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ABSTRACT. A fibered hyperbolic 3-manifold induces a map from the hyperbolic plane to hyperbolic
3-space, the respective universal covers of the fibre and the manifold. The induced map is an embed-
ding that is exponentially distorted in terms of the individual metrics. In this article, we begin a study
of the distortion along typical rays in the fibre. We verify that a typical ray in the hyperbolic plane
makes linear progress in the ambient metric in hyperbolic 3-space. We formulate the proof in terms
of some soft aspects of the geometry and basic ergodic theory. This enables us to extend the result
to analogous contexts that correspond to certain extensions of closed surface groups. These include
surface group extensions that are Gromov hyperbolic, the universal curve over a Teichmüller disc,
and the extension induced by the Birman exact sequence.

1. INTRODUCTION

In this article, we initiate the study of distortion for typical elements in groups focusing on exam-
ples whose motivation comes from geometry and topology in dimensions 2 and 3.

Suppose that H is a finitely generated subgroup of a finitely generated group G. For any choice
of proper word metrics on H and G, the inclusion of H into G is a Lipschitz map. However,
distances are contracted by arbitrary amounts by the inclusion in many examples. This can be
quantified by the distortion function, the smallest function bounding the word norm of H in terms
of the word norm of G. Many examples from low-dimensional topology exhibit exponential distor-
tion; well known examples are the fundamental groups of fibres in fibered hyperbolic 3-manifolds,
Torelli and handlebody groups in surface mapping class groups.

By definition, the distortion function measures the worst case discrepancy between intrinsic and
ambient metrics – for example, the existence of a single sequence of group elements in H whose
norm grows linearly in G and exponentially in H already implies exponential distortion.

In this article, we adopt instead a more probabilistic viewpoint to ask about the growth of the
ambient norm for typical elements of the subgroup.

Concretely, we consider subgroups isomorphic to the fundamental group of a closed surface
and thus quasi-isometric to the hyperbolic plane. This allows us to use the (Lebesgue) measure
on the circle at infinity to sample geodesics in the subgroup. Our main result proves that in vari-
ous topologically interesting, exponentially distorted examples of surface group extensions, such
paths nevertheless make linear progress in the ambient space. We consider three geometrically
motivated contexts, the first of which from geometric group theory. For the entirety of our article,
we let Σ be a closed orientable surface of genus g > 2.

Theorem 1.1. Let
1→ π1(Σ)→ Γ→ Q→ 1

be a hyperbolic group extension of a closed surface group. Then there is a constant c > 0 that depends only
on the word metrics, so that almost every geodesic ray in π1(Σ) (sampled by the Lebesgue measure under
an identification of π1(Σ) with H2) makes linear progress with speed at least c in the word metric on Γ.
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In particular, this includes the classical case where Γ is a fundamental group of a fibered hy-
perbolic 3–manifold. This special case is likely well-known to experts (but to our knowledge not
published). We also want to mention here that all known groups of this type have Q virtually free
(but this does not yield any simplifications for the question considered here).

The second context arises in Teichmüller theory. A holomorphic quadratic differential on a Rie-
mann surface is equivalent to a collection of charts from the surface to C with transition functions
that are half-translations, that is of the form z→ ±z+ c. The SL(2, R)-action on C = R2 preservers
the form of the transitions and hence descends to an action on the space of quadratic differentials.
The compact part SO(2, R) acts by rotations on the charts and hence preserves the underlying
conformal structure on the surface. Thus, given a quadratic differential q, the SL(2, R) orbit of q
gives an isometric embedding of H2 = SL(2, R) /SO(2, R) in the Teichmüller space of the surface.
This is called the associated Teichmüller disk Dq. We may then consider a bundle E → Dq whose
fibres are the universal covers of the corresponding singular flat surfaces. The bundle E carries a
natural metric, in which the fibres are again exponentially distorted. Although the total space is
not hyperbolic, we obtain here:

Theorem 1.2. For any quadratic differential q, there is a number c > 0, so that any geodesic in a fibre of E
(sampled with Lebesgue measure under an identification with H2) makes linear progress with speed at least
c in the metric on E.

Finally, we consider the Birman exact sequence

1→ π1(Σ, p)→ Mod(Σ− p)→ Mod(Σ)→ 1,

where Mod(Σ) is the mapping class group of a closed orientable surface Σ of genus g > 2 and
Mod(Σ− p) is the mapping class group of the surface Σ punctured/ marked at the point p.

Here, we obtain

Theorem 1.3. For the Birman exact sequence

1→ π1(Σ, p)→ Mod(Σ− p)→ Mod(Σ)→ 1,

there is a number c > 0, so that any geodesic in π1(Σ, p) (sampled with Lebesgue measure under an
identification with H2) makes linear progress with speed at least c in a word metric on Mod(Σ− p).

The three results are not unexpected. The main merit of our article is that we distil the key fea-
tures, thus giving a unified treatment in all three contexts that differ substantially in their details.
Our results also leave the topic poised for a finer exploration of distortion in all contexts.

Proof Strategy. The basic method of proof is the same for all three results, and has two main parts.
In the geometric part, we construct suitable shadow-like sets in the total space from a ladder-type
construction motivated by the construction in [13]. The basic idea is to move shadows in the base
fibre to all other fibres using the monodromy and consider their union. We implement the idea
with sufficient care to ensure that for a pair of nested shadows in the base fibre the shadow-like set
from the bigger shadow is contained in the shadow-like set from the smaller shadow.

We then characterise "good" geodesic segments in the fibre, that is segments for which the
shadow-like set at the end of the segment is nested in the shadow-like set at the beginning by a
distance in the ambient space that is linear in the length of the segment. This translates into a
progress certificate for fibre geodesics in the ambient space.

Next, in the dynamical part we exploit ergodicity of the geodesic flow on hyperbolic surfaces to
guarantee that fellow-travelling with good segments occurs with a positive asymptotic frequency
thus proving the results.

The argument is cleanest in the classical case of a fibered hyperbolic 3–manifold. In this case, the
monodromy is by a pseudo-Anosov map of the fibre surface. Such a map has a unique invariant
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Teichmüller axis and is a translation along the axis. By Teichmüller’s theorem, the surface can be
equipped with a quadratic differential such that the map is represented by an affine map (given by
a diagonal matrix in SL(2, R)) in the singular flat metric on the surface defined by the quadratic
differential. We can thus identify the fibre group by a quasi-isometry with universal cover of the
surface with the lifted singular flat metric. The pseudo-Anosov monodromy acting as an affine
map defines the singular flat metrics on the other fibres. Although the monodromy does not act
as an isometry of the singular flat metric, it maps geodesics to geodesics. A long straight arc, for
example a long saddle connection that makes an angle close to π/4 with both the horizontal and
vertical foliations of q has the property that all its images under the pseudo-Anosov monodromy
will be also be long. Using (Gromov) hyperbolicity, the property of containing/ fellow-travelling
such a segment is stable for geodesic rays. In particular, it has positive Liouville measure when
we pass to the hyperbolic metric. Hence, ergodicity of the hyperbolic geodesic flow implies that
a typical hyperbolic ray satisfies the property with a positive asymptotic frequency. This ensures
linear progress.

In a general hyperbolic surface group extension, the monodromies have weaker properties. In
the bundle over a Teichmüller disc, the ambient space is not hyperbolic but the monodromies are
affine. In the Birman exact sequence, both properties fail but weaker ones hold which still suffice
to run our strategy. We work around these problems and defining good segments that they give
robust distance lower bounds in the ambient space requires the main care.

Other sampling methods. In Theorems 1.1 and 1.3, one could sample in the kernel subgroup
using random walks. Here, general results on random walks in hyperbolic groups ensure that
corresponding results are true as well. In light of the famous Guivarc’h–Kaimanovich–Ledrappier
singularity conjecture (see [3, Conjecture 1.21]) for stationary measures, the random walk sampling
is in theory different from the earlier sampling using the hyperbolic Liouville measure.

In the setup of Theorem 1.2, there is no direct random walk analog. In the lattice case, that is
when the affine symmetric group SL(X, q) (sometimes known as the Veech group) of a quadratic
differential q is a lattice in SL(2, R), one may replace the bundle E by the extension of SL(X, q).
Recent work of [4] shows that extension group acts on a suitable hyperbolic space, in fact, the result
is hierarchically hyperbolic. This in turn again implies a linear progress result for sampling using
stationary measures for random walks on SL(X, q).

A third method of sampling for Theorems 1.1 and 1.3 is given by the Patterson–Sullivan measure
for a word metric on the fibre group. Here again, general results for non-elementary actions of
groups on Gromov hyperbolic spaces imply linear progress. See [7, Theorem 1.4]. For the Birman
exact sequence, the hyperbolic space in question is the curve complex of the punctured surface.
Since the curve complex distance is a coarse lower bound for the distance in Mod(Σ − p) linear
progress in Mod(Σ− p) follows.

The Patterson–Sullivan sampling is distinct from the random walk sampling because the mea-
sures are singular. See [8, Theorem 1.3]. As Patterson–Sullivan measures that arise from word
metrics are also expected to be singular with respect to the Liouville measure for the hyperbolic
geodesic flow, all three methods of sampling are in theory different.

