” of the surface and dashed when it travels

underneath the surface. The second curve is dashed with one dot on the top and

dashed with three dots underneath. The reader should take a moment to convince

himself or herself that these two curves are disjoint (or at least are isotopic to disjoint

curves), though they appear to cross when simultaneously traveling into a hole.

We are now able to state Johnson’s result.

Theorem 4.1 (Johnson, [22]) The odd straight-subchain maps together with the

odd β-chain maps generate Ig,1 and Ig,0 for g ≥ 3.
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︸ ︷︷ ︸

k

Figure 12: The curves defining Wk.

Remark 4.2 The order of Johnson’s generating set is exponential in g. More pre-

cisely, there are 9 · 22g−3 − 4g2 + 4g − 5 Johnson generators for Ig,1 and 9 · 22g−3 −

4g2 + 2g− 6 for Ig,0. Johnson previously obtained a lower bounds of 1
3
(4g3 + 5g + 3)

and 1
3
(4g3 − g) for the number of generators for Ig,1 and Ig,0, respectively [21].

There is one particularly important type of Johnson generator which will appear

so often that we introduce some special notation for it. We therefore let Wk denote

the consecutive straight (2k− 1)-subchain map [234 · · · (2k+1)]. The curves defining

Wk are shown in Figure 12. We note that Wg is clearly in the kernel of the natural

map Ig,1 → Ig,0 obtained by gluing in a disk along the boundary component of Sg,1.

4.2 Lantern relations in the Torelli group

Johnson discovered relations amongst elements of the Torelli group. The main tool

he used to construct such relations is commonly known as the lantern relation in

the mapping class group. This relation was first discovered by Dehn in [11] and

independently described by Johnson in [22]. The relation is carried by the surface
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c

a b

δ2 δ3

δ1

δ4

Figure 13: The lantern relation on S0,4

S0,4, and for the curves a, b, c, δ1, δ2, δ3, and δ4 as shown in Figure 13, we have the

following relation amongst the corresponding Dehn twists:

TcTbTa = Tδ1Tδ2Tδ3Tδ4

Clearly the left-hand side of the equation can be cyclically permuted. Also note

that for i = 1, . . . , 4, Tδi
commutes with Tγ for all other curves γ in the relation since

the δi are disjoint from all other curves.

4.2.1 Johnson’s B-relations

Johnson realized that he could exploit the symmetry of certain chain maps in order to

get relations in the Torelli group out of lantern relations in the mapping class group.

We give a simple example of his method before stating the families of relations he
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a
b c

C2 C4 C6

δ

Figure 14: A lantern relation on S3,1

found in Ig,1.

Referring to Figure 14, we see that the curves in bold, C2, C4, C6 and δ, together

bound an S0,4. Thus the curves a, b, and c complete the lantern relation, and (con-

tinuing our abuse of notation in the case of the Ci), we obtain:

TcTbTa = C2C4C6Tδ. (13)

On the “bottom” of this surface, we will have another such relation. Let µ be reflection

through the plane of the page, and let γ ′ denote µ(γ). After inverting each side of

the relation, our “reflected” lantern relation becomes:

T−1
c′ T

−1
b′ T

−1
a′ = C−1

2 C−1
4 C−1

6 T−1
δ′ . (14)

We now combine Equations 13 and 14, noting that Dehn twists about disjoint curves

commute, to obtain:

TcT
−1
c′ TbT

−1
b′ TaT

−1
a′ = TδT

−1
δ′ .
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To simplify notation, we let Aγ denote the product TγT
−1
γ′ . Thus we can rewrite

our equation as follows:

AcAbAa = Aδ.

We observe that three of the four BP-maps in this relation are straight 3-subchain

maps (the reader is referred to Appendix A for a complete list of Johnsons’s generators

for genus 3). Thus we can further rewrite our equations:

Ac[4567][2345] = [234567]

Ac[4567]W2 = W3 (15)

Now, Ac is certainly a BP-map, and hence we have obtained a relation in the

Torelli group. However, Ac is not a Johnson generator, and hence we would like to

eliminate it somehow. Johnson’s method for dealing with this issue is to conjugate

Equation 15 above by B, the Dehn twist corresponding to the second meridian of the

Humphries generating set forMg,1. After doing so, we obtain:

Ac[β567]B ∗W2 = B ∗W3.

Since B commutes with Ac, we can invert Equation 15 and combine with the above

to obtain:

W−1
2 [4567]−1[β567]B ∗W2 = B ∗W3.

In this way, starting with the S0,4 shown in Figure 15, Johnson obtains the fol-

lowing family of relations for g ≥ 3 [22]:

W−1
2 [45 · · · (2g + 1)]−1[β5 · · · (2g + 1)]B ∗W2 = [23 · · · (2g + 1)]−1B ∗ [23 · · · (2g + 1)].

