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In this paper, we present a new approach based on a combination of the Arnoldi and
frontal methods for solving large sparse asymmetric and generalized complex eigenvalue
problems. The new eigensolver seeks the most unstable eigensolution in the Krylov sub-
space and makes use of the efficiency of the frontal solver developed for the finite element
methods. The approach is used for a stability analysis of flows in a collapsible channel
and is found to significantly improve the computational efficiency compared to the tra-
ditionally used QZ solver or a standard Arnoldi method. With the new approach, we
are able to validate the previous results obtained either on a much coarser mesh or esti-
mated from unsteady simulations. New neutral stability solutions of the system have
been obtained which are beyond the limits of previously used methods.
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1. Introduction

Eigenvalue problems occur frequently in problems arising in many branches of sci-
ence, such as computational fluid mechanics [Cliffe et al., 1994], statistics [Rapc-
sak, 2004], engineering [Bathe and Wilson, 1973; Grimes et al., 1986; Andy and
Nair, 2005; Misrikhanov and Ryabchenko, 2006; Auckenthaler et al., 2011], quan-
tum physics [Scott et al., 1990], and meteorologic modeling [Cullum and Willoughby,
1986]. Such problems are usually solved using numerical methods. Often the dis-
cretization of the systems leads to large asymmetric matrices that require efficient
algorithms to solve. Seeking such algorithms has been a central focus over the last
50 years. Although various advances have been made, there is no single algorithm
which is suitable and efficient for different engineering problems.
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A traditionally used eigensolver for a generalized eigenvalue problem,

AX = λBX,

is the generalized Schur decomposition method, which factorizes both matrices as
A = QSZH and B = QTZH , where Q and Z are unitary, H denotes a conjugate-
transpose, and S and T are upper triangular matrices [Moler and Stewart, 1973].
The generalized Schur decomposition is also known as the QZ method. This is
based on the QR decomposition of a matrix A into a product A = QR of an
orthogonal matrix Q and an upper triangular matrix R. The QZ method solves
for all the eigenmodes of the system. As such, it is only suitable for smaller-sized
eigenvalue problems (matrix size in the order of hundreds) and is impractical when
the dimensions of the problem become large (e.g., matrix size > 5000 × 5000). To
overcome this problem, various projection methods have been developed since the
1950s [Bathe, 1971; Parlett and Cott, 1979; Parlett et al., 1985; Freund et al., 1993;
Wu and Simon, 2000; Morgan, 2000; Bathe, 2013]. Among these, the Arnoldi-type
method [Morgan, 2000] is the one that can be used to solve large sparse asymmetric
(non-Hermitian) eigenvalue problems. Such a problem commonly occurs in the sta-
bility analysis of complex systems, such as flows in a collapsible channel [Luo et al.,
2008; Stewart et al., 2010; Xu et al., 2013, 2014].

Flows in collapsible tubes, or flows in collapsible channels, when simplified in
two dimensions, have grasped researchers’ attention over the last 30 years [Shapiro,
1977; Kamm and Shapiro, 1979; Cancelli and Pedley, 1985; Elad et al., 1987; Jensen,
1990; Luo and Pedley, 1996; Stewart et al., 2010], because it has provided insight
into many physiological applications, such as flow through vocal folds [Cisonni et al.,
2010], collapsed intramyocardial coronary blood arteries during heart contraction in
systole [Guiot et al., 1990], branchial arteries compressed by a sphygmomanometry
cuff [Bertram and Ribreau, 1989], and flows in giraffe jugular veins [Brook and
Pedley, 2002]. One characteristic of such systems is that they can be dynamically
unstable due to fluid–structure interaction. Stability analysis has been widely used
for studying the various oscillation mechanisms [Luo and Pedley, 1998]. Often such
an analysis leads to a generalized eigenvalue problem with asymmetric large sparse
matrices [Cai and Luo, 2003].

Recent work by Liu et al. [2012], using the QZ solver, showed that the stability
structure in collapsible channel flows can be quite different in the flow- and pressure-
driven systems (where the driving force is either the flow-rate or the pressure-drop
along the channel). However, further investigation into these stability structures is
prohibited by the extensive memory and CPU requirements of the QZ solver they
used. The orthogonal projection method such as the Arnoldi iteration enables us to
solve a reduced eigenproblem containing only the first few eigenpairs. However, even
with such a model reduction, the memory requirement of the Arnoldi iteration can
still be huge as it requires the full assembly of the global matrices. In order to solve
the stability problem for collapsible channel flows with a non-trivial basic state, one
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needs first to solve the nonlinear fluid–structure interaction equations numerically
[Luo, 2015].