Future Directions. Our results lay the preliminary ground work for more refined questions re-
garding distortion statistics for a random sampling in the contexts we consider. We will outline
one such direction here.

Organising distortions by scale we may ask for the explicit statistics of distortion along typical
geodesics. An example of this nature covered in the literature is the case of a non-uniform lattice in
SL(2, R), more generally a non-uniform lattice in Isom(Hn). Because of the presence of parabolic
elements, a non-uniform lattice in SL(2, R) is distorted in H2 under the orbit map. The orbit is
confined entirely to some thick part and never enters horoballs that project to cusp neighbourhoods
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in the quotient hyperbolic surface. The hyperbolic geodesic segment that joins pairs of orbit points
that differ by a power of a parabolic is logarithmic in this power. This gives rise to the exponential
distortion in this context. For example, when the lattice is SL(2, Z) the distortion statistics can
be interpreted as the statistics of continued fraction coefficients. Similar distortion coming from a
"parabolic" source arises in mapping class groups. To see some analysis of the distortion statistics
in such examples we refer the reader to [5], [6] and [15].

In the contexts we consider here, the distortion does not have a parabolic source and results
analogous to the examples in the above paragraph would be quite interesting.

2. LINEAR PROGRESS IN FIBERED HYPERBOLIC 3-MANIFOLDS

Let M be a closed hyperbolic 3-manifold that fibres over the circle with fibre a closed orientable
surface Σ with genus g > 2. Fixing a fibre Σ, the manifold M can be realised as a mapping torus
Σ× [0, 1]/ ∼, where Σ× {0} has been identified with Σ× {1} by a pseudo-Anosov monodromy
f , that is, by a mapping class f of Σ that is pseudo-Anosov.

Passing to the universal covers, the inclusion of Σ in M as the fibre Σ×{0} induces an inclusion
of the universal cover H2 of the fibre Σ to the universal cover H3 of M. In the hyperbolic metrics
on H2 and H3, this inclusion is distorted. Nevertheless, Cannon-Thurston [2] proved that there
is limiting behaviour at infinity despite distortion. More precisely, they showed that the inclusion
induces a continuous map from S1 = ∂∞H2 to S2 = ∂∞H3, and moreover this map is surjective.
Thus, it is implicit that the image in H3 of any hyperbolic geodesic ray γ in H2 converges to a point
in S2 = ∂∞H3, even though the image need not be a quasi-geodesic because of the distortion.

2.1. Sampling geodesics. Our first notion of sampling involves the hyperbolic geodesic flow on
T1Σ. Let gt be the hyperbolic geodesic flow on T1Σ and let µLio be the gt-invariant Liouville mea-
sure on T1Σ. Let π : T1Σ→ Σ be the canonical projection. We adopt the convention that when we
mention a hyperbolic geodesic ray γ, we mean the projection π(gtv) : t > 0 for some v ∈ T1Σ.

Let Dhyp be the hyperbolic metric on H3. Sections 2 to 5 will be concerned with a detailed proof
of the following theorem (which will also serve as a blueprint for the analogous result in other
settings).

Theorem 2.2. There exists a constant k > 0 such that for µLio-almost every v ∈ T1Σ, the corresponding
hyperbolic geodesic ray γ = π(gtv) satisfies

Dhyp(γ0, γT) > kT

for all T sufficiently large depending on v.

Before beginning with the proof in earnest, we also want to discuss a different method of sam-
pling random geodesics in the fiber surface.

For this second notion, we consider non-elementary random walks on π1(Σ). Let µ be a proba-
bility distribution on π1(Σ). A sample path of length n for a µ-random walk on π1(Σ) is the ran-
dom group element wn given by wn = g1g2 · · · gn, where each gj is sampled by µ, independently
of the preceding steps. A random walk is said to be non-elementary if the semi-group generated
by the support of µ contains a pair of hyperbolic elements with distinct stable and unstable fixed
points on S1 = ∂∞H2.

It is a classical fact (generalised by Furstenberg to many more settings) that a non-elementary
random walk on π1(Σ), when projected to H2 using the group action, converges to infinity. That
is, for any base-point x and for almost every infinite sample path ω = (wn), the sequence wnx in
H2 converges to a point of S1. For a more detailed account of the theory, we refer the reader to
[10].
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The almost sure convergence to S1 defines a stationary measure ν on it. We may then use ν to
sample geodesic rays as follows. Using geodesic convergence to infinity, we can pull ν back to a
measure on the unit tangent circle T1

x H2. We use this pull-back to sample hyperbolic geodesic rays
starting from x and consider the question of whether a typical ray makes linear progress.

A famous conjecture of Guivarc’h–Kaimanovich–Ledrappier (see [3, Conjecture 1.21]) states that
for any finitely supported non-elementary random walk on π1(Σ) the associated stationary mea-
sure ν is singular with respect to the Lebesgue measure on S1. As such, linear progress of ν-typical
ray cannot be deduced from Theorem 2.2.

For technical reasons, it is more convenient to simultaneously consider forward and backward
random walks. The backward random walk is simply the random walk with respect to the re-
flected measure µ̂(g) = µ(g−1). The space of bi-infinite sample paths, denoted by Ω, has a natural
invertible map on it given by the right shift σ. The product measure ν× ν̂, where ν̂ is the stationary
measure for the reflected random walk, is σ-ergodic.

Using the orbit map, we may equip π1(Σ) with the hyperbolic metric induced from H2, that is,
we may consider the functions fn(ω) = dhyp(x, wnx) along sample paths in Ω. Similarly, by the
orbit map to H3, we may also equip π1(Σ) with the function induced by the hyperbolic metric
from H3, that is, we may consider the functions Fn(ω) = Dhyp(x, wnx) along sample paths in Ω.

A distribution µ on π1(Σ) is said to have finite first moment for a word metric if

∑
g∈π1(Σ)

dπ1(Σ)(1, g) dµ(g) < ∞.

The action of π1(Σ) on H2 is co-compact. Hence, a word metric on π1(Σ) is quasi-isometric to
the hyperbolic metric dhyp induced on it by the orbit map. Thus, finite first moment for a word
metric is equivalent to finite first moment for dhyp and so we no longer need to specify the metric.
It follows that if µ has finite first moment then the functions fn are `1 with respect to ν× ν̂. Since
fn > Fn, we deduce that the functions Fn are `1.

By the triangle inequality, the function sequences fn and Fn are sub-additive along sample paths.
Hence, by Kingman’s sub-additive ergodic theorem, there exists constants a1 > 0 and a2 > 0 such
that for almost every bi-infinite sample path ω

lim
n→∞

fn(ω)

n
= a1 and lim

n→∞

Fn(ω)

n
= a2.

The constants are called drifts.
To argue that the drifts are positive, we recall [10, Theorem 1.2].

Theorem 2.3 (Maher–Tiozzo). Suppose that a countable group G acts by isometries on a separable Gromov
hyperbolic space X and let x be any point of X. Let µ be a non-elementary probability distribution on G, that
is, the semigroup generated by the support of µ contains a pair of hyperbolic isometries of X with distinct
fixed points on the Gromov boundary ∂X. Further suppose that µ has finite first moment in X, that is,

∑
g∈G

dX(x, gx) dµ(g) < ∞.

Then there is a constant L > 0 such that for any base-point x ∈ X and for almost every sample path
ω = (wn)n∈N

lim
n→∞

dX(x, wnx)
n

= L.

In our case, the actions of π1(Σ) on H2 and H3 are both non-elementary. Since Dhyp 6 dhyp on
π1(Σ), inite first moment for dhyp implies finite first moment for Dhyp. By Theorem 2.3, the drifts
a1 and a2 are both positive.
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Using the measure ν × ν̂, we can sample ordered pairs of points at infinity. With probability
one, these points are distinct and hence determine a bi-infinite geodesic in H2. We parameterise
the geodesic by γ : (−∞, ∞) → H2 such that γ0 is the point of γ closest to the base-point and γt
converges to the point at infinity sampled by ν. As a consequence of the positivity of the drifts, it
follows directly that

Theorem 2.4. Let µ be a non-elementary probability distribution on π1(Σ) with finite first moment and let
µ̂ be the reflected distribution. Let ν and ν̂ be the stationary measures on S1 for µ and µ̂-random walks. Then
there exists a constant K > 1 such that for ν× ν̂-almost every γ, there is a Tγ such that for all T > Tγ,

Dhyp(γ0, γT) >
T
K

.

Since the treatment in Maher–Tiozzo is quite general, we will provide a direct sketch for the
positivity of the drifts later in the paper (see Section 5).

The hyperbolic ray from the base-point x that converges to the same point at infinity as the
geodesic γ, is strongly asymptotic to γ. Thus, we deduce:

Theorem 2.5. Let µ be a non-elementary probability distribution on π1(Σ) with finite first moment and let
ν be the stationary measure on S1 for the µ-random walk. Then there exists K > 1 such that for ν-almost
every λ ∈ S1, there exists Tλ such that for any T > Tλ the point γT along the hyperbolic geodesic ray from
x that converges to λ, we have

Dhyp(γ0, γT) >
T
K

.

In other words, a typical ray in the fibre H2 makes linear progress in H3.

