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The governing equations of bed-load sediment transport are the shallow water equations
and the Exner equation. To embody the advantages of the lattice Boltzmann method
(e.g., simplicity, efficiency), the three-velocity (D1Q3) and five-velocity (D1Q5) double-
distribution-function lattice Boltzmann models (DDF-LBMs), which can present the
numerical solution for one-dimensional bed-load sediment transport, are proposed here
based on the quasi-steady approach. The so-called DDF-LBM means we use two distri-
bution functions to describe the movement of the two components, respectively. By using
the Chapman–Enskog expansion, the governing equations can be recovered correctly from
the DDF-LBMs. To illustrate the efficiency of these, two benchmark tests are used, and
excellent agreements between the numerical and analytical solutions are demonstrated.
In addition, we show that the D1Q5 DDF-LBM has better accuracy compared to the
Hudson’s method.

Keywords: Double-distribution-function; lattice Boltzmann method; bed-load sediment
transport.

1. Introduction

In recent years, the research on fluvial dynamics in river channels has become a hot
issue. There are many rivers in nature, which not only bring convenience to daily
life but also disasters. For instance, the scour of river banks, the formation of the
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turbidity, spreading of pollutants, all of these are important for the environment
and business [Hudson and Sweby, 2003].

One of the main problems is sediment transport, which is caused by the interac-
tion between the river and bed. Water flow induces sediment transport and changes
the bed configuration, which in turn modify the flow structure. There are two sets
of dynamics in the process, one is the flowing fluid described in the shallow water
equations, and the other is sediment described in the bed-updating equation. They
are coupled via the changing riverbed. When the flux is a function defined of u only,
two approaches discussed by Cunge et al. can be used for the sediment transport
[Cunge et al., 1980]. The conventional method for this system is the decoupling
(quasi-steady) approach, which is based on the fundamental that the update speed
of the riverbed is considerably smaller in magnitude than the water flow [Hudson,
2001]. In this quasi-steady process, the water flow is assumed to be steady, and the
effects of riverbed changing are ignored. That is, the system is decoupled into the
hydrodynamic and the morphodynamic systems. It requires us to solve the shallow
water equations in a fixed bed, and then followed by a bed-update. For the unsteady
approach, the wave speed of the bed-updating equation is considered to be a simi-
lar magnitude to the wave speed of the water flow. Hence, the system is discretized
simultaneously.

With the emergence of the commercial finite difference codes, the decoupling
approach has reached a climax [De Vriend et al., 1993]. Many traditional methods,
such as the finite difference method and finite volume method have been widely used
to obtain the numerical solution for the system. However, there are problems in the
calculating process [Liu et al., 2014], such as the approximation of the wave speed
for the bed-updating equation, the spurious oscillations, the advection and source
terms approximation and so on, all of these factors affect the sediment transport’s
development.

Fortunately, the lattice Boltzmann method (LBM) can overcome some difficul-
ties for simulating sediment transport with the lattice model. It is a mesoscopic
numerical technique based on statistical physics, which simulates the fluid move-
ment at the microscopic particle level. The method has been used in many different
fields as a novel numerical method for computational fluid dynamics [Chen and
Doolen, 1998; Moeendarbary et al., 2009; Bég et al., 2013; Aminfar et al., 2015].
At the end of the 20th century, because of the unique features in the LBM, such as
parallel computation, algorithmic simplicity, some researchers proposed extended
theories of the LBM for nonlinear partial differential equations and applied to river
engineering. In 1999, Salmon used the LBM to study ocean circulation modeling
[Salmon, 1999]. In 2002, Zhou developed a lattice Boltzmann model for shallow
water equations with a source term [Zhou, 2002]. In 2009, Zhou proposed the LBM
for solute transport [Zhou, 2009]. In 2010, Thang studied the lattice Boltzmann
shallow equation and its coupling to build a canal network [Thang et al., 2010]. In
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2015, a new lattice Boltzmann approach for solving the 1D Saint-Venant equations
was developed [Liu et al., 2015].

It is known that the sediment transport is caused by the interaction between
river and bed. Clearly, two components, water flow and sediment, are in the system.
According to the LBM theory, two kinds of the method can be used to solve this
problem. One is the hybrid method, combining the LBM with traditional numerical
methods, while the other is DDF-LBM, which uses two distribution functions to
describe the movement of the two components respectively. To provide a competitive
method for simulating sediment transport, two DDF-LBMs based on the quasi-
steady approach are developed in this paper for the 1D bed-load sediment transport
system constituting two hydrodynamic and one sediment equations. The D1Q3
DDF-LBM is the model whose flow distribution function and sediment distribution
function are based on the three-velocity lattice. The D1Q5 DDF-LBM is the model
whose flow distribution function is based on three-velocity lattice while sediment
distribution function is based on the five-velocity lattice. Both DDF-LBMs fully
embody the advantages of LBM. The efficiency and accuracy of these have been
demonstrated by solving two benchmark tests.

2. DDF-LBM

In this section, the governing equations for 1D sediment transport are introduced
first. Then the quasi-steady approach is analyzed with the characteristics of the
system. Next, the D1Q3 and D1Q5 DDF-LBMs are described. The recovery of the
governing equations will be shown in detail.

