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Abstract

Consider a closed surface M with negative Euler characteristic, and an admissible probability measure
on the fundamental group of M with finite first moment. Corresponding to each point in the Teichmüller
space of M , there is an associated random walk on the hyperbolic plane. We show that the speed of this
random walk is a proper function on the Teichmüller space of M , and we relate the growth of the speed
to the Teichmüller distance to a basepoint. One key argument is an adaptation of Gouëzel’s pivoting
techniques to actions of a fixed group on a sequence of hyperbolic metric spaces.

1 Introduction and statements of results
Let M be a compact oriented surface with negative Euler characteristic with a basepoint p, and let Γ =
π1(M,p). Let µ be a probability measure on Γ that is admissible, i.e., the semigroup generated by the support
of µ is equal to Γ. Further assume that µ has finite first moment. Consider a random walk Zn = g1 · · · gn
where gi are i.i.d. elements of Γ with distribution µ. Fixing a complete hyperbolic metric ρ on M , define

ℓ(ρ) := lim
n→∞

|Zn|ρ
n

where |Zn|ρ denotes the ρ-length of the unique hyperbolic geodesic representing the free homotopy class of
the element Zn. The limit above exists almost surely, and is well defined. The quantity ℓ(ρ) is called the
speed (or drift) of the random walk on (M,ρ).

Let T (M) be the Teichmüller space of marked complete hyperbolic metrics on M . Our first result is
concerned with the quantitative behavior of ℓ(ρ) as one varies the hyperbolic metric ρ on M , in other words
as [ρ] varies over points in the Teichmüller space T (M). When one moves in Teichmüller space, some curves
get longer but others get shorter, so the behavior is not obvious. However, one expects that most curves get
longer, so one should expect ℓ(ρ) to tend to infinity at ρ diverges to infinity in Teichmüller space. There
is a difficulty, though, that most curves become more and more parallel to each other (up to orientation)
when ρ converges to a point at infinity, as they align asymptotically with the measured foliation at infinity.
This means that consecutive steps of the random walk are likely to be both large, but in opposite directions,
thereby cancelling each other effectively and not contributing to the speed. Our main theorem shows that
the former effect dominates the latter: The speed indeed tends to infinity at infinity. However, this discussion
hints at the fact that this is not straightforward, and indeed our proof is rather indirect.
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Theorem A (Speed is a proper function on Teichmüller space). Assume that the probability measure µ on
Γ is admissible and has a finite first moment. Then the function ℓ : T (M) → [0,+∞) is proper.

Recall that a function is proper if the preimage of any compact set is compact. In our particular case,
since ℓ is non-negative, properness is equivalent to the statement that for each C > 0 there exists a compact
set K ⊂ T (M) such that ℓ(ρ) > C for all [ρ] /∈ K.

We can actually be more precise, by comparing the speed of a random walk to the Teichmüller distance
in the Teichmüller space. Let (T (M),distTeich) denote the Teichmüller space of M endowed with the
Teichmüller metric (see Section 2 for the definitions). Then, we have:

Theorem B. For each [ρ0] ∈ T (M) there exists a constant c > 0 such that

ℓ(ρ) ≥ cdistTeich([ρ], [ρ0])

for all [ρ] ∈ T (M).

Our strategy to prove the properness of the drift function in Theorem A and the quantitative bound in
Theorem B is through a compactification argument: we get representations at boundary points, and argue
that the drift there is nonzero. Then, by continuity (up to a natural rescaling), we deduce that the drift
inside the Teichmüller space is positive. Moreover, using extremal length bounds we prove that the natural
rescaling factor grows at least linearly along all Teichmüller rays.

Note that the speed can also be considered as a Lyapunov exponent. More precisely, if [ρ] ∈ T (M) is
a point in Teichmüller space, we can consider [ρ] as a conjugacy class of a discrete, faithful representation
ρ : π1(M) → PSL(2,R). Indeed, if we fix a matrix norm ∥·∥ on PSL(2,R), we have

ℓ(ρ) = lim
n→+∞

1

n

∫
log∥ρ(g1) · · · ρ(gn)∥dµ(g1) · · · dµ(gn),

which is the Lyapunov exponent of the random walk on PSL(2,R).
A related argument was used in [DF19] to study continuity of Lyapunov exponents for certain meromorphic

families of representations in SL(2,C), with the same idea which consists in looking at the scaled limiting
action on an R-tree. One simple situation where both approaches can be used is the case where the hyperbolic
structure degenerates by only pinching a simple closed curve: this degeneracy can also be described by a
meromorphic family of representations using plumbing co-ordinates around the resulting noded surface. In
this situation, the non-Archimedean exponent defined in [DF19] should be zero and our bound in Theorem A
considered in plumbing co-ordinates, should give information on the error term in [DF19, Theorem A]. In
the context of representations of surface groups into PSL(2,R), the setting of our continuity result below is
thus more general.