To avoid dealing with the large sparse matrices from the discretization of the
finite element (FE) governing equations, a frontal scheme developed by Irons [1970]
was successfully used in the full numerical simulations [Rast, 1994; Luo and Pedley,
1998; Cai and Luo, 2003; Luo et al., 2008; Liu et al., 2012]. The frontal solver is
CPU-efficient as it does not assemble the large sparse matrix explicitly, and solves
the equations only on the “front”, i.e., a subset of elements, at a time. The front
represents the transition region between the active and inactive element entries of
the global matrices.

In this work, we develop a combined Arnoldi-frontal approach for the eigenvalue
problem of the collapsible channel flows for the first time. Similar ideas, albeit
for simpler problems, have been explored by Meerbergen and Roose [1996, 1997],
Lehoucq and Meerbergen [1998], and Lehoucq et al. [1998]. For example, Lehoucq
et al. [1998] used the implicitly restarted Arnoldi methods with matrix transfor-
mation to compute the eigenvalues for discretized Navier–Stokes equations. They
concluded that with careful implementation, implicitly restarted Arnoldi methods
are reliable for linear stability analysis. This group also applied the Arnoldi iter-
ation driven, by a novel implementation of the Cayley transformation, to the sta-
bility analysis of three-dimensional steady flows on parallel computers [Lehoucq
and Salinger, 2001]. We extend the previous studies by applying the analysis to
a strongly-coupled fluid–structure interaction problem, and show that by combin-
ing the implicitly restarted Arnoldi Method [Lehoucq et al., 1998] with the frontal
solver for our general asymmetric eigenvalue problem, we not only resolve the mem-
ory issue but also significantly reduce the computational time. Thus, the new solver
enables us to validate the previous results and obtain additional neutral points that
are beyond the reach of the QZ solver.

2. Model of Flows in a Collapsible Channel

2.1. The problem description

The model configuration of the collapsible channel flow is shown in Fig. 1. The
rigid channel has a width D, with a part of the upper wall being replaced by an
elastic beam, which is suitable to an external pressure Pe. The flow is assumed to
be incompressible and laminar, with the fluid density ρ and viscosity µ. We assume
that the beam is a linear elastic material but allows geometrical nonlinearity. The
extensional and bending stiffness of the beam are EA and EJ , respectively, where
E is the Young’s modulus, A is the cross-sectional area of the beam, and J is the
second moment of cross-sectional area of the beam. The initial tension and the
inertia contribution of the beam are assumed to be zero in this paper, and the
impact of these parameters has been studied in our earlier work [Luo and Pedley,
1998, 2000]. Damping and rotational inertia of the beam are both neglected.
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Fig. 1. The model configuration (not to scale), where the upper middle wall is replaced with
an elastic beam of (undeformed) length L. The lengths of the upstream and downstream sections
are denoted as Lu and Ld, respectively, the channel height is D, the external and downstream
pressures are indicated as Pe and Pd, respectively. Depending on the flow-driven or pressure-driven
systems, either a steady parabolic entry flow with an average velocity U0, or a steady plug flow
with a pressure Pu is specified at the upstream end.

2.2. The dimensionless governing equations

The governing equations for the fully-coupled fluid–structure interaction system are
[Cai and Luo, 2003]:

∂ui

∂t
+ ujui,j = −p,i +

1
Re

ui,jj , ui,i = 0, i, j = 1, 2, (1)

cκκκ′ + cλλ′ + λτn = 0, (2)

cκ

(
1
λ

κ′
)′

− cλλκ(λ − 1) − λσn + λpe = 0, (3)

x′
1 = λ cos θ, x′

2 = λ sin θ, (4)

λκ = θ′, (5)

where (1) are the Navier–Stokes equations for the flow, (2)–(3) are the momentum
balance equations for the elastic beam, and (4)–(5) are auxiliary equations which are
introduced to simplify the computations. All the quantities are non-dimensionalized
as:

ui =
ūi

U0
, σij =

σ̄ij

ρU2
0

, p =
p̄

ρU2
0

, t =
t̄U0

D
, l =

l̄

D
, xi =

x̄

D
,

κ = κ̄D, cλ =
EA

ρU2
0 D

, cκ =
EJ

ρU2
0 D3

, Re =
U0Dρ

µ
,

(6)

where p is the fluid pressure, xi and ui are the coordinates and velocity components
(i = 1, 2), σij are fluid stress components (i, j = 1, 2), and σn, τn denote the fluid
normal and shear stresses acting on the beam, respectively. t is time, l is the material
coordinate of the beam in the undeformed configuration, κ and λ are curvature and
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stretch of the beam, respectively, θ is the angle of the beam with respect to the
x-axis, and prime means derivative with respect to l. Re is the Reynolds number,
and cλ and cκ represent the extensional and bending stiffness of the beam.