3. FLAT AND SOLV GEOMETRY

In order to prove Theorem 2.2 and Theorem 2.4, we analyse the geometry by starting with the
flat and singular solv geometry. A pseudo-Anosov map on Σ acting on Teichmüller space has an
invariant axis that it translates along. We may then consider a holomorphic quadratic differential
q along the axis and use contour integration of a square root of it to equip Σ with a singular flat
metric. The singular flat metric lifted to the universal cover H2 of Σ will be denoted by dflat. The
singular flat metrics on all other fibres can be derived by the action of the corresponding affine
maps along the Teichmüller axis. Put together, these metrics equip the universal cover H3 of M
with a singular solv metric which we denote by dsolv.

3.1. Optimal shadows. We will define below the optimal shadow associated to a flat geodesic based
at a point on it. The orientation on H2 induces a cyclic order on the unit tangent circle at any point
in H2. We will make use of this cyclic order in the description.

Let β : [0, T] → H2 be a parameterised flat geodesic and let 0 < t 6 T. As a preliminary, we
define the lower and upper unit tangent vectors to β at βt. Let ε > 0 be small enough so that the
segment [βt−ε, βt+ε] contains no singularities except possibly at βt. We then define the lower unit
tangent vector v−(βt) to be the unit tangent vector to [βt−ε, βt] at the point βt. Similarly, we define
the upper unit tangent vector v+(βt) to be the unit tangent vector to [βt, βt+ε] at the point βt. Note
that if βt is a regular point then v−(βt) = v+(βt).

We will first show the existence of an lower perpendicular. Let β : [0, T]→H2 be a parameterised
flat geodesic and let 0 < t 6 T. We say that a flat geodesic segment α : (−s, s) → H2 is the lower
perpendicular to β at βt if

• α0 = βt; and
• the unit tangent vectors v±(α0) make an angle of π/2 with the lower tangent v−(βt).
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Let β′ be a bi-infinite perpendicular to β at βt. We denote the component of H2− β′ that contains
β0 by C−(β′).

Lemma 3.2. Let β : [0, T] → H2 be a parameterised flat geodesic and let 0 < t 6 T. There exists a
bi-infinite flat geodesic βt

⊥ such that
• βt

⊥ is the lower perpendicular to β at βt; and
• for any bi-infinite geodesic β′ perpendicular to β at βt

C−(βt
⊥) ⊆ C−(β′).

Proof. Breaking symmetry, suppose that βt is a regular point. Then β has exactly two perpendicular
directions vL, vR at βt. Using the cyclic order on the unit tangent circle at βt, we arrange matters so
that vL, v−(βt), vR in that order are counter-clockwise.

If the flat ray with initial direction vL is infinite then we set βL
⊥ to be this ray. So suppose that the

ray with initial vector vL runs in to a singularity p in finite time. Let v− be the lower tangent vector
to the ray at the point p. In the induced cyclic order on the unit tangent circle at p, we may move
clockwise from −v− till we get a vector v+ that is at an angle π from −v−. We then extend the
initial ray by the flat ray with initial vector v+. Continuing iteratively in this manner, we obtain an
infinite flat ray which we set to be βL

⊥.
We may then carry out an analogous construction with vR to obtain an infinite flat ray β⊥R with

initial vector vR. In the analogous construction, should we encounter a singularity, we move
counter-clockwise from −v− by an angle of π to continue.

We then set βt
⊥ to be the union βL

⊥ ∪ βR
⊥. As the angle between βL

⊥ and βR
⊥ at the point βt is

exactly π, the union is a bi-infinite flat geodesic.
Suppose instead that βt is a singularity. Using the induced cyclic order on the unit tangent

circle at βt, we move clockwise from −v−(βt) till we are at the vector vL that is at angle π/2 from
−v−(βt). Similarly, we move counter-clockwise from −v−(βt) till we are at the vector vR that is
at angle π/2 from −v−(βt). We now proceed to construct rays βL

⊥ (and βR
⊥) with initial vectors

vL (respectively vR) exactly as above. We then set βt
⊥ to be again the union βL

⊥ ∪ βR
⊥. The angle

between βL
⊥ and βR

⊥ is π and hence βt
⊥ is a bi-infinite geodesic.

Finally, suppose β′ is a bi-infinite geodesic perpendicular to β at βt. If β′ is distinct from β, then
it diverges from βt

⊥ at some singularity. Breaking symmetry, suppose that there is a singularity p
along βL

⊥ at which β′ diverges from βL
⊥. Then, the angle that β′ makes at p exceeds π.

Let v+(β′) 6= v+(βL
⊥) be the tangent vectors at p to β′ and βL

⊥. Suppose that the rays with these
initial vectors intersect. Then the rays give two geodesic segments that bound a bigon. As the
metric is flat with the negative curvature concentrated at singularities, the presence of this bigon
contradicts Gauss-Bonnet. Hence, the rays do not intersect. Let sL then be the region bound by this
pair of rays and not containing β0.

A similar argument applies if there is divergence between β′ and βR
⊥ and yields a region sR that

does not contain β0.
We deduce that C−(β′) = C−(βt

⊥) ∪ sL ∪ sR thus finishing the proof.
�

We also present a slightly less direct construction for βt
⊥. The flat metric on Σ has finitely many

singularities and so their lifts to H2 yield a countable discrete set in H2. Let t in (0, T] be a time such
that there exist ε > 0 depending on t such that the segment [βt−ε, βt] contains no singularity. We
may then consider the foliation λ⊥ be the foliation that is perpendicular to the segment [βt−ε, βt].
Among such times, we say t is simple if the leaf of λ⊥ containing βt is bi-infinite and does not
contain any singularities. By the observation regarding lifts of singularities, the set of simple times
is dense (in fact, full measure) in [0, T]. Let s < t be simple times. A Gauss-Bonnet argument
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similar to the one in the proof above shows that C−(βs
⊥) ⊂ C−(βt

⊥). Suppose now that t > 0 is a
time that is not simple. We then consider a sequence of simple times tn < t such that tn converges
to t and define βt

⊥ as the limit of the bi-infinite perpendiculars at βtn . We leave it as a simple
exercise to check that this reproduces our definition in the above lemma.

The bi-infinite flat geodesic βt
⊥ divides H2 in to two components. We call the component of

H2 − βt
⊥ that does not contain βt−ε the optimal shadow of β at the point βt. We denote the optimal

shadow by Sh(βt).
A number of easy consequences follow from Gauss-Bonnet.

Lemma 3.3. Let β : [0, T] → H2 be a parameterised flat geodesic and let 0 < t 6 T. The optimal shadow
Sh(βt) is convex in the flat metric on H2.

Proof. Let x, x′ be distinct points in Sh(βt) and suppose that the flat geodesic segment [x, x′] inter-
sects βt

⊥. Then the number of intersection points is at least two.
We may parameterise [x, x′] and consider consecutive points of intersection. Between these

points, [x, x′] and βt
⊥ bound a nontrivial bigon. The presence of such a bigon contradicts the

Gauss-Bonnet theorem.
�

As a consequence of Lemma 3.3, we immediately deduce the following lemma.

Lemma 3.4. Let β : [0, T] → H2 be a parameterised flat geodesic and let 0 < s < t 6 T. Then Sh(βt) is
nested strictly inside Sh(βs), that is, Sh(βt) ⊂ Sh(βs) and βt

⊥ is contained in the interior of Sh(βs).

Proof. Suppose that βs
⊥ and βt

⊥ intersect. Breaking symmetry, we may assume that there is an
intersection point to the left of β. Let p be the first point of intersection to the left.

Let [βs, p] (respectively, [βt, p]) be the finite segment of βs
⊥ (respectively, βt

⊥) with endpoints βs
(respectively, βt) and p.

Since βs
⊥ and βt

⊥ are both perpendicular to β, the sum of the angles of the triangle with sides
[βs, p], [βt, p] and [βs, βt] exceeds π. Since the metric is flat with negative curvature at the singular-
ities, the presence of such a triangle violates the Gauss–Bonnet theorem.

Hence, we may conclude that βs
⊥ and βt

⊥ do not intersect and the lemma follows.
�

In the next two lemmas we justify the sense in which Sh(βt) is actually a shadow.

Lemma 3.5. For any parameterised geodesic β : [0, T] → H2 and any 0 < t 6 T, the point on βt
⊥ that is

closest to βs for any s ∈ [0, T] is βt.

Proof. Suppose a point x ∈ βt
⊥ distinct from βt is closest to βs. Consider the triangle with sides

[βs, βt], [βt, x] and [x, βs], where [βt, x] is a sub-segment of βt
⊥. Since x is closest to βs, the angle

inside the triangle at x is π/2, as otherwise we could shorten the path from βs to x. Hence, the
triangle with our chosen sides has two of its angles π/2, which violates the Gauss–Bonnet theorem.

�

Lemma 3.6. There exists r0 > 0 such that for any t satisfying 0 < r0 < t, any parameterised geodesic
β : [0, t]→H2 and any x ∈ Sh(βt), the flat geodesic segment [β0, x] intersects the ball B(βt, r0).

Proof. By Lemma 3.3, shadows Sh(βt) are convex and by Lemma 3.5 the segment [β0, βt] gives the
closest point projection. The existence of r0 > 0 then follows from the hyperbolicity of the singular
flat metric.