The main feature of this argument is that the representations at boundary points do not live on the same
space as the original representations: the group acts on an R-tree instead of the hyperbolic disk. These
representations are constructed in [Bes88] and [Pau88] (following previous work [CM87] and [MS84]). In
particular, the topological type of Gromov boundaries changes in the limit. This means that the usual
continuity argument for the drift, relying on the convergence of stationary measures on the boundary
(see [EK13]), does not work. However, we are able to obtain the continuity of the drift in this context thanks
to the pivotal times argument of [Gou21]. The notions in the next Theorem are defined in Section 2.2.

Theorem C (Speed is lower semi-continuous for a converging sequence of actions on uniformly hyperbolic
spaces). Let Γ be a countable group, and µk be a sequence of probability measures on Γ converging pointwise
to a probability measure µ∞. Let (Xk, ok)k∈N∪{∞} be a uniformly hyperbolic sequence of pointed metric spaces,
and let ρk : Γ → Isom(Xk), k = 1, 2, . . . be a sequence of isometric actions of Γ converging to an action ρ∞.
Assume that µ∞ is non-elementary for ρ∞.

Consider for each k a random walk Z
(k)
n = g

(k)
1 · · · g(k)n where g

(k)
1 , . . . , g

(k)
n , . . . is an i.i.d. sequence with

common distribution µk. Then, one has

lim inf ℓ(µk) ≥ ℓ(µ∞),
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where for each k ∈ N ∪ {∞} we define ℓ(µk) ∈ [0,∞] as the almost sure limit

ℓ(µk) = lim
n→+∞

1

n
dist(ok, ρk(Z

(k)
n )ok).

Returning to the setting of Theorem A, it is well known that ℓ(ρ) > 0 for all ρ and the random walk
driven by µ converges to the boundary almost surely. In order words, the limit

X∞ = lim
n→∞

ρ(Zn)o,

exists almost surely and X∞ is in the visual boundary ∂H of H, (cf. [Kai00]). This limit defines a hitting
measure on ∂H as follows: for any Borel set U ⊂ ∂H,

νρ(U) := P( lim
n→∞

ρ(Zn)o ∈ U).

The measure νρ is the unique µ-stationary measure on the visual boundary for the ρ-action. Properties
of the stationary measures associated to random walks with finite support are quite subtle, as illustrated by
the following. Here dim(νρ) ∈ [0, 1] denotes the Hausdorff dimension of the stationary measure νρ associated
to the representation ρ.

Conjecture (Singularity Conjecture). If µ is admissible and has finite support, then there exists κ < 1 such
that

dim(νρ) ≤ κ

for all [ρ] ∈ T (M).

The conjecture above, stated in [DKN09, Conjecture 1.21] and more generally in [KL11], remains open in
spite of some recent progress made in [KT20]. We remark that for all ρ there exists µ with infinite support
on Γ such that dim(νρ) = 1. This follows from the Furstenberg-Lyons-Sullivan discretization of Brownian
motion [LS84], and also from more general results of Connell and Muchnik [CM07].

The speed of the random walk is closely related to the Hausdorff dimension of the stationary measure.
Work in [Tan19] shows that:

dim(νρ) =
h

ℓ(ρ)
,

where h denotes the entropy of the random walk.
Therefore Theorem A immediately translates into a statement about the behavior of the Hausdorff

dimension of the stationary measure:

Corollary 1.1 (Dimension drop of stationary measures). For each ε > 0 there exists a compact K ⊂ T (M)
such that dim(νρ) < ε for all [ρ] /∈ K.

Proof. This follows immediately from Theorem A and the above formula for dim(νρ).

2 Preliminaries

2.1 Teichmüller Geometry
We now recall the definitions of the Teichmüller space and Teichmüller distance. General references on the
subject are [Hub06] and [SS92].

Let M = Mg,n be a compact surface of genus g with n boundary components. A complex structure on
M is an atlas of charts zα : Uα → C where at the intersection zα(Uα ∩ Uβ) the transition maps zβ ◦ z−1

α are
biholomorphisms.

The Teichmüller space T (M) of M is defined as the equivalence classes of complex structures on M , where
two complex structures X and Y are equivalent if there is a biholomorphism f : X → Y which is isotopic to
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the identity. Equivalently, T (M) can be thought of as the space of equivalence classes of hyperbolic structures
on M , where two hyperbolic structures X and Y are equivalent if there is an isometry f : X → Y that is
isotopic to identity. Yet another definition is given by considering the representations of the fundamental
group Γ = π1(M). Let G = Isom+(H) be the orientation preserving isometries of the upper half-plane. The
Teichmüller space of M is also the space of discrete faithful representations from Γ into G considered up to
conjugation by elements of G. We denote the equivalence class of a representation ρ : Γ → G with [ρ]. We
endow T (M) with the subspace topology inherited from the space of representations from Γ to G.

In order to define a metric on the Teichmüller space, we switch back to the complex analytic definition
and consider a map f : X → Y where X and Y are two complex structures on M . Let us define

Kf (p) :=
|fz(p)|+ |fz̄(p)|
|fz(p)| − |fz̄(p)|

the quasi-conformal dilatation of f at p ∈ X. This quantity is well defined as the coordinate charts are
conformal.

The quasi-conformal dilatation of f is defined as

Kf = sup
p∈X

{Kp(f)}.