(16)
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Figure 15: An S0,4 on Sg,1

As it stands, this relation is key to Johnson’s proof that his finite set of odd

subchain maps generates Ig,1. Moreover, we observe that by a lemma of Johnson

[22], B ∗W2 is a product of straight 3-subchains in I2,1. In addition, Wg lies in the

kernel of the natural map Ig,1 → Ig,0. Therefore if we pass to Ig,0, we have successfully

obtained a relation amongst Johnson generators:

W−1
2 [45 · · · (2g + 1)]−1[β5 · · · (2g + 1)]B ∗W2 = 1. (17)

Though this relation is not explicitly given in terms of Johnson generators, Johnson

points out that it allows us to eliminate the β-subchain map [β5 · · · (2g + 1)] in Ig,0.

In I3,0, this actually eliminates the only β-chain generator, leaving us with 35 straight

3-subchain generators and thus attaining the known lower bound on generators of Ig,0

(see Appendix A). Relation 16 also enables us to find a minimal generating set for

Ig,1, using a different argument again due to Johnson, which we will present in the

proof of Corollary 4.4 in the next section.
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α β γ

δ1 δ2

ε

Figure 16: Another S0,4 on Sg,1

4.2.2 Generalized B-relations

Despite its usefulness in realizing a minimal generating set for genus 3, Relation 16 is

unsatisfactory on two counts. First, we do not know how to write B ∗W2 explicitly as

a product of Johnson generators, and secondly, we still do not have relations strictly

amongst Johnson generators in Ig,1. We shall now generalize Johnson’s construction

in such a way that addresses these two issues. We will do so first by generalizing

Johnson’s “B-relations”, so called because of their dependence on the second meridian

B.

The obvious generalization is to let the second “inside” boundary component of

the S0,4 contain as much genus as we like, as Johnson does with the third “inside”

boundary component to obtain his Relation 16. In other words, we begin with the

S0,4 outlined in bold in Figure 16. To keep the pictures simple, we will not draw the

image of the curves under reflection in the plane of the page, but these curves are to

be understood when required.

Remark 4.3 Note that for such an S0,4 the left-most “inside” boundary component
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of the S0,4 must necessarily be the curve C2 as in Figure 16, since otherwise our

lantern curves will intersect the meridian B and the conjugation trick will not work.

We begin, as above, by writing down the two lantern relations corresponding to

the curves in Figure 16 to obtain:

AγAβAα = Aδ1Aδ2Aε. (18)

We assume that the curve δ1 encloses k′ holes and that the curve δ2 encloses at least

one hole. The BP-map Aγ is the only one in the relation which is not a Johnson

generator, and γ is disjoint from the curve B. Thus we are in a position to apply

the B-trick described in Section 4.2.1, and after conjugating Equation 18 by B, we

obtain:

Aγ(B ∗ Aβ)(B ∗ Aα) = (B ∗ Aδ1)Aδ2(B ∗ Aε).

Inverting Equation 18 and combining with the above yields:

A−1
α A−1

β (B ∗ Aβ)(B ∗ Aα) = A−1
ε A−1

δ1
(B ∗Aδ1)(B ∗ Aε)

since Aδ2 commutes with everything.

We can now make the following substitutions:

Aα = Wk′+1 = [23 · · · (2k′ + 3)]

Aβ = [45 · · · (2g + 1)]

Aδ1 = [45 · · · (2k′ + 3)]

Aε = Wg = [23 · · · (2g + 1)].
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For 1 ≤ k′ ≤ g − 2, we thus have in Ig,1:

W−1
k′+1[45 · · · (2g + 1)]−1[β5 · · · (2g + 1)](B ∗Wk′+1)

= W−1
g [45 · · · (2k′ + 3)]−1[β5 · · · (2k′ + 3)](B ∗Wg). (19)

In Ig,0, Wg drops out, leaving a somewhat simpler relation:

W−1
k′+1[45 · · · (2g+1)]−1[β5 · · · (2g+1)](B ∗Wk′+1) = [45 · · · (2k′+3)]−1[β5 · · · (2k′+3)]

To simplify the notation a bit, we let k = k′+1. We also let Pn denote the product

[45 · · · (2n + 1)]−1[β5 · · · (2n + 1)]. We can also understand Pn as the commutator

[[45 · · · (2n+1)], B−1], where [a, b] = a−1b−1ab. Note, however, that since B /∈ Ig,1, Pn

lies in the commutator subgroup of the full mapping class group, but not necessarily

in the commutator subgroup of Ig,1. Our relation in Ig,1 now becomes:

W−1
k Pg(B ∗Wk) = W−1

g Pk(B ∗Wg).

We shall refer to this relation as Rel(g, k), with 2 ≤ k ≤ g − 1.

