Lecture 2
Teichmüller theory + Mapping class groups

Teichmuiller space of marked tori
Last lecture: universal cover of a torus is \mathbb{C} Conformal automorphism of $\mathbb{C}: z \rightarrow a z+b$
For $z \rightarrow a z+b$ to be fixed pt free: $a=1$ and $b \neq 0$
\Rightarrow a conformal torus given by \mathbb{C} / Λ where $\Lambda=\mathbb{Z} \oplus \mathbb{Z}$
Choosing generators, ass use they give translations $z \rightarrow z+s$ and $z \rightarrow z+t$
where the ordered basis $\{s, t\}$ gives orientation of \mathbb{C}

Teichmuiller space of marked tori
The conformal tori
$\mathbb{C} /\langle z \rightarrow z+s, z \rightarrow z+t\rangle=\mathbb{C} /\langle z \rightarrow z+1, z \rightarrow z+t / s\rangle$
Set $\tau=\frac{t}{s}$ and note $\operatorname{Im}(\tau)>0$
Thus $\operatorname{Teich}\left(S_{1}\right)=1 H=\{\tau \in \mathbb{C} / \operatorname{lm} \tau>0\}$
Change of marking: change ordered basis for $\mathbb{Z} \oplus \mathbb{Z}$

$$
\simeq S L(2, \mathbb{Z})
$$

Moduli space of tori
Suppose $\{(a, c),(b, d)\}$ is an orclered basis of λ.
Then it acts by $z \rightarrow z+a+c \tau$ and $z \rightarrow z+b+d \tau$
Up to a bi-holomorphism

$$
\begin{aligned}
& \text { Up to a bi-holomorphism right action by }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \tau^{\prime}=\frac{b+d \tau}{a+c \tau} \\
& M_{1}=S L(2, \mathbb{Z}) \backslash H
\end{aligned}
$$

mapping class group

Elliptic Curves
Suppose that $\Lambda \subseteq \mathbb{C}$ is a lattice orbit of 0 under Suppose that $M(\mathbb{C} / \Lambda)$ is the field of meromorphic fines.
Lifting to \mathbb{C}, f in $M(\mathbb{C} / \Lambda)$ gives a doubly periodic fie on \mathbb{C}.
Weierstrass P - function

$$
\begin{aligned}
& p(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right) \\
& p^{\prime}(z)=-\frac{2}{z^{3}}+\sum_{\lambda \in \Lambda}-\frac{2}{(z-\lambda)^{3}}
\end{aligned}
$$

Suppose that $\Lambda=\mathbb{Z} \alpha+\mathbb{Z}_{\beta}, \quad \alpha, \beta \in \mathbb{C}^{*}$

Elliptic Curves

$$
p(z+\alpha)=p(z)+\int_{\gamma(z, z+\alpha)} p^{\prime}(z)=p(z)+a
$$

any contour that avoids

$$
p(z+\beta)=p(z)+b
$$ poles

Note $p(z)=p(-z)$ and so $p(-\alpha / 2)=p(\alpha / 2) \Rightarrow a=0$ similarly $b=0 \Longrightarrow p$ is doubly periodic
Theorem: Any doubly periodic function is a rational function of p, p^{\prime}

Elliptic Curves
Theorem: The map $\mathbb{C} \xrightarrow{\pi} \mathbb{C} p^{2}$ given by $\pi(z)=\left(p(z), p^{\prime}(z)\right)$ gives an isomorphism between \mathbb{C} / Λ and

$$
y^{2}=4 x^{3}+a x+b
$$

where a and b are related to $p(z)$ by Eisenstein series.
Thus M_{1} can also be thought of as the moduli space of elliptic curves.

Holomorphic 1 forms on tori
By the maximum principle, any holo. Inc on \mathbb{C} / λ is constant.
The form $d z$ on \mathbb{C} is translation invariant so descends to a holomorphic 1 -form on \mathbb{C} / λ.

$$
w=f d z
$$

Let ω be any hole 1 -form on \mathbb{C} / λ, them $\omega / d z$ defines a holomorphic fac $\Rightarrow \omega=$ const $\cdot d z$
Note that Rev and In define vertical and horizontal dir.

$$
\Rightarrow \Omega^{\prime} M_{1}=H(0)=S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R})
$$

notation

Teichmüller theory
Suppose that $\left(S, Z_{L}\right)$ is a finite-type surface L finite set of pts
A marked Riemann surface is a Riemann surface along with a homeomorphism $\phi:(S, Z) \longrightarrow(X, Z(X))$.
Two marked Riem. surfaces $\phi:(s, z) \longrightarrow(x, z(x))$ and $\phi^{\prime}:(s, Z) \rightarrow\left(x^{\prime}, Z\left(x^{\prime}\right)\right)$ if there exists a holomorphic map $h:\left(X^{\prime}, Z\left(X^{\prime}\right)\right) \rightarrow(X, Z(x))$ st $\phi^{-1} \circ h \circ \phi^{\prime}:(s, Z) \rightarrow(s, Z)$ is isotopic to iclentity