The map f is called quasiconformal if Kf < ∞. One can see that Kf ≥ 1, and Kf = 1 if and only if f is
conformal. The Teichmüller distance distTeich on T (M) is defined as follows:

distTeich(X,Y ) =
1

2
inf
f≃id

{log(Kf ) | f : X → Y },

where f is any quasi-conformal map isotopic to the identity.
Let γ be a non-trivial essential simple closed curve on M , and (X, dz) be a complex structure on M . The

extremal length of γ on X is defined as

ExtX(γ) = sup
L2
σ(γ)

A(σ)

where the supremum is over all conformal metrics σ(z)|dz|, and

Lσ(γ) = inf
γ∼γ′

∫
γ′
σ(z)|dz| , A(σ) =

∫
X

σ2(z)|dz|2.

2.2 Random walks on hyperbolic spaces
In this subsection we provide the context for Theorem C. Background on random walks on groups is available
in [LP16], [Ben13], and [Woe00]. A general reference on hyperbolic spaces is [GdlH90].

Let (X,dist) be a metric space. The Gromov product between points x, y in X with respect to a third
point o is defined as

(x, y)o =
1

2
(dist(o, x) + dist(o, y)− dist(x, y)) .

The space X is called δ-hyperbolic (or hyperbolic for short) for some δ ≥ 0 if for all w, x, y, z ∈ X, it holds
that

min((x, y)w, (y, z)w) ≤ (x, z)w + δ.

A sequence of pointed metric spaces (Xk, ok) is called uniformly hyperbolic if there exists δ ≥ 0 such that
Xk is δ-hyperbolic for all k.

Let X be a hyperbolic space, and let Γ be a finitely generated group which acts on X by isometries. Let
µ be a probability measure on Γ which is admissible, that is, the semi group generated by the support of µ
is equal to Γ. The measure µ determines a random walk on Γ by taking

Zn = g1g2 · · · gn
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where gi are i.i.d elements of Γ with common distribution µ. Fixing a base point x ∈ X defines a sequence
of points Znx = g1g2 · · · gnx in X, and it is called a random walk in X driven by µ.

We say that µ has a finite first moment if
∑

g∈Γ|g|µ(g) < ∞, where |·| is some word metric on Γ with
respect to a finite generating set.

We now consider the case where X = (H,dist) is the hyperbolic plane, with the distance function induced

from the hyperbolic metric ds2 =
dx2 + dy2

y2
. Fix a base point o ∈ H, and let G = Isom+(H) be the group

of orientation preserving isometries of H. Given a discrete faithful representation ρ : Γ → G we consider
the speed (or linear drift) of the induced random walk ρ(Zn)o on H, which is the number ℓ(ρ) (given by
Kingman’s subadditive ergodic theorem) such that almost surely

ℓ(ρ) := lim
n→+∞

1

n
dist(o, ρ(Zn)o).

This definition is equivalent to the one given in the introduction (see e.g. [FM12]). We claim that ℓ is
well defined as a function on T (M): suppose that ρ̃ = g−1ρg and notice that

dist(o, ρ̃(Zn)o) = dist(o, g−1ρ(Zn)go) = dist(go, ρ(Zn)go).

The claim now follows from the observation that the right-hand side of the above equation differs from
dist(o, ρ(Zn)o) in absolute value by at most 2 dist(o, go).

We now describe the set-up for Theorem C from the introduction.

Definition 2.1. Consider a group Γ, and a sequence of pointed metric spaces (Xk, ok)k∈N∪{∞}, each of them
endowed with an isometric action ρk of Γ. We say that this sequence of actions converges if, for each g ∈ Γ,
the distance dist(ok, ρk(g)ok) converges to dist(o∞, ρ∞(g)o∞) as k → ∞.

We say that a probability measure µ on Γ is non-elementary for an isometric action ρ on a hyperbolic
space if there exist two elements in the semigroup generated by the support of µ which act through ρ as two
independent loxodromic isometries, i.e., their sets of fixed points at infinity are disjoint.

Let Γ be a countable group, µk be a sequence of probability measures on Γ which converges pointwise
to a probability measure µ∞. Let (Xk, ok)k∈N∪{∞} be a uniformly hyperbolic sequence of pointed metric
spaces, and ρk : Γ → Isom(Xk), k ∈ N be sequence of isometric actions of Γ that converges to an action ρ∞.
Assume that µ∞ is non-elementary for ρ∞.

Consider for each k a random walk Z
(k)
n = g

(k)
1 · · · g(k)n where g

(k)
i are i.i.d. elements with common

distribution µk. For each k ∈ N ∪ {∞}, we define ℓ(µk) ∈ [0,+∞] as the almost sure limit

ℓ(µk) = lim
n→+∞

1

n
dist(ok, ρk(Z

(k)
n )ok).

Theorem C states that for such a sequence of actions, lim inf ℓ(µk) ≥ ℓ(µ∞). We will deduce Theorem C
from the more precise Proposition 4.6, that gives uniform exponential large deviation estimates along the
sequence µk.

3 Proofs of Theorems A and B
We will now explain how we can deduce Theorems A and B from the semicontinuity statement of Theorem C.

