Lecture 4
Mapping class groups continued +

$$
S L(2, \mathbb{R}) \text {-action }
$$

Recap
Nielsen - Thurston classification of mapping classes

- finite order \rightarrow Riemann surface automorph.
- reducible \rightarrow a power fixes a multi-curve
- pseudo-Anosov \rightarrow rich dynamics invariant measured foliations

Examples

order 8 symmetry
order 10 symmetry

order 5 symmetry

Examples
square-tiled L shaped table

Exercise: $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ gives a scissors move on cylinders B and C to get back original surface;
mapping class twists in core curves of horizontal cylinders The product $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ gives a psendo-A nosov.

Examples
pseuclo-Anosov on a golden L

Exercise: show that
$\left[\begin{array}{cc}1 & \frac{1+\sqrt{5}}{2} \\ 0 & 1\end{array}\right]$ gives a twist
in horizontal cylinders
Hint: the diagonals in blue have same slopes.
Then $\left[\begin{array}{cc}1 & \frac{1+\sqrt{5}}{2} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ \frac{1+\sqrt{5}}{2} & 1\end{array}\right]$ gives a pseudo-Anosov.
$\frac{\text { Mech groups }}{} \operatorname{SL}(x, q)$
Recall $S L(2, \mathbb{R})$ action on components of quadratic strata.
$S L(2, \mathbb{R})$ acts on charts to $\mathbb{C}=\mathbb{R}^{2}$ and takes transl/half-transl to transl/half-transl hence descends.

$$
S L(X, q)=\left\{A \in S L(2, \mathbb{R}) \text { st } A_{q}=q\right\}
$$

up to scissors conger.
subgrp of Mod, discrete subgrp of $S L(2, \mathbb{R})$.

Examples
square-tiled L shaped table
 we already know that $\operatorname{SL}(x, \omega)$ contains $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

$$
S L(x, w)=\Gamma_{2} \text { congruence } 2 \text { subgrp of } \operatorname{SL}(2, \mathbb{Z})
$$

In general, square tiled surfaces are branched covers of flat tori, so $S L(x, w)<\operatorname{SL}(2, \mathbb{Z})$. "rational points" of an alg. variety

Examples

St (x, w) for the golden L $=(2,5, \infty)$ Heске triangle group

Saddle connections and periods
Suppose that q is a quadratic diff.
An are γ on the transl. /half-transl. surface is a saddle connection if

- the interior of γ embeds in $S-Z$;
- the endpoints of γ are contained in Z; and
- γ is a geodesic in the flat metric.

Choosing \sqrt{q}, the period of a saddle connection is defined as

$$
\operatorname{per}(\gamma)=\int_{\gamma} \sqrt{q}
$$

Saddle connection periods
Square torus

Saddle connection periods (without multiplicities) are given by primitive lattice points in $\mathbb{Z} \oplus i \mathbb{Z} \subset \mathbb{C}=\mathbb{R}^{2}$
Counting asymptotics very interesting
\# of primitive points in $B\left(x_{0}, R\right) \sim \frac{6}{\pi^{2}}\left(\pi R^{2}\right)$
Siegel-Veech const.

Saddle connection periods
Golden L

Saddle connection periods thought of as vectors in \mathbb{R}^{2}

$$
\Lambda_{\omega}=S L(x, \omega) \cdot 1 \text { union } S L(x, \omega) \cdot \frac{\sqrt{5}-1}{2}
$$

where $\operatorname{SL}(X, \omega)$ is the $(2,5, \infty)$ Hecke triangle group.
Counting asymptotic $\sim \frac{3 \pi}{10} R^{2}$
\rightarrow Siege l-V sech constant

Coordinates on a stratum component
Let (S, Z) be the top. data required by a stratum surface finite set of points component
Fix a \mathbb{Z}-basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for $H_{1}(s, Z)$.
The period map

$$
q \longrightarrow\left\{\operatorname{per}_{\sqrt{q}}\left(\alpha_{1}\right), \ldots, \operatorname{per}_{\sqrt{q}}\left(\alpha_{n}\right)\right\}
$$

define local coordinates in a stratum component
$S L(2, \mathbb{R})$-action
Overall Picture:

$$
S L(2, \mathbb{R}) \cdot q \longleftrightarrow Q \operatorname{Teich}(\underline{k})
$$

$$
S O(2, \mathbb{R}) \backslash S L(2, \mathbb{R}) \cdot q=\mathbb{D}_{q} \longleftrightarrow T_{e i c h}\left(S_{g, n}\right)
$$

called a Teichmüller disc; it is an isometrically embedded hyperbolic disc in Teich $\left(S_{g, n}\right)$.
Teichmüller metric $=$ Kobayashi metric
$S L(2, \mathbb{R})$ action
Theorem (Emilie):
$S L(2, \mathbb{R})$ orbit of q closed $\Longleftrightarrow S L(X, q)$ is a lattice

Such a flat surface is called a lattice (Veech) surface; the closed curve of moduli space it generates a Teichmüller curve.
$S L(2, \mathbb{R})$ action
Eskin-Mirzakhani - Mohammadi : SL $(2, \mathbb{R})$ orbit closures are cut out in period co-ordunates by linear (homogeneous) equations with real coefficients

Non-homogeneous analogue of the Margulis-Ratner orbit classification theory.
$S L(2, \mathbb{R})$ action
Eskin- Mirzakhani: Every $\operatorname{SL}(2, \mathbb{R})$ invariant ergodic measure is supported on some orbit closure and is in the Lebesgue measure class.
Non-homogeneous analogue of Rater measure classification theorem.

Filip: orbit closures are algebraic subvarieties of the moduli spaces.

Mech dichotomy

F_{θ} straight line foliation in direction θ.

SI (X, q) lattice implies F_{θ} is either completely periodic or uniquely ergodic

Next Week
Sub-actions of the $S L(2, \mathbb{R})$ action, mainly
Teichmüller flow.

