

Lecture slides posted on my webpage maths.gla.ac.uk/~vgadre/

Recap
$$(S,Z)$$
 marked $(X,Z(X))$
Teich space = space of marked Riemann surfaces
Mapping class grp = orient. pres. diffeos of the surface
inotation moclulo isotopy
Mod — acts on Teich by changing the marking.
Moduli space of Riemann surfaces M
= Teich / Mod $(S,Z) \rightarrow (X,Z(X))$
 $(S,Z) \rightarrow (X,Z(X))$

Classification in
$$SL(2,\mathbb{Z}) = Mod(S_1)$$

(a b) acts on CP^1 by $a\mathbb{Z}+b$
 $C\mathbb{Z}+d$
Solve for fixed points $a\mathbb{Z}+b = \mathbb{Z}$
 $\mathbb{Z}+d$
 $\Rightarrow c\mathbb{Z}^2 + (d-a)\mathbb{Z} - b = 0$ and so solves
 $\mathbb{Z} = -(d-a)\pm \sqrt{(d-a)^2 + 4bc}$
 $= -(d-a)\pm \sqrt{(d+a)^2 - 4}$
Note $d+a = trace$

Classification in SL(2,Z) = Mod(S,) SL(2, R) - With real entries, if 1) |Tr(A)| <2 then roots complex, one in IH and another in IH = { Z | 9m Z <0 } elliptic 2) |Tr(A)| = 2 then a repeated root on \mathbb{R} A is parabolic and can be conjugated in $SL(2,\mathbb{Z})$ to [1×] 3) |Tr(A) > 2 then distinct real roots. A is hyperbolic

Classification in
$$SL(2,\mathbb{Z}) = Mod(S_1)$$

Eigenvalues for linear action of A on \mathbb{R}^2
charact. poly $\lambda^2 - Tr(A)\lambda + 1 = 0$
 $\Rightarrow \lambda = Tr(A) \pm \sqrt{(Tr(A))^2 - 4}$
2
1) $|Tr(A)| < 2 \Rightarrow \lambda, \lambda^{-1}$ complex conjugates
 $\Rightarrow A$ is a rotation
In $SL(2,\mathbb{Z})$, $Tr(A) = 0$ or $Tr(A) = \pm 1$, so
conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$

Classification in
$$SL(2,\mathbb{Z}) = Mod(S_1)$$

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} - \frac{-1}{1+\mathbb{Z}} = \mathbb{Z}$$
fixed point for fixed point for Möbius action.
Möbius action is is ube voot of unity
 $\mathbb{Z} = \widehat{1}$ Symmetry of the square forus torus.
in $SL(2,\mathbb{Z})$
2) $|Tr(A)| = 2 \implies \lambda = \lambda^{-1}$ to be accurate supposed
to be in PSL ..
 $So \ \lambda = 1$
 \Rightarrow parabolic action.
fixed point for Möbius action = eigendirection has rational
in \mathbb{Q} slope.

Nielsen Thurston classification
3) pseudo-Anosov:
No power of
$$f$$
 fixes any simple closed curve
There exists a quadratic differential q s.t
f can be realised as an action of
 $\begin{pmatrix} \lambda(f) & 0 \\ 0 & \lambda(f)^{-1} \end{pmatrix}$ on the half-transl. surface
 $\lambda(f)$ is called the stretch factor of f
the horizontal and vertical foliations are measured
foliations with rich dynamics (minimal, uniq. erg)

Veech groups
$$SL(X, q)$$

Recall $SL(2, R)$ action on components of quadratic strata.
 $SL(2, R)$ acts on charts to $C = R^2$ and
takes transl/half-transl to transl/half-transl
hence descends.
 $SL(X, q) = \{A \in SL(2, R) \text{ s.t } Aq = q \}$
up to scissors congr.
Subgrp of Mod, discrete subgrp of $SL(2, IR)$.

Next Week SL(2,R) action - Masur - Veech - Smillie measure - Teichmüller arres + Smillie's result curves in Mg - Orbit closures "analogous" to Margulis - Ratner theory notable work of Eskin-Mirzakhani-Mohammachi Filip.