

Examples
square-tiled L shaped table
A
B
B
C
D
C
A
D
Exercise:
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

but not a scissors
move on whinder C
M
Exercise: $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ gives a scissors move on cylinders B and C
to get back original surface;
mapping class twists in core curves of horizontal cylinders
The product $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ gives a pseudo-Anosov.

Veech groups
$$SL(X, q)$$

Recall $SL(2, \mathbb{R})$ action on components of quadratic strata.
 $SL(2, \mathbb{R})$ acts on charts to $C = \mathbb{R}^2$ and
takes transl/half-transl to transl/half-transl
honce descends.
 $SL(X, q) = \int A \in SL(2, \mathbb{R})$ s.t $Aq = q$
up to scissors congr.
Subgrp of Mod, discrete subgrp of $SL(2, \mathbb{R})$.

Saddle connections and periods
Suppose that q is a quadratic dift.
An arc & on the transl. / half-transl. surface
is a saddle connection if
o the interior of & embeds in S-Z;
o the endpoints of & are contained in Z; and
o & is a geodesic in the flat metric.
Choosing Iq, the period of a saddle connection is
defined as

$$per(x) = \int \sqrt{q}$$

Saddle connection periods
Square torus
Square torus
Saddle connection periods (without multiplicities) are given
by primitive lattice points in
$$\mathbb{Z} \oplus i \mathbb{Z} \subset \mathbb{C} = \mathbb{R}^2$$

Counting asymptotics very interesting
of primitive points in $\mathbb{B}(x_o, \mathbb{R}) \sim \frac{6}{\pi^2}$
Siegel-Veech const.

Saddle connection periods
Golden L
$$\frac{15-1}{2}$$

1
Saddle connection periods thought of as vectors in \mathbb{R}^2
 $\Lambda_{\omega} = SL(X, \omega) \cdot 1$ union $SL(X, \omega) \cdot \frac{15-1}{2}$
where $SL(X, \omega)$ is the $(2, 5, \infty)$ Hecke triangle group.
Counting asymptotics $\sim 3\pi$ \mathbb{R}^2
 10
 $\sum_{k=1}^{10} \mathbb{R}^k$

Coordinates on a stratum component
Let
$$(5, Z)$$
 be the top data required by a stratum
surface finite set of points component
Fix a Z-basis $\{\alpha_1, \ldots, \alpha_n\}$ for $H_1(S, Z)$.
The period map
 $2 \longrightarrow \left[\operatorname{per}_{\overline{1q}}(\alpha_1), \ldots, \operatorname{per}_{\overline{1q}}(\alpha_n) \right]$
define local co-ordinates in a stratum component.

SL(2, IR) - action Overall Picture : $SL(2,\mathbb{R}) \cdot q \longrightarrow QTeich(\underline{k})$ $SO(2, \mathbb{R}) \setminus SL(2, \mathbb{R}) \cdot q = \mathbb{D}_{q} \longrightarrow \operatorname{Teich}(S_{q, n})$ called a Teichmüller disc; it is an isometrically embedded hyperbolic disc in Teich (Sg,n). Teichmüller metric = Kobayashi metric

SL(2, TR) action Theorem (Smillie): SL(2, IR) orbit of q closed \implies SL(X, q) is a lattice. Such a flat surface is called a lattice (Veech) surface; the closed curve of moduli space it generates a Teichmüller curve.

SL(2, R) action Eskin-Mirzakhani-Mohammadi : SL(2, IR) orbit closures are at out in period co-ordinates by linear (homogeneous) equations with real coefficients Non-homogeneous analogue of the Margulis-Ratner orbit classification theory.

SL(2, R) action

Eskin - Mirzakhani: Every SL(2,1R) invariant ergodic measure is supported on some orbit-closure and is in the Lebesgue measure class. Non-homogeneous analogue of Ratner measure classification theorem. Filip: orbit closures are algebraic subvarieties of the moduli spaces.

Next Week Sub-actions of the SL(2, R) action, mainly Teichmüller flow.