2.3. Boundary conditions

The boundary conditions are set up such that at the outlet it is stress-free, which
essentially sets the reference pressure to be zero (Pd � 0); along all the walls, no-
slip boundary condition is applied, with an external pressure Pe, applied along the
beam. At the two ends of the beam, clamped support is employed. Specifically,

rigid wall: u = v = 0, at y = 0, 0 ≤ x ≤ L0, L0 = Lu + L + Ld

at y = 1, 0 ≤ x ≤ Lu and Lu + L ≤ x ≤ L0

beam: u = uw, v = vw, at Lu < x < Lu + L and y = 1
Pe = constant

beam ends: θ = 0, at x = Lu, y = 1 and x = Lu + L, y = 1

outlet flow: σn = σt = 0, at x = L0 and 0 ≤ y ≤ 1

where x = x1, y = x2 are the system coordinates, with the origin at the bottom left
corner of the channel, u = u1, v = u2 are the velocities of the fluid, and uw, vw are
the velocities of the beam, σn, σt are the normal and tangential fluid stresses at the
outlet, respectively.

Unlike flows through a rigid tube, here more combinations of control parameters
are possible. For example, one may specify the flow-rate Q, or pressure-drop Pud,
while keeping downstream transmural pressure Pe−Pd constant. These are referred
to as “flow-driven system”(also known as flux-driven), or “pressure-driven system”,
respectively [Liu et al., 2012]. Each of these settings determines a specific system
with its own unique characteristics. The commonly observed “pressure-drop limi-
tation” [Bertram and Castles, 1999], and “flow limitation” [Gavriely et al., 1989],
are interesting phenomena associated with these systems. Experimentally, these can
be achieved by providing a hydraulic head upstream (pressure-driven), or a suction
downstream (flow-driven).

The boundary conditions for these systems are, at the inlet,

flowrate driven: u = 6y(y − 1), v = 0, at x = 0, 0 ≤ y ≤ 1

pressure driven: Pud = constant, at x = 0, 0 ≤ y ≤ 1

2.4. The stability analysis

A Petrov–Galerkin method is used to discretize the system equations (1)–(5). The
element type for the flow is six-node triangular element, with the second-order shape
function Ni used for u and v, and the linear shape function Li used for p. For the
elastic beam, the three-node beam elements with second-order shape function used

1650073-5



2nd Reading

November 18, 2016 15:18 WSPC-255-IJAM S1758-8251 1650073

Y. Hao et al.

for all the variables (x, y, θ, λ, and κ). The discretized FE equations of the coupled
system can be written in a matrix form as

M(U)
dU
dt

+ K(U)U − F = 0, (7)

where U = (uj , vj , pj , xj , yj , θj , λj , κj) is the global vector of unknowns, and
j = 1, . . . , Nod, Nod is the total nodal number. M, K are the n × n mass and
stiffness matrices, respectively, with n ≈ 8 × Nod, and F is a force-like vector with
dimension n. An arbitrary Lagrangian Eulerian (ALE) solver [Cai and Luo, 2003],
which is shown to satisfy the geometrical conservation law [Liu et al., 2012], is used
to solve (7).

To study the stability of the system, we denote Ū as a steady solution of (7),
so that

K(Ū)Ū − F = 0, (8)

and apply an infinitesimal perturbation ∆U = eωtŨ, to get a perturbed solution,
U = Ū + ∆U, of (7). Here ω (= ωR + iωI) and Ũ are the complex eigenvalues and
eigenvectors, respectively. Specifically,

(∆U)k = Real[e(ωR+iωI )t((ŨR)k + i(ŨI)k)]

= eωRt[(ŨR)k cos(ωIt) − (ŨI)k sin(ωIt)]

= eωRt[‖Ũk‖ cos(ωIt + φk)], k = 1, . . . , 8 × Nod, (9)

where ‖Ũk‖ =
√

(ŨR)2k + (ŨI)2k, is the eigenamplitude, and φk =

arctan(ŨI)k/(ŨR)k is the phase angle at t = 0. It is clear that for a positive ωR, the
system is unstable, and for a negative one, the system is stable. ωR = 0 indicates
a neutral stability, which is associated with sustained self-excited oscillations when
ωI �= 0.