3.1 Proof of Theorem A
Fix a finite symmetric generating set F ⊂ Γ containing the identity. By [Bes88, Proposition 2.1] there exists
for each ρ a basepoint oρ ∈ H such that

max
γ∈F

dist(oρ, ρ(γ)oρ) = min
x∈H

max
γ∈F

dist(x, ρ(γ)x).
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We define the rescaling factor Rρ = Rρ,F as the common value of both sides of the equation above. From
definition, it follows that Rρ is continuous and proper on T (M). Consider the rescaled distance distρ =
R−1

ρ dist on H.
Recall that an R-tree is a non-empty metric space which is 0-hyperbolic and such that every pair of points

is joined by a unique geodesic. The following is the main result of [Bes88] and [Pau88] (following previous
work [CM87] and [MS84]).

Lemma 3.1. Each sequence ρn such that [ρn] leaves every compact subset in T (M), has a subsequence ρnk

with nk → +∞ such that ρnk
when viewed as an action on H endowed with the distance distρnk

and the
basepoint oρnk

, converges to an action ρT on an R-tree (T, distT , oT ).
Furthermore, the group ρT (Γ) acts minimally on T (i.e., there is no proper closed invariant subtree), and

for any arc I in T the set of γ ∈ Γ such that ρT stabilizes I is a virtually abelian subgroup of Γ.

We now verify that the action ρT is non-elementary.

Lemma 3.2 (Non-elementary action on the R-tree). Let ρT be a representation of Γ into the isometry group
of an R-tree (T, distT ) with the property that stabilizers of arcs are virtually abelian.

Then there exist γ1, γ2 ∈ Γ such that ρT (γ1) and ρT (γ2) are loxodromic isometries of T along geodesics
whose intersection is either empty or a compact arc.

Proof. The action of ρT (Γ) is irreducible in the sense that there is no global fixed point on the boundary at
infinity (see [Pau89, Proposition 2.6]). The existence of the two required loxodromic elements now follows
from [Chi01, Proposition 3.7].

In view of the above lemmas, Theorem A follows immediately from Theorem C and in fact we obtain a
lower bound in terms of the rescaling factor Rρ.

Theorem 3.3. There exists a constant c > 0 such that ℓ([ρ]) ≥ cRρ for all [ρ] ∈ T (M).

Proof. Suppose by contradiction that we may find a sequence of representations ρn for which ℓ([ρn])/Rρn

tends to zero. Extracting a subsequence, we may assume that ρnk
, viewed as an action on H endowed

with the distance distρnk
, converges to a non-elementary action, either on a tree if ρn escapes to infinity by

Lemma 3.1, or on H itself otherwise.
Notice that ℓ([ρn])/Rρn is the speed of ρ(Zn)o with respect to the distance distρ. We may apply Theorem C

to deduce that the liminf of this speed is bounded below by the speed in the limiting action. As the speed of
a nonelementary action is always positive, we deduce that this liminf is positive, a contradiction.

3.2 Proof of Theorem B
In view of Theorem 3.3, to prove Theorem B it suffices to find a set of curves F such that the rescaling factor
Rρ = Rρ,F can be bound from below by a multiple of distTeich([ρ0], [ρ]). We fix F ⊂ Γ to be a subset that is
finite, symmetric and filling.

We denote by lengthρ(γ) the hyperbolic length of the geodesic representative of γ, that is

lengthρ(γ) = min
x∈H

dist(x, ρ(γ)x).

We observe that
Rρ = min

x∈H
max
γ∈F

dist(x, ρ(γ)x) ≥ max
γ∈F

lengthρ(γ). (3.1)

So to obtain Theorem B, we need a lower bound for the right-hand side above.
Let Extρ(γ) denote the extremal length of the curve γ under the conformal structure provided by ρ. As

proven by Maskit [Mas85, Corollary 3], we have

1

2
lengthρ(γ)e

lengthρ(γ)/2 ≥ Extρ(γ), (3.2)

6



so it suffices to obtain a lower bound on extremal length. This will be obtained from a result of Walsh [Wal19,
Lemma 3]. While we do not need the specific details in Walsh, we include some of them for coherence.

For a unit area quadratic differential q based at some basepoint [ρ0], denote R(q; t) the point in Teichmüller
space obtained after following a Teichmüller ray for time t > 0 in the direction provided by q. Let V (q)
(respectively H(q)) be the vertical (respectively horizontal) foliation of q. The union of vertical saddle
connections of V (q) is called its critical graph. The complement of the critical graph decomposes into finitely
many components (the number bounded above in terms of the Euler characteristic) each of which is either a
cylinder C or a minimal component V with every leaf dense. The transverse measure restricted to a minimal
component V is a linear combination

∑
j mV,j of distinct ergodic measures mV,j . Each pair Vj = (V,mV,j)

is said to be an indecomposable component of V (q).
Walsh proved the following inequality

e−2t ExtR(q;t)(γ) ≥ E2
q (γ), (3.3)

where

E2
q (γ) =

∑
Vj

i(Vj , γ)
2

i(Vj , H(q))

in which i(∗, ∗) denotes the geometric intersection number.
We will use the fact that F is filling to derive a uniform (over q) lower bound on maxγ∈F Eq(γ).