Corollary 4.4 The Johnson generators [12 · · · (2q)] can be eliminated for 3 ≤ q ≤ g

Proof. The proof follows Johnson’s argument for eliminating the map [123456] from

the generating set of I3,1 given in Section 5 of [22]. According to Lemma 5 of [22],

the straight (2q − 1)-chain map [12 · · · (2q)] can be written as a product of B ∗Wq

and other straight (2q−1)-chain maps in Iq,1. But Rel(q, 2) allows us to write B ∗Wq

in terms of other Johnson generators. Since Iq,1 embeds in Iq+1,1 (see the proof of

Claim 2.4 in Section 2.3), we can therefore eliminate the generator [12 · · · (2q)] for all

3 ≥ q ≥ g.
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A useful rewriting of Rel(g, k) is the following:

B ∗Wg = P−1
k WgW

−1
k Pg(B ∗Wk).

In Rel(g, k), everything is a Johnson generator or a product of Johnson generators

with the exception of B∗Wg and B∗Wk. In order to obtain relations strictly amongst

Johnson generators, we again make use of the fact that Ig,1 embeds in Ig+1,1. If we

let k = 2 in Rel(g, k), two nice things happen. First of all, the relation simplifies since

P2 = 1. Secondly, as previously mentioned, B ∗W2 is some product of straight 3-

subchain maps in I2,1, and so we shall at least obtain some relation amongst Johnson

generators, if not an explicit one. We therefore eliminate B ∗Wg using Rel(g, 2):

B ∗Wg = WgW
−1
2 Pg(B ∗W2).

Similarly, we can eliminate B ∗Wk using Rel(k, 2):

B ∗Wk = WkW
−1
2 Pk(B ∗W2).

Note that in using Rel(k, 2) we are implicitly assuming that 2 ≤ k−1 and hence that

3 ≤ k ≤ g − 1. We now substitute Rel(k, 2) and Rel(g, 2) into Rel(g, k) to obtain:

W−1
k PgWkW

−1
2 Pk(B ∗W2) = W−1

g PkWgW
−1
2 Pg(B ∗W2).

This is now a relation amongst Johnson generators only, but even better, B∗W2 drops

out of the relation to give the following explicit relation amongst Johnson generators:

W−1
k PgWkW

−1
2 Pk = W−1

g PkWgW
−1
2 Pg.

If we now multiply on the right by the map W2, we can rewrite this relation in an

interesting form.
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Generalized B-Relation I In Ig,1, for g ≥ 4 and for 3 ≤ k ≤ g − 1, we have

(W−1
k ∗ Pg)(W

−1
2 ∗ Pk) = (W−1

g ∗ Pk)(W
−1
2 ∗ Pg).

There are precisely

(
g − 2

2

)

such relations in Ig,1 (all relations in Ig,1 are also

relations in Ig+1,1). We note that the first generalized B-Relation can also be under-

stood as a commutator relation inMg,1:

[B−1, [45 · · · (2k + 1)]WgW
−1
k [45 · · · (2g + 1)]] = 1.

We obtained the first generalized B-relation by setting k = 2, a value chosen only

for the relative simplicity of Rel(g, 2). We now investigate other possible choices. Let

us begin again with Rel(g, k), 2 ≤ k ≤ g − 1. Now let us choose any l such that

2 ≤ l ≤ k − 1 (and thus k ≤ 3 and g ≤ 4). Then we can use Rel(k, l):

B ∗Wk = P−1
l WkW

−1
l Pk(B ∗Wl).

and also Rel(g, l):

B ∗Wg = P−1
l WgW

−1
l Pg(B ∗Wl).

Substituting these back into Rel(g, k), and rewriting as with the first relation, we can

now state the most general possible form of the B-relations.

Generalized B-Relation II In Ig,1, for g ≥ 4 and for 2 ≤ l < k ≤ g− 1, we have

[W−1
k ∗ (PgP

−1
l )][W−1

l ∗ Pk] = [W−1
g ∗ (PkP

−1
l )][W−1

l ∗ Pg].

Note that the second generalized B-relation contains the first in the case l = 1 (recall

P2 = 1). There are

(
g − 1

3

)

such relations in Ig,1.
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We observe that these relations involve only consecutive subchain maps, which

represent a rather small portion of the Johnson generating set. Despite this, the

relations are of value in that they currently represent the only known relations in the

Torelli group other than commutativity arising from sets of pairwise disjoint curves.

Moreover, the following lemma of Dennis Johnson allows us to see that we may use

a single relation amongst consecutive subchain maps as the basis for obtaining many

more relations amongst other non-consecutive generators.

Lemma 4.5 (Johnson, [22])

(i) Cj commutes with the subchain map [i1i2 · · · in] if and only if both j, j + 1 ∈

i1, i2, . . . , in or both j, j + 1 /∈ i1, i2, . . . , in.

(ii) If j = im, but j + 1 6= im+1, then

C−1
j ∗ [i1 · · · j im+1 · · · in] = [i1 · · · (j + 1) im+1 · · · in].

(iii) If j + 1 = im, but j 6= im−1, then

Cj ∗ [i1 · · · im−1 (j + 1) · · · in] = [i1 · · · im−1 j · · · in].

