

Teichmüller space of marked tori
Last lecture : universal cover of a torus is C
Conformal automorphism of C :
$$z \rightarrow az+b$$

For $z \rightarrow az+b$ to be fixed pt free : $a=1$ and $b \neq 0$
 \Rightarrow a conformal torus given by C/A where $A=Z \oplus Z$
Choosing generators, assume they give translations
 $z \rightarrow z+s$ and $z \rightarrow z+t$
where the ordered basis $\{s,t\}$ gives orientation of C

Teichmüller space of marked tori The conformal tori $\mathbb{C}/\langle z \rightarrow z+s, z \rightarrow z+t \rangle = \mathbb{C}/\langle z \rightarrow z+l, z \rightarrow z+t/s \rangle$ Set $\tau = \pm$ and note $\operatorname{Im}(\tau) > 0$ Thus Teich (S,) = IH = { TEC/ImT>0 } Change of marking : change ordered basis for $\mathbb{Z} \oplus \mathbb{Z}$ \cong $SL(2,\mathbb{Z})$.

Moduli space of tori
Suppose
$$\{(a,c), (b,d)\}$$
 is an ordered basis of Λ .
Then it acts by $z \rightarrow z + a + ct$ and $z \rightarrow z + b + dz$
Up to a bi-holomorphism
 $T' = b + dT$ right action by $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 $a + ct$
 $M_1 = SL(2, Z) \setminus H$
mapping class group.

Elliptic Curves
Suppose that
$$\Lambda \subseteq \mathbb{C}$$
 is a lattice work translations
Suppose that $M(\mathbb{C}/\Lambda)$ is the field of meromorphic fires.
Lifting to \mathbb{C} , f in $M(\mathbb{C}/\Lambda)$ gives a doubly periodic fine on \mathbb{C} .
Meienstrass P-function
 $p(\Xi) = \frac{1}{\Xi^2} + \sum_{\lambda \in \Lambda} \left(\frac{1}{(\Xi - \lambda)^2} - \frac{1}{\lambda^2}\right)$
 $p'(\Xi) = -\frac{2}{\Xi^3} + \sum_{\lambda \in \Lambda} -\frac{2}{(\Xi - \lambda)^3}$
Suppose that $\Lambda = \mathbb{Z} \times + \mathbb{Z} \times g$, $\chi, \chi \in \mathbb{C}^*$

Elliptic Curves

$$p(z+\alpha) = p(z) + \int p'(z) = p(z) + \alpha$$

$$r(z, z+\alpha)$$
any contour that avoids
$$p(z+\beta) = p(z) + b$$

$$poles$$
Note $p(z) = p(-z)$ and so $p(-\alpha/2) = p(\alpha/2) \Rightarrow \alpha = 0$
similarly $b = 0 \Rightarrow p$ is doubly periodic
Theorem: Any doubly periodic function is a rational
function of P, p'

Elliptic Curves Theorem: The map $\mathbb{C} \xrightarrow{\mathcal{T}} \mathbb{CP}^2$ given by $\mathcal{T}(z) = (p(z), p'(z))$ gives an isomorphism between \mathbb{C}/Λ and $y^2 = 4x^3 + ax + b$ where a and b are related to p(z) by Eisenstein series. Thus M, can also be thought of as the moduli space of elliptic curves.

Teichmüller theory Suppose that (S, Z) is a finite-type surface L finite set of pts A marked Riemann surface is a Riemann surface along with a homeomorphism $\phi: (S,Z) \longrightarrow (X,Z(X))$. Two marked Riem. surfaces $\phi:(S,Z) \to (X,Z(X))$ and $\phi':(S,Z) \to (X',Z(X'))$ if there exists a holomorphic map $h:(X',Z(X')) \to (X,Z(X))$ s.t $\phi^{-1} \circ h \circ \phi' : (S, Z) \rightarrow (S, Z)$ is isotopic to identity

Moduli spaces of holomorphic 1-forms
It is the space of un-marked translation surfaces.
Riemann-Roch:
Suppose that
$$\omega$$
 is holomorphic 1-form on a Riem
surface X. Let $p_1 \dots p_j^*$ be zeroes of ω . Recall
that cone angle at p_i^* is $2\pi(\kappa_i + 1)$ where κ_i^*
is the order of the zero at p_i^* . Then
 $\sum \kappa_i^* = 2g - 2$

Quadratic differentials
Deformation of complex structure by guasi-conformal
maps
Conformal maps
$$\rightarrow$$
 Cauchy Riemann equations
 $\Im f/_{\partial \overline{z}} = 0$
Quasi-conformal maps \rightarrow Beltrami equation
 $\frac{\Im f}{\partial \overline{z}} = u(\overline{z}) \frac{\Im f}{\partial \overline{z}}$
Beltrami coefficient / differential

Quadratic differentials
Dilation / quasi- conformality constant

$$K = \underbrace{1 + lu(E)l}_{1 - lu(E)l} \quad ratio of major to minor
axis
Measurable Riemann mapping
D M C II ulloo < 1 and u measurable
then there exists a quasi- conf homeo D + C
with $u(f) = u$
Extremal quasi- conformal maps: Given two homeo.
Riemann surfaces give an extremal quasi- conf. map$$

between them.

Quadratic differentials

Teichmüller's theorem: Given marked Riem surfaces

$$(X, Z(X))$$
 and $(X', Z(X'))$ there is a unique
extremal guasi-conf map $f: (X, Z(X)) \rightarrow (X', Z(X))$.

Moduli spaces of quadratic differentials
This is the space of unmarked half-translation surfaces.
This is stratified by the cone angle data at singularities

$$\underline{\kappa} = (\kappa_1, ..., \kappa_j)$$
 such that $\underline{Z}(\kappa_i - 2) = 4g - 4$
Classification of connected components of strata:
Kontsevich - Zorich, Lanneau, Chen-Möller
Trivariants: abelian or quadratic, hyper-ellipticity,
odd/even spin for abelian with κ_i even, regularity

Examples
Local calculation: consider 1-form
$$\mathbb{Z} d\mathbb{Z}$$
 in the
meighbourhood of zero in C.
Define $\phi(w) = \int_{0}^{W} \mathbb{Z} d\mathbb{Z} = \frac{w^{2}}{2}$
 \Rightarrow a branched covering of degree 2
Similarly consider quachastic differential $\mathbb{Z} d\mathbb{Z}^{2}$ in nobed of zero.
Then by introducing a slit we can form $\sqrt{\mathbb{Z}} d\mathbb{Z}$ on
the complement each half plane mapped to
 $\Rightarrow \phi(w) = \mathbb{Z}^{3/2} \Longrightarrow$ sector with angle $3\mathbb{T}/2$