Lemma 3.4. Given a basepoint [ρ0] ∈ T (M) there is some c > 0 such that

inf
q∈T 1([ρ0])

max
γ∈F

Eq(γ) > c,

where the infimum is taken over all unit area quadratic differentials at [ρ0].

Proof. For any q ∈ T 1([ρ0]), we have i(Vj , H(q)) ≤ i(V (q), H(q)) = Area(q) = 1. This implies E2
q (γ) ≥∑

Vj
i(Vj , γ)

2.
Assume we have a sequence qn of unit area quadratic differentials at [ρ0] such that maxγ∈F Eqn(γ)

converges to 0 for all j Since the space of unit area quadratic differentials at a basepoint is compact we
can pass to a subsequence that converges to some q. Furthermore, since geometric intersection number is
continuous we have Eq(γ) = 0 for all γ ∈ F . In particular, this implies i(V (q), γ) = 0 for all γ ∈ F . This is
impossible because F is a filling set.

We use the above lemma to get the following global lower bound on the maximal lengths over F .

Lemma 3.5. Given a basepoint [ρ0] ∈ T (M) there are some c1, c2 > 0 such that, for all [ρ] ∈ T (M),

max
γ∈F

Extρ(γ) ≥ c1e
2 distTeich([ρ0],[ρ])

and hence
max
γ∈F

lengthρ(γ) ≥ c2 distTeich([ρ0], [ρ])

where distTeich denotes the Teichmüller distance.

Proof. Let q be such that [ρ] = R(q; distTeich([ρ0], [ρ])). By Equation (3.3) we have

max
γ∈F

Extρ(γ) ≥ e2 dist([ρ0],[ρ]) max
γ∈F

E2
q (γ),

and so by Lemma 3.4 we get the first inequality. By Equation (3.2) we have

max
γ∈F

1

2
lengthρ(γ) + logmax

γ∈F

1

2
lengthρ(γ) ≥ 2 dist([ρ0], [ρ]) + log(c1),

so the second inequality in the lemma is asymptotically satisfied for any c2 slightly smaller than 2. Further-
more, given any bounded domain we can choose c2 small enough so the inequality is satisfied.

Together with (3.1), Lemma 3.5 gives a lower bound Rρ ≥ c2 distTeich([ρ0], [ρ]). With Theorem 3.3, this
concludes the proof of Theorem B.
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4 Proof of Theorem C
In this section, we prove Theorem C. To have lighter notation, we will keep the action implicit and write
gok instead of ρk(g)ok. Since there is only one possible action for each basepoint ok, this should not create
confusion.

4.1 Schottky sets
Following [Gou21], a finite set of isometries S acting on a Gromov hyperbolic space X, is said to be (η, C,D)-
Schottky if the following three conditions are satisfied:

1. For all x, y ∈ X the proportion of a ∈ S such that (x, ay)o ≤ C is at least 1− η.

2. For all x, y ∈ X the proportion of a ∈ S such that (x, a−1y)o ≤ C is at least 1− η.

3. For all a ∈ S one has dist(o, ao) ≥ D.

The following is a sufficient condition for a set S to be Schottky with certain parameters, which depends
on checking conditions involving only a finite number of points. Since the notion of convergence we use in
Definition 2.1 only gives controls for finitely many points at a time, this criterion will enable us to construct
finite sets which are Schottky sets uniformly along a converging family of representations.

Lemma 4.1 (Schottky set criterion). Let (X,dist) be a δ-hyperbolic metric space with a basepoint o ∈ X.
Suppose S is a finite symmetric set of isometries of X such that c1+2δ < c2/2 where c1 = max

g ̸=h,g,h∈S
(go, ho)o,

and c2 = min
g∈S

dist(o, go).

Then S is an (η, C,D)-Schottky set with η = 2
#S and C = c1 + 3δ and D = c2.

Proof. Let ε ∈ (2δ, c2/2− c1) and for each g ∈ S set

V (g) = {x ∈ X : (x, go)o ≥ c1 + ε}.

Claim 1: If g ̸= h then V (g) ∩ V (h) = ∅.
Indeed if x ∈ V (g) ∩ V (h) then one would have

c1 + ε ≤ min{(x, go)o, (x, ho)o} ≤ (go, ho)o + δ ≤ c1 + δ,

contradicting the fact that δ < ε.
Claim 2: If x /∈ V (g−1) then gx ∈ V (g).
To see this observe that from the first condition one has

dist(o, x) + dist(o, g−1o)− dist(x, g−1o)

2
< c1 + ε,

while if gx /∈ V (g) we would have

dist(o, gx) + dist(o, go)− dist(gx, go)

2
< c1 + ε.

Taking the sum this would imply

c2 ≤ dist(o, go) < 2c1 + 2ε,

contradicting the fact that ε < 1
2c2 − c1.