Alternatively, given x ∈ Sh(βt), we can give a more detailed description of the flat geodesic
[x, β0]. Note that it suffices to assume x ∈ βt

⊥.
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We will recall some facts from flat geometry to give this description. For any point y on the fibre
S, consider the set Sad(y) of flat geodesic arcs that

• join y to a singularity; and
• have no singularity in their interior.

It is a standard fact in the theory of half-translation surfaces that the slopes of such arcs equidis-
tribute in the set of directions. See [11] and [12]. It follows that we can find r > 0 such that all gaps
in the slopes of all arcs in Sad(y) with length at most r, are less than π/2.

Now we consider Sh(βt) and breaking symmetry, consider βL
⊥. Suppose that no flat geodesic

segment [x, β0], where x ∈ βL
⊥, passes through a singularity in its interior. This then means that the

sector of angle π/2 based at βt, with sides [βt, β0] and βL
⊥, contains no arc in Sad(βt) with length

at most r, a contradiction.
Moving along βL

⊥ away from βt, let x be the first point for which [x, β0] passes through a sin-
gularity p. It follows that for later points x′ along βL

⊥, the geodesic segments [x′, β0] must pass
through p.

The same holds for points in βR
⊥ and concludes our proof.

�

We record the following consequence.

Lemma 3.7. Let r > r0, where r0 is the constant in Lemma 3.6. Then there exists `0 > 0 that depends
on r such that for any ` > `0 and any flat geodesic segment [β0, β3`] of flat length 3` and any flat geodesic
segment β′ that fellow-travels β so that after parameterising β′ : (−ε, t] → H2 to arrange β′0 ∈ B(β0, r)
and β′t ∈ B(β3`, r) for some t satisfying 3`− 2r < t < 3`+ 2r, we have that

H2 − Sh(β′0) ⊆H2 − Sh(β`)

and
Sh(β′t) ⊆ Sh(β2`).

Proof. We give a proof of the first inclusion; the second inclusion follows using similar arguments.
Given r, there exists r′ > r that depends only on r such that r′ is the fellow travelling constant

for the segments [β′0, β′t] and [β0, β3`]. If `0 > 2r′ then β′0⊥ does not intersect the ball B(β0, r′).
Otherwise, for any point of β′ that lies in B(β`, r′) the point β′0 is not the closest point on β′0⊥,
contradicting Lemma 3.5. Suppose now that β′0⊥ and β`

⊥ intersect in the point p. Since β′0⊥ does not
intersect B(β0, r′), the geodesic segment [β′0, p] ⊂ β′0⊥ does not intersect B(β`, r0) which contradicts
Lemma 3.6. Hence, the geodesics β′0⊥ and β`

⊥ do not intersect when `0 > 2r′, from which we deduce
H2 − Sh(β′0) ⊆H2 − Sh(β`).

�

3.8. Ladders. The universal cover H3 can be equipped with the Z-equivariant pseudo-Anosov
flow {ψr ; r ∈ R} such that the time 1-map is the lift of the pseudo-Anosov monodromy f of the
fibered 3-manifold M. In fact, various lifts to the universal covers of the fibre inclusion Σ→ M are
precisely given by ψr applied to our chosen lift H2 →H3. We will call these lifts the r-fibres in H3.
As a notational choice, we will denote the inclusion of H2 in H3 given by the r-fibre by ψr(H2).

Definition 3.9. Let β be a flat geodesic segment in H2. We define the ladder given by β to be the set

Lad(β) =
⋃

r∈R

ψr(β)

Comparing our definition to the ladders introduced by Mitra in [13], we note two differences:
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(1) In [13], the ladders are constructed for the group extension 1→ π1(Σ)→ π1(M)→ Z→ 1,
and thus the ladder consists of one segment in each Z-coset of π1(Σ). We operate directly
in H2 and H3 and our ladders contain the segment ψr(β) in each fibre ψr(H2). As π1(Σ)
and π1(M) act co-compactly on H2 and H3, the two points of view are equivariantly quasi-
isometric by the Svarc-Milnor lemma.

(2) Secondly, in [13], when the segment β in π1(Σ) is moved to a different fibre, it is pulled
tight in the metric on the coset. In our setup, the maps ψr are affine maps. As a result, the
segment ψr(β) is already geodesic in the corresponding flat metric on ψr(H2).

Thus, [13, Lemma 4.1] applies, and in our notation this translates

Lemma 3.10. For any geodesic β in the flat metric, the ladder Lad(β) is quasi-convex in the singular solv
metric on H3 with quasi-convexity constants independent of β.

As the singular flat metric and the singular solv metric are quasi-isometric to the hyperbolic
metrics on H2 and H3, quasi-convexity of ladders is also true for the hyperbolic metrics. We will
continue the geometric discussion for the singular flat and singular solv metrics.

We now consider the ladders defined by shadows, namely the sets

L(β, t) =:=
⋃

x∈Sh(βt)

⋃
r∈R

ψr(x).

By Lemma 3.4 and item (2) above the lemma below immediately follows.

Lemma 3.11. Let β : [0, T]→H2 be a parameterised flat geodesic and let 0 < s < t 6 T. Then

L(β, t) ( L(β, s).

3.12. Undistorted segments. To quantify (un)distortion of segments, we use the following defini-
tion.

Definition 3.13. For a constant K > 1, we say that a flat geodesic segment β : [0, T] → H2 is K-
undistorted if dsolv(β0, βT) > T/K.

The requirement that a segment be undistorted translates to the following geometric criterion.
Let λ± be the stable and unstable foliations for the pseudo-Anosov monodromy f . If a flat geo-

desic segment makes a definite angle with both foliations λ± then it cannot be shortened beyond
a factor that depends only on the bound on the angle. As a result, it is undistorted.

To be more precise, let β = [β0, βt] be a flat geodesic segment. We may write β as a concatenation
β = [β0, βs1 ] ∪ [βs1 , βs2 ] ∪ . . . [βsk−1 , βsk ], where sk = t and where βsj is a singularity for all 1 6 j 6
k− 1. We then let

Slope(β) = {mj : mj is the slope of [βsj−1 , βsj ] for 1 6 j 6 k}
One could now precisely quantify the maximal K so that β is K–undistorted in terms of Slope(β),

but since we do not make a particular use of it, we refrain from doing so.
For our purposes, the following soft definition suffices.

Definition 3.14. For ` > 0, we say that a flat geodesic segment β of flat length is `-good if
• the length of β is at least 3`; and
• all slopes m in Slope(β) satisfy 1/2 < |m| < 2.

The choice of the slope bound is arbitrary and it will only affect the constant of undistorted and
other coarse constants to follow.

We first list a consequence of the slope bounds.

Lemma 3.15. Let β : [0, t]→ R be a flat geodesic segment with slope m satisfying 1/2 < |m| < 2. Then β
is a quasi-geodesic in Lad(β) and there is a constant c := c(m) such that dsolv(Lad(β0), Lad(βt)) > c · t.
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Proof. The ladder Lad(β) intersects the r-fibre in ψr(β). Since ψr is pseudo-Anosov flow, the slope
bounds imply that there is a constant c > 0 that depends only on the bounds, such that for any
r ∈ R the flat length of ψr(β) in the fibre ψr(H2) is at least c · lflat(β). We deduce that any path in
Lad(β) that connects Lad(β0) with Lad(βt) must also have length at least c · lflat(β). The lemma
follows.

�

From Lemma 3.15, we deduce the lemma below, the key reason why we need the notion of
`–good segments.

Lemma 3.16. There is a constant B > 0 such that every `–good segment is a B–quasi-geodesic in the
singular solv metric on H3.

Proof. by Lemma 3.10, ladders are quasi-convex in the singular solv metric on H3, hence undis-
torted. Thus, a singular solv geodesic from Lad(β0) to Lad(βt) is contained in a bounded neigh-
bourhood of Lad(β). So it suffices to show that if β is L–good, then it is a quasi-geodesic in Lad(β).
To this end, we may write β as a concatenation

β = [β0, βs1 ] ∪ [βs1 , βs2 ] ∪ . . . [βsk−1 , βsk ].

Then
Lad(β) = Lad([β0, βs1 ]) ∪ Lad([βs1 , βs2 ]) ∪ . . . Lad([βsk−1 , βsk ]).

and by Lemma 3.15 each segment [βsj−1 , βsj ] is quasi-geodesic in the corresponding sub-ladder
Lad([βsj−1 , βsj ]). Also, by Lemma 3.15, each ladder Lad(βsj) is well-separated from its predecessor
Lad(βsj−1) and its successor Lad(βsj+1) by distances that are linear in the lengths of the segments
[βsj−1 , βsj ] and [βsj , βsj+1 ], and hence the concatenation is a quasi-geodesic.

�

Lemma 3.17. For any ` > 0 there is an `–good segment.

Proof. The discreteness of saddle connection periods and the quadratic growth asymptotic in every
sector of slopes for the number of saddle connections counted by length implies the existence of a
good segment. See [11], [12] for these facts. In fact, this shows that a single saddle connection can
be chosen as a good segment instead of a concatenation. We also remark that the existence could
be shown with more elementary means, but we refrain from doing so for brevity. �

We now derive nesting along ladders of shadows along `-good segments (compare Figure 3.18).