Substituting U = Ū + eωtŨ into (7), making use of the Taylor expansion and
(8), we obtain a generalized eigenvalue problem [Luo et al., 2008]:

KŨ = ωMŨ, (10)

where M = M(Ū), and K = K(Ū) + ∇UK(U)|ŪŪ. Both K and M are sparse
and asymmetric matrices. K is also positive definite. However, M is necessarily
singular since the continuity equation (1)2 does not contribute to the mass matrix.
For simplicity, henceforth we drop the overbar and tilde in (10).

3. The Eigensolvers

Three different algorithms are employed to solve the generalized eigenvalue
problem (10). These are the QZ Algorithm, the Arnoldi method with global
matrices (AR-G), and the Arnoldi method with a frontal solver (AR-F). In
developing these eigensolvers we have made use of the ARPACK software
(http://www.caam.rice.edu/software/ARPACK).
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3.1. The QZ algorithm

The QZ solver adopts the following steps [Bai et al., 1987]:

(1) K is first reduced to an upper Hessenberg form and M is reduced to an upper
triangular form (Schur form).

(2) The effect of a shifted QR decomposition on K−1M (without forming the matrix
product) is simulated by unitary equivalence transformations Q and Z on the
matrix pair K and M. This is done iteratively until K is reduced to triangular
or quasi-triangular form, while preserving the triangular structure of M.

(3) Compute the eigenvalues and eigenvectors from the triangular matrix problem,
and then transform back to get the original eigenpairs.

The QZ algorithm solves for all the eigenvalues and, optionally, all the eigenvectors.
It requires O(n3) floating point operations and O(n2) memory locations, where
n × n is the size of K and M. Therefore the demand on the computer memory is
prohibitively high and is extremely inefficient for problems of large matrices.

3.2. The Arnoldi iterations with global matrices

In the AR-G approach, we first transform the generalized eigenproblem (10) into a
standard eigenproblem:

CU = ΘU, (11)

where Θ = 1/ω, and C = K−1M. The idea of the Arnoldi approach is that for a
given n×n matrix C, information on its largest eigenvalue can be sought by repeated
application of C to a random vector, v1, to form the so-called Krylov subspace
Km(v1, . . . ,vm) [Arnoldi, 1951; Saad, 1996], where vi = Ci−1v1 for i = 1, . . . , m,
m � n. Hence, C can be projected in the subspace:

CVm = VmHm + rmeT
m, (12)

where Vm = (v1,v2, . . . ,vm) is a n×m matrix whose columns form the set of the
Arnoldi vectors, with the normalization VH

mVm = Im. The matrix Hm = VH
mCVm,

is an m×m upper Hessenberg projection matrix, rm = (In −VmVH
m)Cvm+1 is the

residual vector, and em is the mth standard basis vector of dimension m. Hence,
we only need to solve a much smaller eigenvalue problem:

Hmy = Θ̃y, (13)

where Vmy � U in (11), and Θ̃ is an approximation of Θ. The details are shown
in Algorithm 1.

We remark that while the Arnoldi iterations reduce the computational time, it
still requires the inverse of the stiffness matrix K, which is expensive. In addition,
the formation of C destroys the sparse structure of the original matrices.
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Algorithm 1 The AR-G solver
Input: Specify dimension of the subspace m (m � n), number of required eigen-

values (k), error tolerance (tol), and the random starting vector (v1)
Output: Eigenpairs.
1: Calculate C = K−1M
2: Iteration:
3: for j = 1 to m do
4: rj = Cvj , Vj = (v1, . . . ,vj);
5: rj = (In − VjVH

j )rj ;
6: vj+1 = rj/‖rj‖
7: end for
8: Solving a low-dimensional eigenproblem Hmy = Θ̃y using the QZ algorithm;

the approximate eigenpairs of (11).
9: If ‖rj‖|eT

my| < ‖Hm‖tol, stop. Otherwise, go to step 3.
10: Restart: go to 3 with a new v1.

3.3. The Arnoldi iterations with a frontal solver

The AR-F approach is developed to avoid the explicit formation of the two sparse
matrices K and M as in Sec. 3.2, by making use of the frontal solver [Irons, 1970;
Hood, 1976]. Building on a LU or Cholesky decomposition, the frontal solver only
deals with the transitional region between the part of the system already fin-
ished and the part untouched. During the whole process, the full sparse matrix
is never assembled. Only the parts of the matrix are assembled as they enter the
front. Processing the front involves dense matrix operations, which uses the CPU
efficiently.