The intricate notation required in the statement of the lemma unfortunately ob-

scures a simple idea which is best understood with some examples corresponding to

the three statements in the lemma:

(i) C3 commutes with the map [2345] since both 3 and 4 appear as indices in the

map. C3 also commutes with [6789] since neither 3 nor 4 appear. However, C3
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does not commute with [2357] since 3 appears without 4, nor with [1456] since

4 appears without 3.

(ii) C−1
3 ∗ [2367] = [2467].

(iii) C5 ∗ [β689] = [β589].

It is also worth noting that, for example, C5 ∗ [2345] is not known explicitly. We

know only that it is a product of straight subchain maps (by another lemma in [22]).

Conjugation thus gives us a convenient way to get from one subchain map to

another. This is our first clue that relations amongst consecutive subchain maps

are not as limited in scope as one might at first expect. In fact, Lemma 4.5 is a

powerful tool for creating new relations based on the generalized B-relations. Just

how powerful is demonstrated in the calculations in Appendix B, but we give a quick

illustration here. For example, in the first generalized B-relation, we could conjugate

by C−1
5 to turn W2 = [2345] into [2346], and then subsequently conjugate by C−1

6 to

replace [2346] with [2347]. We can continue on conjugating by C−1
j , increasing j by

one each time, until we reach j = 2k + 1. However, we need not stop at this point.

We must merely observe that conjugating by C−1
2k+1 will simply involve Wk and Pk

in the morphing of the relation. This is only the tip of the iceberg. As we shall see

in Appendix B, we can get a total of 33 relations simply by conjugating the lone

generalized B-relation on a genus 4 surface. A word of caution: we must be careful

in our application of Lemma 4.5. For example, backing up to where we had the map

[2346], we might be tempted to conjugate by C−1
4 in order to come up with a relation

involving [2356]. However, C−1
4 ∗ [β567] is not explicitly known, and so we do not get

an explicit relation.
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Counting the number of new relations we can obtain in Ig,1 from the generalized

B-relations in this way is possible, but we will skip over such a tedious computation.

It is only important to realize that each generalized B-relation stands for many, many

other relations.

4.2.3 Commutator relations

The B-relations are limited by the fact that a BP-map appearing in the initial lantern

relation which is not a Johnson generator must satisfy the condition that each of its

two defining curves be disjoint from the second meridian B. This is an extremely

restrictive condition, and so we next develop a technique whereby we are freed from

our dependence on positioning relative to the meridian B.

The basic idea is to start with a slightly different S0,4 on the surface and write

down the lantern relation. Any curve in the lantern relation which does not become

a Johnson generator when paired with its reflection in the plane of the page must

somehow be eliminated. For each such curve, we then seek another S0,4 in which the

curve plays a different role in the lantern relation, hoping to use it to eliminate these

“bad” BP-maps and obtain an explicit relation strictly amongst Johnson generators.

We begin with the S0,4 on a surface of genus 4 bounded by the curves C4, C6, δ,

and ε as shown in Figure 17. In Figures 18 - 21, the curve ε will be understood though

it is not explicitly drawn. Figure 18 illustrates the curves for a lantern relation on

this S0,4. As usual, we reflect through the plane of the page, invert the resulting

relation, and combine the two to obtain a relation amongst BP-maps. For curves

which are not Johnson generators, we continue the notation of the previous section.

For simplicity in the notation of later relations, we will use a different notation system
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C4 C6
δ

ε

Figure 17: An S0,4 on S4,1

B2

γ

δ

α

Figure 18: A lantern relation on S4,1

for any BP-maps which are Johnson generators, with the exception of the map Aε.

For example, in this section, B2 will be used to denote the BP-map corresponding

to the curve B2 shown in Figure 18 and its reflection through the plane of the page.

Therefore we can write down our relation as follows:

AγB2Aα = AδAε.

There are three maps in this relation which are not Johnson generators, namely,

Aα, Aγ, and Aδ. We can eliminate Aα with the lantern relation drawn in Figure 19,
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B1

B3
A1

α

Figure 19: Eliminating Aα

A2

γ

B1

B3

Figure 20: Eliminating Aγ

which yields the following BP-relation:

A1B3Aα = B1Aε

or solving for Aα:

Aα = B−1
3 A−1

1 B1Aε.

Similarly, we can eliminate Aγ and Aδ by using the lantern relations given in
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B2

A2

A1

δ

Figure 21: Eliminating Aδ

Figures 20 and 21, respectively. We get the following relations:

Aγ = B3AεB
−1
1 A−1

2

Aδ = B2AεA
−1
1 A−1

2 .

Substituting in for Aα, Aγ, and Aδ, we see that Aε drops out of the relation (the curve

ε is disjoint from all other curves involved in the relation). The result is:

B3B
−1
1 A−1

2 B2B
−1
3 A−1

1 B1 = B2A
−1
1 A−1

2 .