Lemma 3.19. There exists a constant D > 1 such that for ` sufficiently large, any `-good segment β

1
D
` 6 dsolv(Lad(β`

⊥), Lad(β2`
⊥ )) 6 D`.

In other words, the flat geodesic segment β is coarsely the line of nearest approach for the lad-
ders, that is, it gives coarsely the shortest distance between the ladders.

Proof. By Lemma 3.16, β is a quasi-geodesic in the singular solv metric. The upper bounds follow
immediately from this.

By construction, at every singularity contained in β`
⊥, the angle subtended on one side is exactly

π. Similarly for β2`
⊥ . Because of the constraints on Slope(β), it follows that all slopes m in Slope(β`

⊥)

and in Slope(β2`
⊥ ) also satisfy 1/2 < |m| < 2. By Lemma 3.16, β, β`

⊥ and β2`
⊥ are quasi-geodesics in

H3 for the singular solv metric.
Let x ∈ β`

⊥ and x′ ∈ β2`
⊥ . By arguing as in Lemma 3.6, the flat geodesic segment [x, x′] fellow

travels the concatenation [x, β`] ∗ [β`, β2`] ∗ [β2`, x′], where [x, β`] ⊂ β`
⊥ and [β2`, x′] ⊂ β2`

⊥ . This
implies that if ` is sufficiently large all slopes in [x, x′] are bounded away from the horizontal and
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FIGURE 3.18. A good segment forces separation of shadows over all fibres
(Lemma 3.19). The left part of the figure shows the configuration in the base fi-
bre. The middle segment of β is assumed to be `–good. Moving to a different fibre,
shown on the right, changes the geometry, but goodness of the middle segment
ensures that the distance between (the images of) βl

⊥, β2l
⊥ is still large, leading to

definite separation of the corresponding shadows.

vertical. Thus, [x, x′] is also a quasi-geodesic in the singular solv metric and the result follows from
this and the fellow-travelling.

�

4. HYPERBOLIC GEOMETRY

We now pass to the hyperbolic metrics on the fibre and the 3-manifold. Recall that we denote
the hyperbolic metric on H2 by dhyp and the hyperbolic metric on H3 by Dhyp.

The metrics (H2, dflat) and (H2, dhyp) are quasi-isometric; so are the metrics (H3, dsolv) and
(H3, Dhyp). Let (K1, A1) and (K2, A2) be the quasi-isometry constants in each case and set K =
max{K1, K2}, A = max{A1, A2}.

As a consequence of these quasi-isometries, we can recast Lemma 3.3 and the quasi-convexity of
ladders in (H3, dsolv) in the previous section to conclude that for any parameterised flat geodesic
β : [0, T]→ (H2, dflat) and any 0 < t 6 T

• Sh(βt) is quasi-convex in (H2, dhyp); and
• L(β, t) = Lad(Sh(βt)) is quasi-convex in (H3, Dhyp).

Let C1 be the quasi-convexity constant in the first instance and C2 the quasi-convexity constant in
the second instance. Set C = max{C1, C2}.

4.1. Non-backtracking. Let γ : (∞, ∞) → H2 be a hyperbolic geodesic parameterised by unit
speed with x−∞ and x∞ in S1 its points at infinity, where γt → x±∞ as t → ±∞. Let β be a bi-
infinite flat geodesic that also converges to x±∞. Note that β might not be unique but any such
geodesic fellow-travels γ in the hyperbolic metric. By resetting the constant C, we may assume
that the fellow-travelling constant in both hyperbolic and flat metrics can also be chosen to be C.
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By the same proof as Lemma 3.5, there is a unique point p in β that is closest to the point γ0 in
the flat metric. We parameterise β with unit speed such that βs → x±∞ as s→ ±∞ and β0 = p.

For any time t along γ such that t/K − A > 0, the flat distance between γ0 and γt is at least
t/K − A. Thus, the flat distance between β0 and γt is at least t/K − A− C. Thus, for any t that
satisfies (t/K)− A > 2C, the point γt is contained in Sh(βs(t)) where

(4.2) s(t) =
t
K
− A− 2C.

Recalling our notation L(β, u) = Lad(Sh(βu)), define the function fγ : R>0 → R>0 by

fγ(t) = Dhyp(γ0, L(β, s(t)))

and note that since γt is contained in Sh(βs(t)), we have fγ(t) 6 Dhyp(γ0, γt).

Since s(t) < s(t′) whenever t < t′ and since the ladders of nested shadows are nested, we have
fγ(t) 6 fγ(t′), that is, fγ is a non-decreasing function of t. To prove Theorem 2.2 it then suffices to
prove that fγ(t) grows linearly in t.

4.3. Progress certificate. We fix ρ > 0 and set the constant r in Lemma 3.11 to be r = Kρ + A + C.
With this value of r, we choose ` > 0 to be large enough so that both Lemma 3.11 and Lemma 3.19
hold. By increasing ` further, we may assume that `/(KD)− A > 0 and then set R = `/(KD)− A.
We now choose an `-good segment β.

We now define a subset in T1(Σ) that will certify progress in the hyperbolic metric. Let B(β0, ρ)
the ball with radius ρ > 0 in the hyperbolic metric centred at β0. Let V be the subset of T1B(β0, ρ)
consisting of those unit tangent vectors v such that the forward geodesic ray γt = gtv passes
through the hyperbolic ball B(β3`, ρ) centred at β3`. Let Λ be the image in T1(Σ) of V under the
covering projection.

Extending the hyperbolic geodesic γ considered in the above paragraph to make it bi-infinite,
let β′ be any flat bi-infinite geodesic that converges to the same points at infinity as γ. We may
parameterise β′ with unit flat speed so that

• β′s and γs converge to the same point at infinity as s→ ∞; and
• β′0 is the point on β′ closest to γ0 in the flat metric.

By our choice of constants it follows that dflat(β′0, β0) < r and dflat(β′t, β3`) < r for some t satisfying
3`− 2r < t < 3`+ 2r. Then, by Lemma 3.11, H2 − Sh(β′0) ⊆ H2 − Sh(β`) and Sh(β′t) ⊆ Sh(β2`).
By the choice of constants and Lemma 3.19, it follows that

Dhyp(H
3 − L(β′, 0), L(β′, t)) > Dhyp(Lad(Sh(β`

⊥), Lad(Sh(β2`
⊥ )) > R.

We now suppress the discussion on the good segment to summarise the conclusions as follows.

Remark 4.4. Let γ be a bi-infinite hyperbolic geodesic and let β be a parameterised flat geodesic such that
it converges to the same points at infinity as γ forwards and backwards and β0 is the closest point on ξ
in the flat metric to γ0. Let p(t) be the flat time such that βp(t) is the point of β closest to γt. There
exists constants r, ` > 0 such that if after projecting to T1(Σ) the unit tangent vector v(γt) is in Λ, then
Dhyp(H

3 − L(β, p(t)), L(β, p′)) > R for some p′ 6 p(t) + 3`+ 2r.

Let µLio be the Liouville measure on T1(Σ). We may normalise the measure to be a probability
measure. Then, note that µLio(Λ) > 0. We set m = µLio(Λ).
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5. LINEAR PROGRESS IN THE FIBRE FOR A FIBERED HYPERBOLIC 3-MANIFOLD

We are now derive linear progress, namely Theorem 2.2.

Proof of Theorem 2.2. Let γ and β be respectively hyperbolic and flat geodesics as in Remark 4.4.
Recall Equation (4.2) for s(t). Given t > K(A + 2C), the set of times {u : p(u) 6 s(t)} is closed

and bounded above. Let w be its maximum and note that w > (1/K)s(t)− A− 2C.
Let nγ(w) be the number of visits by γ to Λ (in the sense above) till time w. From Remark 4.4,

we conclude Dhyp(L(β, 0), L(β, p(w))) > (nγ(w)− 1)R.
Since p(w) 6 s(t), Lemma 3.11 implies Dhyp(L(β, 0), L(β, s(t))) > (nγ(w)− 1)R. We deduce

(5.1) fγ(t) = Dhyp(γ0, L(β, s(t)) > (nγ(w)− 1)R− C.

Let χΛ be the characteristic function of Λ. In each visit γ spends time at most 2ρ in Λ. Hence

(5.2) nγ(w) >
1

2ρ

w∫
0

χΛ(v(γt)) dt,

By the ergodic theorem, for µLio-almost every v ∈ T1Σ, any lift γ in H2 of the hyperbolic ray
determined by v, satisfies

lim
w→∞

1
w

w∫
0

χΛ(gtv) dt = m

In particular, there exists a time wv > 0 depending only on v such that

(5.3)
1
w

w∫
0

χΛ(gtv) dt >
m
2

for all w > wv. Given v, let tv be a time along γ such that s(tv) > p(wv).
By combining Equation (5.1), Equation (5.2) and Equation (5.3), we conclude that for µLio-almost

every v ∈ T1Σ, along any lift γ in H2 of the hyperbolic geodesic ray determined by v, we get

fγ(t) >
(

mw
4ρ
− 1
)

R

for all t > tv. Since w > (1/K)s(t) − A − 2C = (1/K2)T − constants, we conclude the proof of
Theorem 2.2.