Claim 3: If x ∈ V (g) and y ∈ V (h) for g ̸= h then (x, y)o ≤ c1 + 2δ.
By hyperbolicity one has

min((x, go)o, (x, ho)o) ≤ (go, ho)o + δ ≤ c1 + δ.
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Since (x, go)o ≥ c1 + ε > c1 + δ this implies that (x, ho)o ≤ c1 + δ. From this we obtain

min((y, ho)o, (x, y)o) ≤ (x, ho)o + δ ≤ c1 + 2δ,

but since (y, ho)o ≥ c1 + ε > c1 + 2δ this implies (x, y)o ≤ c1 + 2δ as claimed.
Claim 4: S is (η, C,D)-Schottky for the constants in the statement.
Let us check the first property in the definition of Schottky sets, as the second one follows by symmetry

of S and the third one comes from the definition of c2. Given x, y ∈ X let a1, a2 ∈ S be distinct and such
that x /∈ V (a−1

i ) for i = 1, 2. By Claim 1 the ai are chosen among at least #S − 1 elements of S. By Claim
2 one has aix ∈ V (ai) for i = 1, 2. By hyperbolicity and Claim 3 one has

min((a1x, y)o, (a2x, y)o) ≤ (a1x, a2x)o + δ ≤ c1 + 3δ = C.

This implies that either (a1x, y)o ≤ C or (a2x, y)o ≤ C. Hence the subset of S consisting of elements
with (ax, y)o > C can have at most two elements.

4.2 Proof of Theorem C
In this paragraph, we prove Theorem C. Let us fix a sequence of pointed δ-hyperbolic spaces (Xk, ok) endowed
with actions of a group Γ, and assume that ρk converges to ρ∞ in the sense of Definition 2.1. Let also (µk)
be probability measures on Γ such that µk converges pointwise to µ∞ and the action of µ∞ through ρ∞ is
non-elementary on X∞.

The following lemma is a classical application of a ping-pong argument.

Lemma 4.2. Let η > 0. Then there exists C > 0 such that, for any D > 0, there exist N and a finite
symmetric set S in Γ in the support of µN

∞ such that #S ≥ 2/η and

max
g ̸=h,g,h∈S

(go∞, ho∞)o∞ < C − 3δ, min
g∈S

dist(o∞, go∞) > D. (4.1)

Proof. This follows readily from the proof techniques of [BMSS20, Proposition A.2] or [Gou21, Proposi-
tion 3.12].

Let η > 0. For suitable C and D, we can consider a set S as in Lemma 4.2. By definition of converging
actions, for large n the inequalities in (4.1) also hold for ρk. By Lemma 4.1, it follows that ρk(S) is an
(η, C,D)-Schottky set, uniformly for all large enough k. We can then use this Schottky set as in [Gou21],
to obtain quantitative estimates that are uniform in k. As a first example, let us get a uniform version
of [Gou21, Lemma 4.14].

Lemma 4.3. Let ε > 0. There exists E such that, for all large k, for any g ∈ Γ,

P(∀n, dist(ok, gZ
(k)
n ok) ≥ dist(ok, gok)− E) ≥ 1− ε.

The intuition behind this lemma is that, given a Schottky set, then jumps from this Schottky set will
most of the time go towards infinity, yielding linear progress from any starting point (and in particular small
probability to go back towards the origin). This is proved in [Gou21] using the notion of pivotal times. There
is a pedagogical difficulty here: it would not make sense to repeat exactly all the pivotal times computations
of [Gou21], but we can not expect our readers to be very familiar with this article. As a middle ground, we
have decided to extract a black box from [Gou21], in the form of the following lemma:

Lemma 4.4. Let δ > 0, C > 0, N > 0, α > 0, ε > 0. Then there exists n0 = n0(δ, C,N, α, ε) with the
following property. Consider a probability measure µ on the group G of isometries of a δ-hyperbolic space X,
and a set S ⊆ G which is (1/100, C, 20C +100δ+1)-Schottky. Assume that µN gives mass at least α to each
element of S. Then, for any isometry g ∈ G, for any o ∈ X, there exists a set U of probability at least 1− ε
in (Ω,P) = (GN, µ⊗N) such that, for each ω ∈ U , there exists j ≤ n0 with

∀n ≥ n0, dist(o, gZno) ≥ dist(o, gZjo)− 2C − 6δ,

where Zn is the position of the random walk at time n.
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This technical lemma is unfortunately not stated explicitly in [Gou21], but it is proved there, as the first
step of the proof of [Gou21, Lemma 4.14]. The reader may either go and check in [Gou21] that the n0 given
there indeed only depends on δ, C,N, α, ε, or trust us and accept this lemma as a black box.

Proof of Lemma 4.3. Let η = 1/100. Let C be given by Lemma 4.2 for this value of η. Take D = 20C +
100δ + 1. By Lemma 4.2 and the discussion that follows it, we obtain a symmetric set S ⊆ Γ in the support
of µN

∞ for some N , such that ρk(S) is (η, C,D) Schottky for all large k. For large enough k, all the measures
µN
k give a weight bounded away from zero to all elements of S, say bounded from below by some α > 0, as

µk converges pointwise to µ∞.
Let n0 = n0(δ, C,N, α, ε/2) be given by Lemma 4.4. Then this lemma applies uniformly to all measures

µk for large k: for all g ∈ Γ, there exists a set U = U(k, g) of probability at least 1 − ε/2, and some
j = j(k, g, ω) ≤ n0 such that, on U ,

∀n ≥ n0, dist(ok, gZ
(k)
n ok) ≥ dist(ok, gZ

(k)
j ok)− 2C − 6δ. (4.2)

It remains to control the n0 first steps. Let F be a finite subset of Γ such that, with probability > 1− ε/2,
for all i ≤ n0, then Z

(∞)
i belongs to F . This property also holds for large enough k, by pointwise convergence

of µk to µ∞. There are finitely many points (go∞)g∈F . By convergence of the actions, all the distances
dist(ok, gok)g∈F are uniformly bounded for large k, by a constant C ′.