This relation looks a bit unwieldy at first, but after some reorganizing using the

fact that many pairs of these BP-maps commute, we realize that it is actually a

commutativity relation:

(B−1
1 A1B3)(A2B

−1
2 ) = (A2B

−1
2 )(B−1

1 A1B3).

or

[(B−1
1 A1B3), (A2B

−1
2 )] = 1. (20)
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B1

A1

B3

Figure 22: Curves defining the product B−1
1 A1B3

The curves involved within each of the two products in the commutator relation are

given in Figures 22 and 23, respectively. It is also interesting to rewrite Relation 20

as a “not quite commuting” relation:

(A2B
−1
2 )(A1B

−1
1 ) = (A1B

−1
1 )[B3 ∗ (A2B

−1
2 )].

It is worth noting that this relation cannot be obtained merely by a straightforward

applicatoin of the commutativity relations between the various pairs of Johnson gen-

erators.

This single elementary idea gives us a wealth of relations amongst Johnson gener-

ators. To begin with, we can simply turn the picture upside down to obtain another

commutator relation:

[A1B
−1
2 , A2B1B

−1
3 ] = 1.

We can also rewrite the relation using Johnson’s notation. We have:

A1 = [234567] = W3

A2 = [456789]
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A2

B2

Figure 23: Curves defining the product A2B
−1
2

εδ J2 J3

Figure 24: An S0,4 on a higher genus surface

B1 = [2345] = W2

B2 = [4567]

B3 = [6789]

Lemma 4.5 can also be applied to this commutativity relations to obtain new

commutativity relations amongst certain non-consecutive straight subchain maps.

Furthermore, we can find analogous relations in higher genus by applying the same

idea to the S0,4 shown in Figure 24.

If we define analogous curves α and γ, and introduce the curves J1 and J4 as
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α γ

J2 J3J1 J4

Figure 25: Lantern curves

shown in Figure 25, we can write down the following relation:

AγB2Aα = AδAεJ2J3

Now we simply find three new lantern relations analogous to those given in Fig-

ures 19, 20, and 21. The only difference is that now we have the curves Ji in our

relations. We find that we can make the following substitutions:

Aα = B−1
3 A−1

1 B1AεJ3J4

Aγ = B3AεB
−1
1 A−1

2 J1J2

Aδ = B2AεA
−1
1 A−1

2 J1J4

Noting that Aε and the Ji commute with every map in these lantern relations, we

see that these factors drop out of the relation, and we are left with the precise analog

of our genus 4 commutator relation:

General Commutator Relation In Ig,1, for g ≥ 4 and for the curves shown in

Figure 26, we have

[(B−1
1 A1B3), (A2B

−1
2 )] = 1.
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A1
A2

B1
B2 B3

Figure 26: Curves in the generalized commutator relation

We need some notation at this point, so we assume that Bi encloses the mth
i hole

to the (mi+2 − 1)th hole. In other words, Bi “begins” with the mth
i hole and ends

before the mth
i+2 hole. Thus our curves represent the following Johnson generators:

A1 = [(2m1)(2m1 + 1) · · · (2m4)]

A2 = [(2m2)(2m2 + 1) · · · (2m5)]

B1 = [(2m1)(2m1 + 1) · · · (2m3)]

B2 = [(2m2)(2m1 + 1) · · · (2m4)]

B3 = [(2m3)(2m1 + 1) · · · (2m5)]

We can of course use Lemma 4.5 on all these relations to obtain morelations.

Remark 4.6 Johnson found other lantern relations amongst elements of Ig,1. For

example, also in [22], he finds that

[1234][1256 · · ·2g](B ∗ [345 · · ·2g]) = [56 · · ·2g][123 · · ·2g].

This relation is not useful for our present purpose since B ∗ [345 · · ·2g] is not a

Johnson generator. All efforts to use either of our two methods introduced are in
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vain, however. We have no recursively defined relation with which to take advantage

of the embeddings of Ig,1 in higher genus groups, as in Section 4.2.2. After some

calculations, one also finds that when attempting to apply the technique of letting

“bad” curves play different roles in other lantern relations as in Section 4.2.3, one

simply runs out of room on the surface. Thus the real trick to finding relations

amongst Johnson generators is to find a “good” S0,4 in the first place.

4.3 Symmetry of straight chain maps and further questions

There is a great deal of interesting geometry in the Johnson generating set. As one

might guess from the symmetry of the straight chain itself, it turns out that each

straight subchain map TαT
−1
β has the property that rotation through 180 degrees

about the axis shown in Figure 27 takes the curve α onto β (see, for instance, the

straight 3-subchain given in Figure 11). Let us call this rotation j. The centralizer

of j in Mg,b,n is known as the hyperelliptic subgroup of Mg,b,n and is known to be

linear ([3], [29]). Now, let A denote a Johnson generator TαT
−1
β . It is not true that

A commutes with j; however we do have the property that jAj−1 = A−1. It also

has the immediate consequence that the product jA is itself an involution and also

that A = [T−1
α , j]. This is an intriguing property in its own right, and, since Johnson

shows in [22] that I3,0 is generated by 35 straight 3-subchain maps (given explicitly in