Teichmüller theory
Teich $(S, Z)=$ space of marked Riemann surfaces homeomorphic to $(S, Z) / \sim$

Mapping class gre $=$ orient. pres. diffeos of (S, Z) modulo isotopy

$$
\operatorname{Mod}(s, z)
$$

Facts on Teich (S, Z) by changing the marking by pre-composition: suppose α is an orient.pres.diffeo new marking by $\phi \cdot \alpha$
Moduli space $M(S, Z)=\operatorname{Teich}(S, Z) / \operatorname{Mod}(S, Z)$

Moduli spaces of holomorphic 1-forms
It is the space of un-marked translation surfaces.
Riemann-Roch:
Suppose that ω is holomorphic 1 -form on a Rem surface X. Let $p_{1} \ldots, p_{j}$ be zeroes of w. Recall that cone angle at p_{i} is $2 \pi\left(K_{i}+1\right)$ where K_{i} is the order of the zero at p_{i}. Then

$$
\sum k_{i}=2 g-2
$$

Moduli spaces of holomorphic 1-forms
The moduli space of holomorphic 1-forms is stratified by the tuple $\left(k_{1}, \ldots, k_{j}\right)$.

Strata are not connected; each stratum has at most 3-components

Classification of components: Kontsevich-Zorich

Quadratic differentials
Deformation of complex structure by quasi-conformal maps
Conformal maps \rightarrow Cauchy Riemann equations

$$
\partial f / \partial \widetilde{z}=0
$$

Quasi- conformal maps \rightarrow Beltrami equation

$$
\frac{\partial f}{\partial \bar{z}}=\mu(z) \frac{\partial f}{\partial z}
$$

Beltrami coefficient/differential

Quadratic differentials
Dilation / quasi-conformality constant

$$
K=\frac{1+|\mu(z)|}{1-|\mu(z)|} \underbrace{\cup}_{\text {axis }} \text { ratio of major to minor }
$$

Measurable Riemann mapping
$\mathbb{I} \xrightarrow{\mu} \mathbb{C} \quad\|\mu\|_{\infty}<1$ and u measurable then there exists a quasi-conf homeo $\mathbb{I D} \xrightarrow{f} \mathbb{C}$ with $u(f)=\mu$

Extremal quasi-conformal maps: Given two homed. Riemann surfaces give an extremal quasi-conf. map between them.

Quadratic differentials
Teichmüller's theorem: Given marked Rem. surfaces $(x, Z(x))$ and $\left(x^{\prime}, Z\left(x^{\prime}\right)\right)$ there is a unique extremal quasi-conf map $f:(X, Z(x)) \rightarrow\left(X^{\prime}, Z\left(x^{\prime}\right)\right)$.
Moreover, there is a quaclratic diff q on X and q^{\prime} on Y s.t f is given by the diagonal element $\left[\begin{array}{ll}e^{\tau} & 0 \\ 0 & e^{-\tau}\end{array}\right]$ acting on the half-translation surface q and its image is q^{\prime}.

Moduli spaces of quadratic differentials
This is the space of unmarked half-translation surfaces.
This is stratified by the cone angle data at singularities $\underline{k}=\left(k_{1}, \ldots, k_{j}\right)$ such that $\sum\left(k_{i}-2\right)=4 g-4$

Classification of connected components of strata:
Kontsevich-Zorich, Lanneau, Chen-Möller
Invariants: abelian or quadratic, hyper-ellipticity, odd/even spin for abelian with k_{i} even, regularity

Examples
Local calculation: consider 1 -form $z d z$ in the neighbourhood of zero in \mathbb{C}.
Define $\phi(w)=\int_{0}^{w} z d z=\frac{w^{2}}{2}$
\Rightarrow a branched covering of degree 2
Similarly consider quachatic differential $z d z^{2}$ in nbhol of zero. Then by introducing a slit we can form $\sqrt{z} d z$ on the complement
$\Rightarrow \phi(w)=z^{3 / 2} \Longrightarrow$ each hat plane mapped to

Examples
Genus 2
stratum $H(1,1)$

holomorphic 1-form with a single zero of order two
Stratum: $H(2)$

Examples
Genus 2

A holomorphic quadratic differential with two zeroes of order 2 (local str. $z^{2} d z^{2}$)
Stratum : $Q(2,2)$

Mapping class group
scissors congruence

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Anosov map
of the torus

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Mapping class group

$\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ twists twice in B and once in C

golden L - shaped
$\left[\begin{array}{ll}1 & \frac{1+\sqrt{5}}{2}\end{array}\right]$ twists once in both horizontal cylinders

Next Week
Nielsen- Thurston classification for mapping classes.