We obtain a set V = V (k) of probability at least 1− ε/2 on which

∀i ≤ n0, dist(ok, Z
(k)
i ok) ≤ C ′. (4.3)

The set U(k, g) ∩ V (k) has probability at least 1 − ε. We claim that, on this set, we have for all n the
inequality

dist(ok, gZ
(k)
n ok) ≥ dist(ok, gok)− 2C − 6δ − C ′,

proving the lemma with E = 2C + 6δ + C ′. Let us check this claim. First, if n ≤ n0, then gZ
(k)
n ok is

within distance C ′ of gok by (4.3), and the result is obvious. Then, for n ≥ n0, the result follows from the
inequality (4.2) together with the fact that gZ

(k)
j ok is within distance C ′ of gok as j ≤ n0.

Let us now proceed to the lower estimate of the drift. As above, we extract a black box result from [Gou21],
specifying which properties of the measures are used.

Lemma 4.5. Let δ > 0, η > 0, α ∈ (0, 1), C > 0, N > 0, A > 0, with ηA ≥ C. Consider also a nonnegative
real random variable Q, and r ≥ 0 with

r < (1− 40η)
E(Q)

NA
− 2η. (4.4)

There exist n0 and κ > 0 only depending on these quantities, with the following property.
Consider a probability measure µ on the group G of isometries of a δ-hyperbolic space X, and a set S ⊆ G

which is (η, C, 20C+100δ+1)-Schottky. Assume that µ2N ≥ αµ2
S, where µS is the uniform probability measure

on S. Assume moreover that the random walk Z(ν) driven by the probability measure ν = (µ2N −αµ2
S)/(1−α)

satisfies, for any g ∈ G, the estimate

P(∀n ≥ 0, dist(o, gZ(ν)
n o) ≥ dist(o, go)− ηNA) ≥ 1− η.

Finally, assume that the length of the jumps of µNA are stochastically bounded below by Q: for all k, we have∑
g : dist(o,go)≥k

µNA(g) ≥ P(Q ≥ k).

Then, for all n ≥ n0,
P(dist(o, Zno) ≤ rn) ≤ e−κn,

where Zn is the position of the random walk at time n.
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Again, this lemma is not stated exactly in this form in [Gou21], but it is proved there at the end of
Section 5.3. The strategy is to decompose the walk along successive time intervals of length roughly NA (for
which the size of the jumps is bounded below by Q) interspersed with Schottky jumps that put the former in
general position. This ensures that the progress towards infinity is bounded below by a sum of independent
random variables distributed like Q, up to controlled error terms. The precise condition on r that shows up
at the end of [Gou21, Section 5.3] is

r + η <

(
(1− η)

E(Q)

NA
− η

)
(1− 22η)(1− 17η),

which follows from (4.4).
Let us deduce from this result uniform large deviations estimates along a converging sequence of actions.

We return to the standing assumptions of this paragraph, with a converging sequence of actions of Γ on
hyperbolic spaces Xk, and a pointwise converging sequence of probability measures µk on Γ such that the
action of µ∞ on X∞ is non-elementary.

Proposition 4.6. Let ℓ(µ∞) be the drift of the random walk on X∞. Let a < ℓ(µ∞). Then there exists
κ > 0 such that, for all large enough k, for all n ∈ N,

P(dist(ok, Z(k)
n ok) ≤ an) ≤ e−κn.

Proof. Let b ∈ (a, ℓ(µ∞)). Let η > 0 be small enough (how small will be prescribed at the end of the proof),
with b + η < ℓ(µ∞). Let C be given by Lemma 4.2 for this value of η. Take D = 20C + 100δ + 1. By
Lemma 4.2 and the discussion that follows it, we obtain a symmetric set S ⊆ Γ in the support of µN

∞ for
some N , such that ρk(S) is (η, C,D) Schottky for all large k. For large enough k, all the measures µN

k give
a weight bounded away from zero to all elements of S, as µk converges pointwise to µ∞. In particular, for
some α > 0, one has µ2N

k ≥ 2αµ2
S , where µS is the uniform measure on S.

The probability measures νk := (µ2N
k − αµ2

S)/(1− α) converge pointwise to ν∞ = (µ2N
∞ − αµ2

S)/(1− α).
Moreover, ν∞ acts in a non-elementary way on X∞ through ρ∞, as it satisfies ν∞ ≥ αµ2

S/(1−α) and therefore
gives nonzero weight to independent loxodromic elements since S is Schottky. Therefore, Lemma 4.3 applies
to the sequence of measures νk for ε = η, yielding some constant E. Let A be large enough that ηA ≥ C and
ηNA ≥ E.