In essence, for the AR-F solver, instead of generating the large matrix C, we
make use of the frontal solver by storing the element matrices together with a
steering matrix which gives the location of the frontal element entries in the global
matrices. The flow chart of the AR-F algorithm is shown in Fig. 2.

4. Numerical Results

4.1. Choice of parameters for the eigenvalue problem

We choose the dimensional parameters to be µ = 10−3 Pas−1, ρ = 103 kgm−3,
D = 10−2 m, thus the non-dimensional parameters are Lu = L = 5, Ld = 30,
Re = 1–600, T = 0, ρm = 0, Pe − Pd = 1.95, Pd = 0, cλ = 1–2500, and cκ/cλ =
h2/12D2 ≈ 10−5 (h/D = 0.01). The mid-point of the elastic beam will be x = 7.5.
The values are chosen to be in the range of parameters that have been used in
previous studies [Cai and Luo, 2003; Luo et al., 2008; Liu et al., 2012].
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Fig. 2. The flowchart of AR-F, where the element matrices Kl
e, Ml

e are used via the frontal
method, and nel is the total number of the FEs.

4.2. Choice of parameters for the Arnoldi solvers

The Arnoldi algorithms require the selection of several parameters, namely, the
number of eigenpairs required (NEV/2), the rank of the subspace (m=NCV), and the
maximum number of iterations (MAXITR). The number of converged eigenpairs is
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denoted as NO/2, which is usually smaller or equal to NEV/2. In principle, the greater
the rank of the subspace and number of iterations allowed, the more likely the
eigensolution in question can be located in the Krylov subspace, but the longer the
computation. To strike a balance between the computational time and the solution
approximation, an “optimal” group of parameters of NEV, NCV, and MAXITR, in the
ranges of 2–8 (NEV), 20–200 (NCV), and 50–300 (MAXITR), is carefully selected after
extensive computational tests. The results of the tests are shown in Table 1.

4.3. Computational verifications

Since the eigensolvers require to solve for steady solutions iteratively, we use a
Python script to automatically search for the neutral solutions in a systematic way.
In all the computations, the tolerance for the Arnoldi iteration is set to be 1×10−16,
which is the default value used in the ARPACK.

To validate our eigensolvers, we first test the results with the solutions from
the eigs subroutine in Matlab for a much smaller matrix size. This has led to a
good agreement. We then increase the grid points to test the grid independence.
The corresponding dimensions of the FE matrices are n × n, for n = 933, 2063,
2629, 3942, 5117, 6152, 7325, and 55,329, respectively. All three solvers yield the
same eigenpairs at the same physical parameters, for the same grid, except when
N = 55,329, which is too big for either the QZ or the AR-G solver to cope. All
computations were run on the Linux Workstations (2 × Hexa-core HT Intel(R),

Table 1. The optimal sets of parameters, and lapsed time (in seconds) of different meshes for the
same input parameters (cλ, Re or Pud).

Matrix QZ AR-G AR-F

n Time (s) NEV NCV MAXIT NO. TIME (s) NEV NCV MAXIT NO. TIME (s)

933 18 2 20 50 2 15 2 40 50 2 7

2063 261 2 20 100 2 151 2 20 100 2 23
2 40 50 2 144 2 60 50 2 19

2 60 50 2 336 2 60 50 2 28
2629 577 4 40 150 2 610 4 40 150 4 169

6 40 150 6 726 6 40 150 6 164
6 40 200 6 726 6 40 200 6 164
6 40 250 4 392 6 60 250 6 164

3942 2554 2 40 50 2 1196 2 40 50 2 50
2 60 50 2 1156 2 60 50 2 55

5117 5116 2 40 50 2 2687 2 40 50 2 78
2 60 50 2 2670 2 60 50 2 70

6152 9158 2 40 50 2 4879 2 40 50 2 93
2 40 100 2 4822 2 40 100 2 92

7325 16,816 2 80 250 2 8053 2 40 50 2 115
2 80 300 2 8052 2 40 100 2 116

55,392 N/A N/A 2 60 100 2 3426
2 90 100 2 4584
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Fig. 3. Comparison of the computational time (seconds) against the matrix size indicator (n)
using the QZ, AR-G and AR-F solvers. The AR-F method costs scales between O(n) and O(n2),
while the QZ and AR-G solvers scale to O(n3), although the AR-G solver is slightly more efficient
than the QZ solver. Note the shortest times required by each solver, using combinations of the
parameters as shown in Table 1, are used to plot this figure.