�

Proof of Theorem 2.4. We record some observations from flat geometry. Let β[x, p] be a flat geo-
desic ray from the base-point x to a point p ∈ S1 = ∂H. We may write β as a (possibly infinite)
concatenation β1 ∪ β2 ∪ · · · of saddle connections, or slightly more precisely, where β j−1 ∩ β j is a
singularity for all j > 2. The vertical and horizontal foliations of the pseudo-Anosov monodromy
f have no saddle connections. We infer that only the initial segment β1 and in case of a finite con-
catenation the terminal segment βn can possibly be vertical/ horizontal. We then define the tilted
length of `tilt(β) to be

`tilt(β) = ∑
mj∈Slope(β) : 0<|mj|<∞

`(β j).

By the discreteness of saddle connection periods, it follows that given ` > 0, the set of p ∈ S1 such
that `tilt(β[x, p]) < 2`, is finite.

Since µ is non-elementary, the limit set Lim(Gµ) ⊂ S1 = ∂∞H of the semi-group Gµ generated
by the support of µ is infinite. It follows that for any ` > 0, Lim(Gµ) contains a point p such that
the flat geodesic ray β[x, p] has titled length of β exceeds 3`. Parameterising β by arc-length it
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follows that there exists a time βT such that the tilted lengths of the segments [β0, βT], [βT, β2T] and
[β2T, β3T] all exceed `. To be precise, we may write β as a concatenation such as above and then
only the initial segment in the concatenation can be horizontal or vertical . In particular, T could
be taken to the flat length of this initial segment plus `. Once chosen, there is also a constant κ > 0
such that any slope mj along [β0, β3T] that is not horizontal or vertical satisfies 1/κ < |mj| < κ.
Except for (potentially) a horizontal or vertical prefix, the segment β3T satisfies the requirements
of a good segment, that is, it contains three subsegments of length at least ` such that the absolute
values of the slopes of the saddle connections along them are bounded away from 0 and ∞ by κ. In
particular, the segment [β0, β3T] can be used as a linear progress certificate for the metric D, where
the progress achieved will depend on this bound κ.

We now consider Sh(β3T) and denote by ∂∞ Sh(β3T) the limit set at infinity of the shadow. By
definition, fixed points of hyperbolic isometries in the semigroup are dense in Λ and since we
are in the semigroup, we may assume that we can find the stable fixed point p′ of a (semi)-group
element g contained in the interior of ∂∞ Sh(β3T).

Let ν be the stationary measure for the random walk and let I be a subset of S1 such that ν(I) > 0.
Let k > 0 be the smallest integer such that gk I ⊂ ∂∞ Sh(β3T). By stationarity of ν,

ν(gk I) = µ(k)(gk)ν(g−kgk I) + ∑
h 6=gk

µ(k)(h)ν(h−1 I)

where µ(k) is the k-fold convolution of µ. Notice that the first term on the right is strictly positive
because both µ(k)(gk) and ν(I) are strictly positive. We deduce that ν(∂∞ Sh(β3T)) > ν(gk I) > 0.
Denote ν(∂∞ Sh(β3T)) by α.

As discussed at the beginning of Section 4.3, we now consider the set Ω of bi-infinite sample
paths. By convergence to the boundary, almost every ω ∈ Ω defines a bi-infinite hyperbolic geo-
desic γω in H2. For R > 0, let ΩR be the subset of those ω such that d(γω, x) < R. The subset R
is measurable and as R → ∞, we have (ν× ν̂)(ΩR) → 1. Hence, we may choose R > 0 such that
(ν× ν̂)(ΩR) > 1− α/2.

Let Λ be the subset of ΩR of those ω = (wn) such that wnx → ∂ Sh(β3T). It follows that (ν×
ν̂)(Λ) > α/2.

We now consider the shift map σ : Ω → Ω. Recall that for almost every bi-infinite sample path
ω, we get the tracked bi-infinite geodesic γω. Let γω(j) is the point of γω closest to wjx.

By combining linear progress and sub-linear tracking in the metric d, namely [10, Theorems 1.2
and 1.3], we deduce that for almost every ω = (wn), the distance d(γω(0), γω(n)) where γω(j) is
the point of γω closest to wjx, grows linearly in n.

By the ergodicity of σ, it follows that the asymptotic density of times j such that σj(ω) ∈ Λ
approaches (ν× ν̂)(Λ), which exceeds α/2; in particular, it is positive. Finally, the geodesic rays
γω and the ray from x to the same point at infinite are positively asymptotic; that is up to the choice
of an appropriate base-point, the distance between the corresponding points on the rays goes to
zero. Theorem 2.4 then follows by the same arguments as the proof of Theorem 2.2.

�

6. LINEAR PROGRESS IN ANALOGOUS SETTINGS

Remark 6.1. We were very explicit about the constructions for fibered hyperbolic 3-manifolds but as the
astute reader may have observed, the proofs rely on weaker features. We distill the essential features below.

(1) A π1(Σ)–equivariant assignment of shadows along any geodesic ray in the fibre with the property
that if 0 < t is a sufficiently large time and t < t′, then Sh(γt) ⊆ Sh(γt′);

(2) a ladder-like construction in the total space with the property that if a shadow is contained in another
shadow then its ladder is contained in the ladder of the other;
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(3) the existence of finite segments in the fibre that achieve a specified nesting of ladders, that is, for any
sufficiently large R > 0 there exists a segment β of length 3` = O(R) and ρ > 0 such that
• the ball B(β0, ρ) in the fibre is contained in the complement of Sh(β`);
• the ball B(β3`, ρ) is contained in Sh(β2`);
• for any geodesic segment [β′0, β′T] such that β′0 ∈ B(β0, ρ) and β′T ∈ B(β3`, ρ) the shadows

satisfy Sh(β`) ⊆ Sh(β′0) and Sh(β′T) ⊆ Sh(β2`); and
• Dtotal(∂ Lad(Sh(β`)), ∂ Lad(Sh(β2`)) > R;

(4) for a good segment β that satisfies (3) above, the set of geodesics in the fibre that pass through
B(β0, ρ) and B(β3`, ρ) have a positive mass in the measure used for the sampling.

Our proofs hold verbatim for fibrations (with surface/ surface group fibres) that exhibit these features estab-
lishing that a typical geodesic ray in the fibre makes linear progress in the metric on the total space.

FIGURE 6.2. The general setup for shadows, as in Remark 6.1 (3). β is a good seg-
ment, whose endpoints are close to a segment β′. The nesting of “inner” shadows
of β, β′, together with the separating of the “outer” shadows of β, β′ imply separa-
tion of shadows for β′, which is retained by its images in all fibres.

We will now give some explicit settings where these essential features hold and thus derive
linear progress in the fibre. We start with Gromov hyperbolic extensions of surface groups, then
consider canonical bundles over Teichmüller disks, and finally the Birman exact sequence. In each
case, different parts need to be adapted to check that the features in Remark 6.1 hold but the general
strategy remains the same.

6.3. Hyperbolic extensions. In this section, we discuss a finitely generated group extension

1→ π1(Σ)→ Γ→ Q→ 1,

where Γ is a hyperbolic group. We make no assumptions on Q, but remark that in all known
examples of this form, the group Q is virtually free. It is wide open if other examples exist, for
instance, if there is a hyperbolic extension of π1(Σ) by the fundamental group π1(Σ′) of another
closed surface Σ′ with negative Euler characteristic.
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We fix a finite generating set for Γ that contains a generating set for π1(Σ) and we equip Γ with
the corresponding word metric. We also choose, once and for all, an equivariant quasi-isometry

G : H2 → π1(Σ),

and a basepoint x0 ∈ H2 with G(x0) = 1. We use it to identify the kernel π1(Σ) of p : Γ→ Q with
the hyperbolic plane. Such a choice is not unique (it is only up to quasi-isometry) – but we make
the choice to use it later to sample geodesics in H2.

By a result of Mosher, namely [14, Theorem B], any short exact sequence such as above with a
hyperbolic, non-elementary kernel (like π1(Σ)) admits a quasi-isometric section σ : Q → Γ with
σ(1) = 1.

Fixing such a section, any q ∈ Q induces a quasi-isometry ψq : π1(Σ) → π1(Σ) by conjugation
with σ(q), that is, ψq(g) = σ(q)−1g σ(q).

Suppose that β is an infinite geodesic ray in π1(Σ) starting at the neutral element 1. The closest
point projection to β is coarsely well-defined; that is, the image in β of the set of closest points
has bounded diameter. For any point r ∈ β, let N(β, r) denote the set of all points in π1(Σ)
whose closest point projection to β (as a set) lies after r. The Gromov boundary of π1(Σ) is a
circle, and the limit set ∂∞N(β, r) is an interval. We then set our required shadow Sh(β, r) as
the union of all bi-infinite geodesics in π1(Σ) whose both endpoints at infinity are contained in
the limit set ∂∞N(β, r). It is clear from the construction that if r > r′ then Sh(β, r) ⊆ Sh(β, r′)
which is the containment property we require our assignment of shadows to satisfy in feature (1)
of Remark 6.1. Furthermore, since π1(Σ) is quasi-isometric to the hyperbolic plane, observe that
Sh(β, r) is a quasi-convex subset of π1(Σ) with a quasi-convexity constant independent of r.