Appendix A), it piques one’s curiosity regarding the linearity question for the Torelli

group in genus 3. One also could hope to generalize any result along these lines to

higher genus to a certain extent, since the vast majority of Johnson generators are

straight subchain maps.
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j

Figure 27: The involution j

Beyond the linearity question, there are many interesting questions which remain

unanswered regarding the Torelli group. For example, the question of finite presen-

tation remains open. Is there a more useful generating set than Johnson’s, one that

would perhaps lend itself better to the finite presentation question? The question

of a minimal generating set also remains of interest. What is a minimal generating

set for Ig,1 or Ig,0 when g ≥ 4? Can Johnson’s cubic lower bound on the number

of generators of Ig,1 and Ig,0 be realized? Failing that, can we find a better lower

bound? More particularly, can the β-subchain maps be eliminated from Johnson’s

generating set in higher genus? Do the straight 3-chain maps suffice to generate Ig,0

for g ≥ 4?

This last question warrants a bit of discussion. First of all, Johnson’s proof of his

finite generating set relies on the fact that his set contains at least one 3-subchain map.

Since Ig,0 is normal inMg,0, and by Lemma 4.5, we know that if we have one straight

3-subchain map in Ig,0, we have them all, and likewise one β 3-subchain map gives us

all β 3-subchain maps. Thus if Johnson’s method of proof could somehow be adapted

to find a smaller generating set from amongst his generators, the 3-subchain maps

involved. The size of this set is reasonable, being on the order of g4, and we have seen
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that straight 3-chain maps suffice to generate I3,0. This bit of speculation of course

leads to another question: is there a generating set better suited than Johnson’s to

attaining a minimal set?

Furthermore, we might ask what the intersection of the Torelli group is with other

interesting subgroups of the mapping class group, such as the handlebody subgroup,

or the Crisp-Paris subgroups [10], which are right-angled Artin groups (and hence

linear) generated by squares of certain Dehn twists? As discussed in Section 3, the

former question arises in the context of classifying Heegaard splittings of 3-manifolds,

yet another context in which better knowledge of the Torelli group could have vast

implications.

These and many other questions must be answered if enormous potential of the

Torelli group is to be realized fully.
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A Johnson’s generators in genus 3

We present here a complete and explicit list of all Johnson’s generators for both I3,1

and I3,0, with a summary of relevant facts from Section 4.

1. In the genus 3 case, Johnson’s generators are all straight subchain maps with

the exception of a single β-subchain map.

2. We first give the 5-subchain maps (six indices), followed by the 3-subchain maps

(four indices).

3. The straight 5-subchain maps listed all lie in the kernel of the natural map

Ig,1 → Ig,0.

4. Since all straight subchain maps have rotational symmetry, as discussed in Sec-

tion 4.3, for such maps we only give one of the two curves defining the BP-map.

The second can then be obtained by applying the involution j shown in Fig-

ure 27.

5. In the case of the β-subchain, both curves are drawn.

6. The 36 3-subchain maps together with all of the 5-subchain maps but the first

([123456]) represent a minimal generating set for I3,1.

7. The 35 straight 3-subchain maps (which have four indices) shown here represent

a minimal generating set for I3,0.
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[123456] [123457]

[123467] [123567]

[124567] [134567]

[234567] = W3
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[1234] [1235]

[1236] [1237]

[1245] [1246]

[1247] [1256]
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[1257] [1267]

[1345] [1346]

[1347] [1356]

[1357] [1367]
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[1456] [1457]

[1467] [1567]

[2345] = W2 [2346]

[2347] [2356]
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[2357] [2367]

[2456] [2457]

[2467] [2567]

[3456] [3457]
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[3467] [3567]

[4567] [β 567]
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B Some calculations of relations in low genus

Before getting started with calculations in genus 4, we note that Johnson’s Equa-

tion 16 gives us a single relation in I3,0, though it is not explicit since we only know

that B ∗W2 is a product of straight 3-chains in I2, 1. The relation is as follows:

W−1
2 [4567]−1[β567]B ∗W2 = 1.

Since mapping class groups of closed surfaces do not embed in higher genus mapping

class groups, this does not give us an explicit form for B∗W2. As previously discussed

in Section 4.2.1, it does allow us to eliminate the generator [β567] from Johnson’s

generating set in I3,0. Note that we could rewrite the above relation in the notation

of Section 4 as follows:

W−1
2 P3B ∗W2 = 1

or equivalently,

P3 = [W2, B
−1]

We also have the analogous relation in Ig,0:

Pg = [W ,
2B ∗W2].

Turning now to the surface with one boundary component, we calculate all rela-

tions arising from the generalized B-relation in the simplest case, I4,1.