Xeon(R), CPU E5650, 2.65GHz) at the School of Mathematics and Statistics, the
University of Glasgow.

4.4. Comparison of the three eigensolvers

Figure 3 shows the log-plot of the CPU time versus n of the matrix size n × n for
these three algorithms. For comparison purposes, n2 and n3 are also shown as dotted
and dash-dotted lines. We can see that the QZ algorithm converges in the order of
O(n3). The AR-G solver, though in general requires less time, converges with the
rate only slightly less than the QZ solver. The AR-F algorithm, on the other hand,
converges approximately in the order of O(n), and hence is by far the most efficient
one. It is also clear that the AR-F solver can solve much larger eigenvalue problems.
However, we must mention that the QZ solver obtains all the eigensolutions by the
end of the computations, while the Arnoldi solvers can only locate the first couple
of eigenpairs.

4.5. Neutral stability of the system

We now apply the AR-F algorithm in the stability analysis of the collapsible channel
flows. The eigenmodes are classified according to the number of wavelengths in the
oscillation of the elastic section, the mode-i means there are i/2 full wavelengths.
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For the flow-driven system, Luo et al. [2008] revealed a cascade stability structure
and in particular, they obtained a mode-2 neutral stability curve in the cλ–Re space
using the QZ algorithm for a relatively coarse grid of n = 6152.

For the pressure-driven system, Liu et al. [2012] identified a mode-1 neu-
tral curve. Mathematically, the pressure-driven system is harder to simulate as it
presents a very thin boundary layer upstream of the collapsed section. This requires
a much-refined mesh to resolve the flow there. Liu et al. [2012] were unable to per-
form the eigenvalue analysis for all the dimensions required using the QZ solver, so
they resorted to testing the stability by laboriously running the unsteady FE solver
combined with a bisection search.

In the following, we perform the stability analysis of both systems.

4.5.1. Flow-driven system

For the flow-driven system, we revisit the eigensolutions at the neutral stability
points using the AR-F solver for a very dense mesh (n = 55,392). The results are
plotted in the Re-cλ space (where cλ indicates how stiff the elastic beam is) in Fig. 4
and the results are compared with the previous solutions of Luo et al. [2008] using
n = 6152. The neutral curves consist of two branches, and the N2 branch represents
the solution of a mode-2 neutral curve, and the N3 and N4 branches are the mode-3
and mode-4 neutral solutions, respectively. Details of the neutral behavior of the
system were discussed in [Luo et al., 2008].

Figure 4 suggests that the cascade structure found by Luo et al. [2008] using a
much coarser mesh is reasonable but contains some discrepancies; the upper curve
is shifted upwards, and the lower branch moves slightly rightwards. However, the

cλ

Re

Fig. 4. The mode-2 neutral curve in the Re-cλ space obtained using the AR-F solver for a very
dense mesh where n = 55,392 (red solid line), compared to the one obtained by Luo et al. [2008]
using a coarse mesh n = 6152 (dotted line). The parameters are listed in Table 2.
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Table 2. Neutral points of the flow-driven system using the AR-F
solver for n = 55,392.

Point Re cλ ωR ωI Mode

N2-1 700 1672 −3.30023 × 10−5 2.40366 Mode-2
N2-2 600 1797.5 1.14649 × 10−6 2.42381 Mode-2
N2-3 500 1800 6.13079 × 10−6 2.35544 Mode-2
N2-4 300 1937 −1.76015 × 10−6 2.03575 Mode-2
N2-5 235 2410 −1.93529 × 10−7 1.72480 Mode-2
N2-6 220 2727 −1.22905 × 10−6 1.57726 Mode-2
N2-7 213 2436 −6.90523 × 10−7 1.43017 Mode-2
N2-8 212 1600 −2.39754 × 10−4 1.30612 Mode-2
N2-9 240 580 2.62525 × 10−6 1.24025 Mode-2
N2-10 300 447 −3.63519 × 10−5 1.27266 Mode-2
N2-11 380 397.5 3.62141 × 10−6 1.24308 Mode-2
N2-12 440 369 −9.00410 × 10−6 1.20026 Mode-2
N3-1 300 335.61 5.67991 × 10−6 4.07781 Mode-3
N3-2 250 311 −7.02530 × 10−5 3.61682 Mode-3
N4-1 231.15 60 −9.69742 × 10−6 3.85157 Mode-4

qualitative behavior remains the same. Notice that although many more points
along the curve are computed, only a selection of the solutions (marked by blue
dots and named as N2-1, N2-2, etc.) is listed in Table 2. Three eigensolutions, one
at each branch (i.e., N2-1, N3-2, and N4-1) — computed using the AR-F solver, are
also plotted in Fig. 5. We have tested that, when converged, all the three solvers
give the same eigensolutions.