For any q ∈ Q, the corresponding quasi-isometry ψq maps the interval ∂∞N(β, r) to a possibly
different interval Iq(β, r) = (ψq)∞∂∞N(β, r). Let Shq(β, r) be the union of bi-infinite geodesics in
π1(Σ) whose both endpoints at infinity are contained in Iq(β, r).

Define
L(β, r) =

⋃
q∈Q

σ(q) Shq(β, r).

This is our analogous ladder-like construction in this context. Using a slight extension of the meth-
ods of [13], we observe:

Lemma 6.4. The set L(β, r) is quasi-convex in Γ and if r′ > r′ then

L(β, r) ⊆ L(β, r′)

Proof. We briefly indicate how the proof in [13] needs to be adapted. The basic strategy is the same
– we define a Lipschitz projection Π : Γ → L(β, r). Since one can then project geodesics in Γ to
L(β, r) without increasing their length too much, this will show un-distortion. Hyperbolicity of Γ
then implies quasi-convexity.

As in [13], the definition of Π involves the fibrewise closest-point projection to the sets Shq(β, r).
To show that the projection is Lipschitz, one needs to control the distance between Π(x), Π(y)
for points x, y of distance 1. There are two cases to consider. If x, y are in the same fibre, the
estimate stems from the fact that closest point projections to quasi-convex sets in hyperbolic spaces
are Lipschitz. If x, y lie in adjacent fibres, then the estimate in [13] relies on the fact that quasi-
isometries coarsely commute with projections to geodesics in hyperbolic spaces. This fact is still
true for projections to quasi-convex sets (with essentially the same proof), and so the argument
extends.

Finally, we note that for r < r′, we have ∂∞N(β, r) ⊆ ∂∞N(β, r′) which implies that Iq(β, r) ⊂
Iq(β, r′) for all q ∈ Q. This then implies Shq(β, r) ⊆ Shq(β, r′) and hence

L(β, r) ⊆ L(β, r′).
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�

Lemma 6.4 thus ensures that feature (2) in Remark 6.1 holds.
We now construct appropriate "good" segments to achieve a specified nesting. To start, we need

to better understand what the shadows look like at infinity.

Lemma 6.5. In the Gromov boundary ∂∞Γ, both ∂∞L(β, r) and its complement have nonempty interior.

Proof. We first claim that there is a quasi-geodesic in Γ whose endpoint lies in ∂∞L(β, r). Namely,
let g ∈ π1(Σ) be an element in the fibre so that the sequence β′n = gn converges to a point in
∂∞N(β, r) as n→ ∞. Since the cyclic group generated by any infinite order element in a hyperbolic
group is quasi-convex, hence undistorted, (compare e.g. [1, III.F.3.10]), the sequence β′n is also a
quasi-geodesic in Γ, thus proving the claim.

We now claim that β′n nests in L(β, r) as n → ∞. That is, we claim that for any distance R > 0,
we have DΓ(β′n, ∂L(β, r)) > R for all sufficiently large n. Note that dπ1(Σ)(β′n, ∂ Sh(β, r)) becomes
arbitrarily large as n → ∞. We now choose a radius for a ball B centred at identity in Q such that
DΓ(1, σ(q)) > R for all q ∈ Q− B. We can then arrange n to be sufficiently large so that the distance
DΓ(β′n, ∂ Shq(β, r)) > R for all q ∈ B. The claim follows because DΓ(β′n, ∂ Shq(β, r)) > R for near-by
fibres corresponding to q ∈ B, and DΓ(1, σ(q)) is a lower bound on DΓ(β′n, ∂ Shq(β, r)) > R for all
fibres corresponding to Q− B and DΓ(1, σ(q)) > R was arranged for these fibres.

By the claim above, we can choose n sufficiently large to arrange that the ball in Γ centred at β′n is
contained deep in L(β, r). It then follows that all geodesic rays in γ starting at identity and passing
through this ball converge to a point in the Gromov boundary that is contained in ∂∞L(β, r). In
particular, this means that ∂∞L(β, r) has non-empty interior in ∂∞Γ.

The claim for the complement ∂∞Γ − ∂∞L(β, r) follows because the complement of Sh(β, r) in
π1(Σ) contains the shadow Sh(β−, r), where β− is the geodesic ray in π1(Σ) with its initial direction
opposite to β.

�

Corollary 6.6. There is an element g0 of π1(Σ) whose axis has one endpoint in ∂∞L(β, r) and one endpoint
in the complement of ∂∞Γ− ∂∞L(β, r).

Proof. One can either use an element as in the proof of the previous lemma, also assuming that gn

converges to a point outside ∂∞ Sh(β, r).
Alternatively, choose open sets U+, U− in ∂∞L(β, r) and its complement. Since we have a contin-

uous Cannon-Thurston map, there are intervals I+, I− of the boundary ∂∞π1(Σ) mapping (under
this Cannon-Thurston map) into U+, U−. We can choose an element g0 of π1(Σ) whose axis end-
points are contained in I+, I−. This has the desired property.

�

Recall that any infinite order element of a Gromov hyperbolic group acts with north-south dy-
namics on the Gromov boundary. The element g guaranteed by the previous corollary will act
hyperbolically on Γ with axis endpoints in U+, U−. Thus, a large power h = gN has the property
that it nests L(β, r) properly into itself; in particular by choosing N large enough, we can guarantee
that the distance between the boundaries of L(β, r) and hL(β, r) is at least R > 0 for any choice of
R. In other words, similar to `-good segments in the fibered case, feature (3) in Remark 6.1 can be
achieved by a geodesic segment β in π1(Σ) from identity to a suitably high power h = gN .

Finally, since ∂∞ Sh(β, r) is an interval with non-empty interior it has positive measure with
respect to geodesic sampling using the fixed quasi-isometry G : H2 → π1(Σ).

Thus, feature (4) of Remark 6.1 also holds and hence by replicating the proof of Theorem 2.4 we
conclude that a typical ray in π1(Σ) makes linear progress in Γ.
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6.7. Teichmüller disks. In this section we consider the universal curve over a Teichmüller disk.
A marked holomorphic quadratic differential on a closed Riemann surface defines charts to the

complex plane via contour integration of a square root of the differential. The transition functions
are half-translations, that is of the form z → ±z + c. The natural action of SL2(R) on C = R2

preserves the form of the transitions and hence descends to an action on such differentials.
Let q0 be such a quadratic differential on a Riemann surface X0. The conformal structure is

unchanged under the SO2(R)-action on q0 and hence the image of the orbit SL2(R)q in Teichmüller
space is an isometrically embedded copy of H2 = SL2(R)/SO2(R). This is called a Teichmüller disk.
We will use the notation Dq0 for the disk and X0 for the underlying marked Riemann surface for
q0. The canonical projection SL2(R)q0 → Dq0 exhibits the orbit as the unit tangent bundle of the
Teichmüller disk. In particular, since Dq0 is contractible the unit tangent bundle is trivial.

The universal curve over Dq0 lifts to its universal cover to us gives the the bundle

H2 → E→ Dq0 .

As discussed in e.g. [4, Section 3.3-3.5], the triviality of the unit tangent bundle allows us to
equip the total space E with a metric dE as follows.

• We choose a section σ : Dq0 → SL2(R)q0 such that σ[q0] = q0;
• We equip the fibre over [q] with the lift of the singular flat metric on Σ given by the differ-

ential σ[q].
In particular, the metrics on nearby fibres differ by (quasi-conformal) affine diffeomorphisms with
bounded dilatation.

In fact, there is a convenient section of the unit tangent bundle. Namely, given any point X ∈
Dq, there is a (unique) Teichmüller extremal map from X0 to X. The map pushes the quadratic
differential q0 on X0 to a quadratic differential qX on X – which, if X is defined by Aq for A ∈
SL2(R), differs from Aq by a rotation.

We fix, once and for all, an identification of the fibre over the base-point q with the hyperbolic
plane H2 up to quasi-isometry. The goal is to discuss the behaviour of a typical (hyperbolic) geo-
desic ray in that fibre for the metric dE.

One major difference from the preceding sections is that the total space E is no longer hyperbolic.
This will mandate several adaptations from the previous two cases.

We begin by defining shadows in the fibre as in the fibered 3-manifold case, that is, for a flat
geodesic ray β, we set Sh(β, r) as the shadow in the flat metric that contains the point at infinity
∂∞β and has the optimal perpendicular β⊥(r) as the boundary. As the hyperbolic and the singular
flat metric are quasi-isometric, given a hyperbolic ray γ in the fibre and a time t along it, we can
assign the shadow Sh(β, s(t)), where β is a flat ray fellow-travelling γ for all time and s(t) is a time
along γ assigned as in Equation (4.2). The assigned shadows then satisfy feature (1) in Remark 6.1.

We are now set up to carry out a ladder-like construction in this context. Let β be a flat geodesic.
We define the ladder of β by

Lad(β) =
⋃

X∈Dq0

σ(X)(β)

where as above, σ(X) is the affine diffeomorphism given by the trivialisation of the unit tangent
bundle. Note that since σ(X) is an affine map, it takes a flat geodesic in the fibre over X0 to a flat
geodesic in the fibre over X.

We then define
L(β, r) =

⋃
X∈Dq0

σ(X) Sh(β, r).

It follows that along a flat geodesic ray β the sets L(β, r) satisfies feature (2) in Remark 6.1.
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Arguing as in Lemma 6.4 (observing that only the proof of quasiconvexity, and not of undistor-
tion, relies on the hyperbolicity of the ambient space), we obtain the following.