By subadditivity, we have NAℓ(µ∞) ≤
∑

g µ
NA
∞ (g) dist(o∞, go∞). In particular, as b + η < ℓ(µ∞), we

may find a finite subset F ⊆ G such that

NA(b+ η) <
∑
g∈F

µNA
∞ (g) dist(o∞, go∞).

Let ε > 0. Let Q be the real distribution with an atom of mass µNA
∞ (g) − ε at dist(o∞, go∞) − ε for each

g ∈ F , and the missing mass put at 0. For small enough ε, this random variable has expectation > NA(b+η).
Moreover, by convergence of µk to µ∞ and ρk to ρ∞, the distribution of the size of the jumps of µNA

k through
ρk is bounded below by Q, for all large enough k.

We apply Lemma 4.5 to these quantities δ, η, α, C,N,A,Q, with

r = (1− 40η)(b+ η)− 2η,

which is indeed < (1− 40η)E(Q)/NA− 2η. This lemma provides us with n0 and κ > 0. By construction, for
all large enough k, the measures µk all satisfy the assumptions of the lemma. It follows that, uniformly in k
large, we have for all n ≥ n0

P(dist(ok, Z(k)
n ok) ≤ rn) ≤ e−κn.

When η → 0, then r = r(η) tends to b > a. Therefore, we may choose η with r > a. We get for all large k
and all n ≥ n0 the estimate

P(dist(ok, Z(k)
n ok) ≤ an) ≤ e−κn. (4.5)
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It remains to handle each n ∈ [1, n0). For each such n, there exists g with µn
∞(g) > 0 and dist(o∞, go∞) > an,

as otherwise the drift ℓ(µ∞) would be ≤ a. These two inequalities still hold for large k. It follows that
P(dist(ok, Z(k)

n ok) ≤ an) is bounded away from 1, uniformly for large k. Decreasing κ if necessary, we may
therefore enforce (4.5) separately for each n ∈ [1, n0).

Proof of Theorem C. Let a < ℓ(µ∞). Proposition 4.6 implies that, for all large k, one has almost surely
eventually dist(ok, Z

(k)
n ok) > an. As ℓ(µk) is the almost sure limit of dist(ok, Z

(k)
n ok)/n, we get ℓ(µk) ≥ a for

large k.

5 Singularity conjecture and open questions
In this last section we return to the singularity conjecture and dimension drop of stationary measures. Recall
from the introduction that by the results of [Tan19], the stationary measure νρ is exact dimensional and its
dimension is given by

dim(νρ) =
h

ℓ(ρ)
, (5.1)

where h = h(µ) is the asymptotic (or Avez) entropy defined by

h = lim
n→+∞

1

n
H(Zn),

and H(Z) = −
∑

g∈supp(Z) P(Z = g) log(P(Z = g)) denotes the Shannon entropy of the random variable Z.
Note that h does not depend on the representation ρ.

Recall the singularity conjecture from the introduction:

Conjecture 5.1. If µ is admissible and has finite support then there exists δ < 1 such that

dim(νρ) ≤ δ

for all [ρ] ∈ T (M).

Since the visual boundary is one-dimensional, equation (5.1) implies that h ≤ ℓ(ρ) for all ρ. The singularity
conjecture then amounts to this inequality being strict on all of T (M).

Let us record some basic properties of ℓ.

Proposition 5.2. The function ℓ : T (M) → (0,+∞) is continuous.

Proof. This follows immediately from Theorem C. An alternative argument is via the Furstenberg for-
mula [KL11, Theorem 18] for speed and convergence of the stationary measures.

One basic result from ℓ(p) being continuous and proper is as follows

Corollary 5.3. The functions ℓ : T (M) → [h,+∞) and dim(ν) : T (M) → (0, 1] attain their minimum and
maximum respectively.

It is natural to ask then the following question

Question 5.4. Does dim(νρ) attain its maximum at a unique point in T (M)? Equivalently is ℓ : T (M) →
(0,+∞) minimized at a unique point?

When the maximal dimension is 1 and µ is symmetric (i.e., µ(g) = µ(g−1) for all g) the answer to the
previous question is affirmative. That is, we have the following.

Proposition 5.5. If µ is admissible symmetric and has finite first moment, then there exists at most one
point [ρ] ∈ T (M) such that dim(νρ) = 1.
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Proof. If dim(νρ) = 1 then, under the assumption that µ is symmetric, in fact νρ is absolutely continuous
with respect to the visual measure (Lebesgue measure) on the boundary [BHM11, Theorem 1.5]. Suppose
dim(νρ1

) = dim(νρ2
) = 1.

There exists a quasi-conformal homeomorphism φ : H → H such that φ(o) = o and φ ◦ ρ1(γ) = ρ2(γ) ◦ φ
for all γ ∈ Γ. The quasi-conformal map φ extends continuously to the visual boundary in a unique way.
Denoting this extension by φ as well we have φ∗νρ1

= νρ2
.

This implies that the restriction of φ to the visual boundary is absolutely continuous. However this can
only happen if [ρ1] = [ρ2] (see [Aga85]).

Another natural question to ask is the following one.

Question 5.6. Is the function ℓ : T (M) → (0,+∞) (strictly) convex?
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