4.5.2. Pressure-driven system

To study the mode-1 neutral curve in the pressure-driven system, we use the same
grids as used by Liu et al. [2012] (N = 55,416). The neutral curve in the pressure-
driven system can be more conveniently shown in the cλ-Pud space, since Pud is now
the control parameter, and the flow rate (or U0), on which the Reynolds number is
defined, becomes an output. The AR-F solver can reproduce all the neutral points
obtained previously [Liu et al., 2012], as shown in Table 3 and Fig. 6. Again, many
more points along the curve are computed, but only a selection of the solutions is
listed in Table 3. In particular, we have obtained the neutral solutions between N1-2
and N1-1, which were estimated by Liu et al. [2012] from unsteady simulations since
the required size of the matrices is too big for the QZ solver. Using an unsteady
solver to identify a neutral point is a very lengthy process; it takes a week to pinpoint
a neutral point, but requires only 30min using the AR-F solver.

Table 3 shows that the AR-F solver reproduced the solutions obtained by Liu
et al. [2012], with a percentage difference less than 3%. However, with the AR-
F solver, we can also compute new points above the point N1-1 (when cλ ≥
2.0 × 107) — the upper limit that Liu et al. [2012] could reach with the unsteady
solver. In addition, the AR-F solver gives the eigenfrequencies of the neutral points,
which was difficult to estimate from the unsteady simulations. The corresponding
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π
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π
π

π
π

(a) y(x, t) (b) y(x, t) at x = 7.5

Fig. 5. Neutral solutions for the flow-driven system. (a) The elastic beam shape y(x, t) for x = 5–
10 at t = 0 (red solid), π/3 (blue dotted), and 2π/3 (black solid), and (b) history of the middle
point of the beam y(x, t) at x = 7.5. These are plotted for points N2-1 (top), N3-2 (middle), and
N4-1 (bottom) (see Fig. 4 and Table 2). Notice the absolute values of these solutions are arbitrary.

1650073-14



2nd Reading

November 18, 2016 15:18 WSPC-255-IJAM S1758-8251 1650073

An Arnoldi-Frontal Solver for Large Complex Generalized Eigenvalue Problems

Table 3. The neutral points of the pressure-driven system using the AR-F solver. The top five
points were compared against the computed solutions by Liu et al. [2012] (in brackets, with
percentage difference) for the matrix size (n = 55,416 × 55,416). The bottom (unnamed) points
are the new points obtained in this study.

Points Pud cλ Re ωR ωI

N1-5 1.0 308.40 115.61 9.003 × 10−6 0.519
[Liu et al., 2012] (1.0, 0%) (307.85, 0.2%) (115.60, 0%) (N/A) (0.519, 0.02%)

N1-4 0.703 927 107.89 1.607 × 10−5 0.726
[Liu et al., 2012] (0.7, 0.45%) (927, 0%) (107.40, 0.5%) (N/A) (0.726, 0.0%)

N1-3 0.687 2000 113.83 3.317 × 10−5 0.847
[Liu et al., 2012] (0.68, 1%) (2000, 0%) (112.66, 1%) (N/A) (0.848, 0.18%)

[Liu et al., 2012] 0.708 5500 122.16 −4.591 × 10−6 1.014
N1-2 (0.7, 1.2%) (5500, 0%) (121.90, 0.21%) (N/A) (1.016, 0.16%)

N1-1 1.21 2.0 × 107 226.62 −7.085 × 10−6 3.619
[Liu et al., 2012] (1.2, 0.83%) (2.0 × 107, 0%) (219.00, 3.4%) (N/A) (3.623, 0.11%)

New points 1.263 3.0 × 107 237.02 2.177 × 10−5 3.967
above N1-1 1.290 3.5 × 107 241.64 −3.590 × 10−6 4.144

1.315 4.0 × 107 253.02 2.735 × 10−6 4.325
1.413 6.0 × 107 264.91 5.713 × 10−6 5.037
1.499 8.0 × 107 281.09 −6.634 × 10−6 5.713
1.608 1.1 × 108 301.79 2.088 × 10−6 6.637
1.728 1.5 × 108 322.68 −4.890 × 10−7 7.724
1.849 2.0 × 108 347.15 −4.533 × 10−6 8.913