Lemma 6.8. There is a constant K, so that for any flat geodesic β in H2 and r > 0, the ladder Lad(β) and
the set L(β, r) are K–undistorted in E for the bundle metric dE defined above.

Our next aim is to show the existence of finite segments which produce any specified nesting
on ladder-like sets. The additional complexity in this particular context is that a single saddle
connection has no lower bound on its flat length over all fibres. To sidestep this issue, we finesse
the definition of a good segment.

We consider the collection of flat geodesic segments that are a concatenation of segments of the
form

β = i ∗ v ∗ h ∗ f
for which

(1) the segments v and h are saddle connections with different slopes; in particular, we may
assume that v is almost vertical and h almost horizontal;

(2) the segments i and f have no singularities in their interior; and
(3) the angles θL(i, v) and θL(h, f ) subtended on the left along β at the singularities satisfy

θL(i, v) = θL(h, f ) = 3π/2.
Note that condition (3) above implies that the angles θR(i, v) and θR(h, f ) at the singularities

satisfy θR(i, v) > 3π/2 and θR(h, f ) > 3π/2. Let v′ and v′′ be flat geodesic rays such that the
concatenations v′ ∗ v and v′′ ∗ v are also flat geodesics and the angles θL(v′, v) = π and θR(v′, v) =
π. The concatenation v′ ∗ v′′ is then a bi-infinite flat geodesic. Observe that the angle conditions
imply that (v′ ∗ v′′) ∩ i⊥ = ∅. Similarly let h′ and h′′ be flat rays such that the concatenations h ∗ h′

and h ∗ h′′ are also flat geodesics and the angles θL(h ∗ h′) = θR(h ∗ h′′) = π. Then the concatenation
h′ ∗ h′′ is a bi-infinite flat geodesic and by the same logic regarding angles (h′ ∗ h′′) ∩ f⊥ = ∅.

We now derive

Lemma 6.9. A flat geodesic segment with endpoints on i⊥ and f⊥ contains v ∗ h.

Proof. Let β′ be a flat geodesic segment with endpoints xi on i⊥ and x f on f⊥. Since v′ ∗ v′′ separates
xi and x f , the segment β′ must intersect v′ ∗ v′′. Similarly β′ must also intersect h′ ∗ h′′. Breaking
symmetry, suppose that β′ intersects v′ and h′ in points p and q respectively. The concatenation v′ ∗
v ∗ h ∗ h′ also gives a geodesic segment between p and q. This implies that β′ and v′ ∗ v ∗ h ∗ h′ must
coincide between p and q and thus β′ contains v ∗ h. Identical arguments apply for possibilities for
intersections of β′ with v′ ∗ v′′ and h′ ∗ h′′ which concludes the proof of the lemma.

�

We now parameterise β and denote by times s < t the midpoints of i and f along β. By
Lemma 6.9, any flat geodesic from H2 − Sh(β, s) to Sh(β, t) contains v ∗ h.

As the maps σ(X) act by affine diffeomorphisms, it immediately follows that

Corollary 6.10. A flat geodesic segment with endpoints on σ(X)(i⊥) and σ(X)( f⊥) contains the segment
σ(X)(v ∗ h).

Given any ` > 0 it is obvious from the asymptotics of saddle connections that we can choose a
segment β such that both v and h have flat length at least `. We will call such a segment β to be
`-good.

With the assumption that v is almost very vertical and h almost horizontal, notice that σ(X)(v ∗
h) is bounded below by O(`) for any X in Dq0 .

The main point now is that
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Lemma 6.11. Given R > 0 there exists ` > 0 such that for any `-good segment β = i ∗ v ∗ h ∗ f and times
s < t corresponding to midpoints of i and f along β, any geodesic segment in E that joins E− L(β, s) to
L(β, t) has length at least R.

Proof. Since the sets L(β, s) and L(β, t) are undistorted by Lemma 6.8, the E-distance between
∂L(β, s) and ∂L(β, t) can be (coarsely) computed in L(β, s). So suppose that a geodesic segment
in L(β, s) coarsely gives the distance between ∂L(β, s) and ∂L(β, t). Let xi ∈ i⊥ = ∂ Sh(β, s) and
x f ∈ f⊥ = ∂ Sh(β, t) be points such that the geodesic segment above has its endpoints in the
ladders Lad(xi) and Lad(x f ). Since ladders are also undistorted by Lemma 6.8, it suffices to show
that the distance in E between any point of Lad(xi) and Lad(x f ) is uniformly bounded from below
by a constant that is linear in `. This follows from Corollary 6.10 and the observation preceding the
lemma that σ(X)(v ∗ h) is bounded below by O(`) for any X in Dq0 . This means that given R > 0,
we can indeed find ` > 0 that achieves the nesting as required.

�

6.12. Point-pushing groups. The final setting that we consider is given by the Birman exact se-
quence:

1→ π1(Sg, p)→ Mod(Sg, p)→ Mod(Sg)→ 1.
We follow essentially the same strategy as in the previous sections. As in the section on hyperbolic
extensions, we construct nested shadows along geodesic rays in the fibre in exactly the same way.
The construction of ladders and subsequently the sets L(β, r) is also identical.

The definition of segments that achieve nesting as in point (3) of Remark 6.1 require care.
Roughly speaking given ` > 0 sufficiently large, we need a segment such that all Mod(Sg) im-
ages of it have lengths bounded below by O(`).

We first recall the following basic fact from elementary hyperbolic geometry.

Lemma 6.13. Let S be a closed surface. Given any complete hyperbolic structure X on S and any R > 0,
there exists a natural number k = k(S, R) such that any geodesic arc on X with at least k self-intersections
has length at least R.

We now fix a complete hyperbolic structure X on Sg. Given R > 0 sufficiently large let k be
as in Lemma 6.13. Fix a geodesic arc on X with k self-intersections. Let γ be a bi-infinite lift in
H2 of this arc on X. We parameterise γ with unit speed. Given a time s let αs be the bi-infinite
geodesic orthogonal to γ at γs. We let H−s and H+

s be the half-spaces with boundary αs such that
γt converges in to H−s as t→ −∞ and γt converges in to H+

s as t→ ∞.
We may then choose a time s sufficiently large such that any geodesic segment γ′ with endpoints

in H−0 = H−−s and H+
0 = H+

s fellow-travels a long enough arc of γ to ensure that the projection
of γ′ to X has at least k self-intersections. In fact, by passing to a larger s if required, we can
ensure that there are at least k group elements gi : 1 6 i 6 k such that the half-spaces in the list
{H−0 , H+

0 , g1H−0 , g1H+
0 , · · · , gk H−0 , gk H+

0 } are pairwise well-separated and the pairs (gi H−0 , gi H+
0 )

all link the pair (H−0 , H+
0 ). Let I−0 = ∂∞H−0 and I+0 = ∂∞H+

0 be the pair of intervals at infinity.
Similarly, we get the pairs of intervals I−i = ∂∞gi H−0 and I+i = ∂∞gi H+

0 . The separation of half-
spaces implies that these intervals are all pairwise disjoint and along the circle S1 = ∂∞H2 the
pairs (I−i , I+i ) are all linked with the pair (I−0 , I+0 ).

The hyperbolic structure X defines a group-equivariant quasi-isometry ψ : H2 → π1(Sg) that
gives a homeomorphism ψ∞ of their Gromov boundaries. So, we get intervals J−i = ψ∞(I−i ) and
J+i = ψ∞(I+i ) in the Gromov boundary of π1(Sg). Being a homeomorphism, ψ∞ preserves the
linking and hence the pairs (J−i , J+i ) all link (J−0 , J+0 ).

Realising a mapping class on Sg as an actual automorphism f of π1(Sg), the action of f on π1(Sg)
extends to a homeomorphism f∞ of the Gromov boundary. Hence, the pairs ( f∞(J−i ), f∞(J+i ))
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continue to link the pair ( f∞ J−0 , f∞ J+0 ). Let H−f ,i and H+
f ,i be the half-spaces in H2 such that ∂∞H−f ,i =

f∞(J−i ) and ∂∞H+
f ,i = f∞(J+i ).

We note that

Lemma 6.14. For any mapping class on Sg and any automorphism f of π1(Sg) in its class,

dhyp(H−f ,0 , H+
f ,0) > R.

Proof. Because of the linking, any geodesic segment that connects H−f ,0 to H+
f ,0 projects to an arc on

X that self-intersects at least k times. By Lemma 6.13, the arc has length at least R and the lemma
follows. �

By construction, ∪ f∈Mod(Sg)H
+
f ,0 = L(γ, s) and ∪ f∈Mod(Sg)H

−
f ,0 = Mod(Sg, p)− L(γ,−s).

We now define the nesting segment to be the segment β = [γ−3s, γ3s]. To compare constants with
feature (3) in Remark 6.1, we set ` = 2s and reset time zero to be −3s. We then get a parameterised
segment β of length 3` for which the ball B(β0, ρ) is contained in the complement of L(β, `), the ball
B(β3`, ρ) is contained in L(β, 2`) and DMod(Sg,p)(Mod(Sg, p)− L(β, `), L(β, 2`)) > R, as required.
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