There is only one generalized B-relation in genus 4, with k = 3 (and l = 2):

(W−1
3 ∗ P4)(W

−1
2 ∗ P3) = (W−1

4 ∗ P3)(W
−1
2 ∗ P4)

. We write this out in Johnson’s notation so that we can find all conjugates:

[234567]−1 ∗ ([456789]−1[β56789]) · [2345]−1 ∗ ([4567]−1[β567])

= [23456789]−1 ∗ ([4567]−1[β567]) · [2345]−1 ∗ ([456789]−1[β56789]) (1)
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Conjugate by C−1
5 and then by C−1

6 to obtain the next two relations:

[234567]−1 ∗ ([456789]−1[β56789]) · [2346]−1 ∗ ([4567]−1[β567])

= [23456789]−1 ∗ ([4567]−1[β567]) · [2346]−1 ∗ ([456789]−1[β56789]) (2)

[234567]−1 ∗ ([456789]−1[β56789]) · [2347]−1 ∗ ([4567]−1[β567])

= [23456789]−1 ∗ ([4567]−1[β567]) · [2347]−1 ∗ ([456789]−1[β56789]) (3)

Now conjugate by C−1
7 , which involves four more factors, with result:

[234568]−1 ∗ ([456789]−1[β56789]) · [2348]−1 ∗ ([4568]−1[β568])

= [23456789]−1 ∗ ([4568]−1[β568]) · [2348]−1 ∗ ([456789]−1[β56789]) (4)

Then conjugate by C−1
8 :

[234569]−1 ∗ ([456789]−1[β56789]) · [2349]−1 ∗ [4569]−1[β569])

= [23456789]−1 ∗ ([4569]−1[β569]) · [2349]−1 ∗ ([456789]−1[β56789]) (5)

Note that the genus 4 relations embed in all higher genus, and in that case, we could

continue on in this way until running out of genus.

We now work on the “middle” of the indices. Beginning with Relation 4 we have

some room to maneuver inside the larger factors. First we conjugate Relation 4 by

C−1
6 and then by C−1

5 :

[234578]−1 ∗ ([456789]−1[β56789]) · [2348]−1 ∗ ([4578]−1[β578])

= [23456789]−1 ∗ ([4578]−1[β578]) · [2348]−1 ∗ ([456789]−1[β56789]) (6)
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[234678]−1 ∗ ([456789]−1[β56789]) · [2348]−1 ∗ ([4678]−1[β678])

= [23456789]−1 ∗ ([4678]−1[β678]) · [2348]−1 ∗ ([456789]−1[β56789]) (7)

We can create even more relations from Relation 5 by conjugating by C−1
6 , C−1

7 , C−1
5 ,

and C−1
6 (in that order) to obtain, the following four relations, respectively:

[234579]−1 ∗ ([456789]−1[β56789]) · [2349]−1 ∗ ([4579]−1[β579])

= ([23456789]−1 ∗ [4579]−1[β579])([2349]−1 ∗ [456789]−1[β56789]) (8)

[234589]−1 ∗ ([456789]−1[β56789]) · [2349]−1 ∗ ([4589]−1[β589])

= [23456789]−1 ∗ ([4589]−1[β589]) · [2349]−1 ∗ ([456789]−1[β56789]) (9)

[234689]−1 ∗ ([456789]−1[β56789]) · [2349]−1 ∗ ([4689]−1[β689])

= [23456789]−1 ∗ ([4689]−1[β689]) · [2349]−1 ∗ ([456789]−1[β56789]) (10)

[234789]−1 ∗ ([456789]−1[β56789]) · [2349]−1 ∗ ([4789]−1[β789])

= [23456789]−1 ∗ ([4789]−1[β789]) · [2349]−1 ∗ ([456789]−1[β56789]) (11)

At this point, we are stuck on the 4’s, i.e., we cannot conjugate by C−1
4 to obtain,

for example, [2359] in place of [2349], since C−1
4 clashes with the β-subchain maps. So

we turn our attention to the lower indices. We begin again with the original relation:

[234567]−1 ∗ ([456789]−1[β56789]) · [2345]−1 ∗ ([4567]−1[β567])

= [23456789]−1 ∗ ([4567]−1[β567]) · [2345]−1 ∗ ([456789]−1[β56789])
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We now conjugate by C1 and then by C2, which involves three factors.

[134567]−1 ∗ ([456789]−1[β56789]) · [1345]−1 ∗ ([4567]−1[β567])

= [13456789]−1 ∗ ([4567]−1[β567]) · [1345]−1 ∗ ([456789]−1[β56789]) (12)

[124567]−1 ∗ ([456789]−1[β56789]) · [1245]−1 ∗ ([4567]−1[β567])

= [12456789]−1 ∗ ([4567]−1[β567]) · [1245]−1 ∗ ([456789]−1[β56789]) (13)

We can also conjugate Relation 3 by C1 and then by C2, and then do the same

for Relation 3, to obtain four more relations:

[134567]−1 ∗ ([456789]−1[β56789]) · [1346]−1 ∗ ([4567]−1[β567])

= [13456789]−1 ∗ ([4567]−1[β567]) · [1346]−1 ∗ ([456789]−1[β56789]) (14)

[124567]−1 ∗ ([456789]−1[β56789]) · [1246]−1 ∗ ([4567]−1[β567])

= [12456789]−1 ∗ ([4567]−1[β567]) · [1246]−1 ∗ ([456789]−1[β56789]) (15)

[134567]−1 ∗ ([456789]−1[β56789]) · [1347]−1 ∗ ([4567]−1[β567])

= [13456789]−1 ∗ ([4567]−1[β567]) · [1347]−1 ∗ ([456789]−1[β56789]) (16)

[124567]−1 ∗ ([456789]−1[β56789]) · [1247]−1 ∗ ([4567]−1[β567])

= [12456789]−1 ∗ ([4567]−1[β567]) · [1247]−1 ∗ ([456789]−1[β56789]) (17)
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We finish off the generalized B-relations by repeating this for Relations 4 - 11.