102

103

104

105

106

107

108

109

1010

cλ

Pud

Fig. 6. The mode-1 neutral curve in the cλ-Pud space of the pressure-driven system obtained
using the AR-F solver. The neutral points below N1-1 agree with those obtained by Liu et al.
[2012], see details in Table 3. The points above N1-1 (in black) are the new solutions.
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π
π

π
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π
π

(a) y(x, t) (b) y(x, t) at x = 7.5

Fig. 7. Neutral solutions for the pressure-driven system. (a) The elastic beam shape y(x, t) for
x = 5–10 at t = 0 (red solid), π/3 (blue dotted), and 2π/3 (black solid), and (b) history of the
middle point of the beam y(x, t) at x = 7.5. These are plotted for the new point (Pud = 1.849,
cλ = 2.0 × 108) (top), N1-1 (middle), and N1-5 (bottom) (see Fig. 6 and Table 3). Notice the
absolute values of these solutions are arbitrary.
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Reynolds numbers are also listed in Table 3, which are in a similar range to the
neutral points obtained from the flow-driven system. Three selected eigensolutions
using the AR-F solver are shown in Fig. 7.

5. Discussion

Stability analysis of collapsible channel flows has been a great challenge numerically
due to the large matrix size and the asymmetric structure of the eigenvalue prob-
lems. In our previous studies, we used the QZ method, which requires extremely
large memory and CPU time and is impractical in many applications. The pressure-
driven system of the flows in a collapsible channel, in particular, can generate very
thin boundary layers upstream of the elastic section. If the flow details of these
boundary layers are not resolved, the eigensolutions computed are either inaccurate
or the solvers fail to converge. This has motivated the study of the AR-F approach.

In this paper, we are able to locate the neutral points of the pressure-driven
system faster and reach the new solutions which are unattainable using the tra-
ditional eigensolvers. The flow-driven system of the flows in a collapsible channel,
on the other hand, does not normally require such a refined mesh. The neutral
curve identified by Luo et al. [2008] using a relatively coarse mesh seems to provide
a reasonable approximation with small discrepancies compared to the new results
based on a much finer mesh. We must mention that although we have presented
some new results, we have not devoted our effort to identifying new neutral curves
for a different set of parameters, and in particular, we only studied the cases when
Pe − Pd = 1.95, T = 0, and ρm = 0. The neutral curves will change if different
parameter regions are considered.

The AR-F solver converges much faster than the QZ, or the AR-G methods since
the latter still requires solving the inverse of the global FE matrix. The disadvantage
of the Arnoldi-type solvers, however, is that we have to select the optimal Krylov
subspaces in order to locate the first few eigenvalues of the system. Since the initial
vector is generated randomly, the AR-F solver can only guarantee that the most
unstable eigenpair (the largest eigenvalue) is secured. However, it has difficulty in
finding the second or third unstable eigenpairs consistently. Even if we introduce
shift and orthogonalization to systematically filter out the lower order of the complex
eigenvectors, which is non-trivial, we cannot ensure that the Krylov subspace always
contains the next unstable modes. In this sense, the QZ solver has its advantage in
determining all the required eigenpairs in the right order, and is recommended for
small-sized eigenvalue problems.

We remark that although all the computations are performed in serial, the effi-
ciency of the new approach could equally benefit from parallel simulations. In all
the computations, the tolerance for the Arnoldi iteration is set to be 1 × 10−16,
which is the default value used in ARPACK. While this may be unnecessary for
the coarse meshes used, we kept this unchanged in order to make fair comparisons
of the computational times used by all the solvers. Finally, we must acknowledge
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that linear stability analysis is not applicable to certain fluid dynamics problems
[Trefethen et al., 1993], although the onset of oscillations of collapsible channel flows
seems to be governed by the linear stability.

6. Conclusion

In this paper, we have developed a combined Arnoldi-frontal approach for solving
large and complex generalized eigenvalue problems from the FE simulations. We
show that this approach not only overcomes the memory limitation for large sparse
matrices but also significantly reduces the computational time. Using our new solver
the rate of the CPU time for a matrix size n × n is reduced from O(n3), which
is required by the QZ or other traditional Arnoldi solvers, to almost O(n). The
memory saving is also huge; instead of storing the full global matrix, only the front
involving a subset of elements is in memory. When the new solver is applied to the
stability analysis of flows in a collapsible channel, both for the flow-driven where
the inlet flow is specified, or the pressure-driven system, where the inlet pressure is
specified, it is able to locate neutral stability points previously unattainable on a
single workstation. A greater advantage of such an approach will be its application
in the three-dimensional stability analysis, which is currently underway.
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