[134568]−1 ∗ ([456789]−1[β56789]) · [1348]−1 ∗ ([4568]−1[β568])

= [13456789]−1 ∗ ([4568]−1[β568]) · [1348]−1 ∗ ([456789]−1[β56789]) (18)

[124568]−1 ∗ ([456789]−1[β56789]) · [1248]−1 ∗ ([4568]−1[β568])

= [12456789]−1 ∗ ([4568]−1[β568]) · [1248]−1 ∗ ([456789]−1[β56789]) (19)

[134569]−1 ∗ ([456789]−1[β56789]) · [1349]−1 ∗ [4569]−1[β569])

= [13456789]−1 ∗ ([4569]−1[β569]) · [1349]−1 ∗ ([456789]−1[β56789]) (20)

[124569]−1 ∗ ([456789]−1[β56789]) · [1249]−1 ∗ [4569]−1[β569])

= [12456789]−1 ∗ ([4569]−1[β569]) · [1249]−1 ∗ ([456789]−1[β56789]) (21)

[134578]−1 ∗ ([456789]−1[β56789]) · [1348]−1 ∗ ([4578]−1[β578])

= [13456789]−1 ∗ ([4578]−1[β578]) · [1348]−1 ∗ ([456789]−1[β56789]) (22)

[124578]−1 ∗ ([456789]−1[β56789]) · [1248]−1 ∗ ([4578]−1[β578])

= [12456789]−1 ∗ ([4578]−1[β578]) · [1248]−1 ∗ ([456789]−1[β56789]) (23)

[134678]−1 ∗ ([456789]−1[β56789]) · [1348]−1 ∗ ([4678]−1[β678])

= [13456789]−1 ∗ ([4678]−1[β678]) · [1348]−1 ∗ ([456789]−1[β56789]) (24)



105

[124678]−1 ∗ ([456789]−1[β56789]) · [1248]−1 ∗ ([4678]−1[β678])

= [12456789]−1 ∗ ([4678]−1[β678]) · [1248]−1 ∗ ([456789]−1[β56789]) (25)

[134579]−1 ∗ ([456789]−1[β56789]) · [1349]−1 ∗ ([4579]−1[β579])

= ([13456789]−1 ∗ [4579]−1[β579])([1349]−1 ∗ [456789]−1[β56789]) (26)

[124579]−1 ∗ ([456789]−1[β56789]) · [1249]−1 ∗ ([4579]−1[β579])

= ([12456789]−1 ∗ [4579]−1[β579])([1249]−1 ∗ [456789]−1[β56789]) (27)

[134589]−1 ∗ ([456789]−1[β56789]) · [1349]−1 ∗ ([4589]−1[β589])

= [13456789]−1 ∗ ([4589]−1[β589]) · [1349]−1 ∗ ([456789]−1[β56789]) (28)

[124589]−1 ∗ ([456789]−1[β56789]) · [1249]−1 ∗ ([4589]−1[β589])

= [12456789]−1 ∗ ([4589]−1[β589]) · [1249]−1 ∗ ([456789]−1[β56789]) (29)

[134689]−1 ∗ ([456789]−1[β56789]) · [1349]−1 ∗ ([4689]−1[β689])

= [13456789]−1 ∗ ([4689]−1[β689]) · [1349]−1 ∗ ([456789]−1[β56789]) (30)

[124689]−1 ∗ ([456789]−1[β56789]) · [1249]−1 ∗ ([4689]−1[β689])

= [12456789]−1 ∗ ([4689]−1[β689]) · [1249]−1 ∗ ([456789]−1[β56789]) (31)
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[134789]−1 ∗ ([456789]−1[β56789]) · [1349]−1 ∗ ([4789]−1[β789])

= [13456789]−1 ∗ ([4789]−1[β789]) · [1349]−1 ∗ ([456789]−1[β56789]) (32)

[124789]−1 ∗ ([456789]−1[β56789]) · [1249]−1 ∗ ([4789]−1[β789])

= [12456789]−1 ∗ ([4789]−1[β789]) · [1249]−1 ∗ ([456789]−1[β56789]) (33)

The reader who attempts to perform such a calculation in higher genus or for the

commutativity relations will quickly appreciate the desirability of using a computer

for such a task.
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