2.1. Governing equations

According to the theory of sediment transport, when the sediment concentration
is low, a 1D model can be described by the shallow water equations and Exner
equation. Similar equations have been presented by Cunge et al. [Cunge et al.,
1980]. The shallow water equations, as classic fluid dynamic equations, are the
section-averaged form of the Navier–Stokes equations, which represent the mass
conservation and momentum conservation. The Exner equation accounts for the
changes in the bed elevation or the conservation of sediment mass. So, in one-
dimensional space, the complete system equations are

∂h

∂t
+

∂hu

∂x
= 0, (1)

∂hu

∂t
+

∂

∂x

(
hu2 +

1
2
gh2

)
= −gh

∂B

∂x
, (2)

∂B

∂t
+ ξ

∂q

∂x
= 0, (3)

1750013-3



2nd Reading

February 6, 2017 16:23 WSPC-255-IJAM S1758-8251 1750013

L. Cai, W. J. Xu & X. Y. Luo

where t is time, x is the horizontal coordinates, h(x, t) is the flow depth above the
bottom of the channel, u(x, t) is the depth-averaged velocity in the x-direction, g is
the gravitational acceleration, B(x, t) is the bed elevation, and q(u, h) is the total
volumetric sediment transport rate in the x-direction. Here ξ = 1

1−ε , and ε is the
porosity of the bed, set to be 0.4 [Hudson and Sweby, 2003].

In order to solve the system of equations, the sediment transport formulate
q must be known. There are many different forms of it and at different levels of
complexity [Soulsby, 1997]. However, the most basic one is the sediment transport
flux of Grass, which is used in this paper [Grass, 1981],

q(u) = Au|u|m−1, (4)

where A is a dimensional constant that encompasses the effects of grain size and
kinematic viscosity with m being a constant between 1 and 4. In order to ensure the
sediment transport flux is valid for all values of u, we take m = 3 [Hudson, 2001]
giving

q(u) = Au3. (5)

2.2. Quasi-steady approach

In the most physical cases, the bed moves slower than the water flow, which justifies
a quasi-steady approach. In the quasi-steady approach, we assume that the water
motions are steady with respect to changes in the bed level [Cunge et al., 1980].
This allows us to discretize the water flow separately from the bed. Hence, we can
use two distribution functions to simulate the movements of two components; one
is for the shallow water equations, and the other is for the Exner equation. The
detailed updating structure in the DDF-LBM is shown in Fig. 1.

2.3. Lattice Boltzmann model for the shallow water equations

According to the quasi-steady approach, the water flow should be iterated to an
equilibrium state before the bed updating. In this subsection, the D1Q3 flow lattice
model will be used to solve the shallow water equations [Liu et al., 2015]. In the
LBM, the dynamics of it consists of two steps: a streaming step, in which the
particles move to neighboring lattice points, and a collision step, where all lattices
reach a new distribution equilibrium status [He et al., 2008]. If the D1Q3 model is
adopted, the corresponding lattice Boltzmann equation with the Bhatnagar–Gross–
Krook (BGK) approximation for the shallow water equations is

fα(x + eα∆t, t + ∆t) − fα(x, t) = −1
τ

(fα − f eq
α ) +

∆t

Nαe2
eαF, (6)

in which fα represents the distribution function of particles, f eq
α is the local equi-

librium distribution function, e = ∆x
∆t , ∆t is the time step, ∆x is the lattice size, x

is the space vector defined by the Cartesian coordinate system, F is the component
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Fig. 1. Flow diagram of the algorithm.

of the force in x direction, τ is the single relaxation time, Nα is a constant, which
is equal to 2 for the D1Q3 lattice [Zhou, 2002]. The velocity vector of particles eα

is given as follows:

eα =




0, α = 0,

e, α = 1,

−e, α = 2.

(7)

Additionally, the macroscopic variables, the water depth h and the velocity u,
are defined as

h =
∑

α

fα, u =
1
h

∑
α

eαfα. (8)

1750013-5



2nd Reading

February 6, 2017 16:23 WSPC-255-IJAM S1758-8251 1750013

L. Cai, W. J. Xu & X. Y. Luo

The local equilibrium distribution function, determined by h and u, is defined as

f eq
α =




h − gh2

2e2
− hu2

e2
, α = 0,

gh2

4e2
+

hu

2e
+

hu2

2e2
, α = 1,

gh2

4e2
− hu

2e
+

hu2

2e2
, α = 2,

(9)

whose calculating process is described in the literature [Liu et al., 2015].
In our DDF-LBM, the D1Q3 model mentioned above is introduced to solve the

shallow water equations for a fixed bed. Through the Chapman–Enskog expansion,
the 1D shallow water equations can be recovered from the lattice Boltzmann equa-
tion (6). This allows us to determine the hydrological variables, water depth h and
velocity u, from the D1Q3 lattice model.

2.4. Lattice Boltzmann model for the Exner equation

Since the hydrological variables can be known from the proposed D1Q3 model, it
is time to calculate the riverbed deformation by using the other LBM. In order to
solve the Exner equation, two lattice models with three and five particle velocities
(D1Q3 and D1Q5), are used in this section.

2.4.1. Lattice Boltzmann equation

We start with the following evolution equation:

gα(x + eα∆t, t + ∆t) − gα(x, t) = −1
τ
(gα − geq

α ), (10)

where ∆t, ∆x, and τ are defined as above, eα still stands for the velocity of particles,
but will be three and five velocities. While, gα and geq

α are the distribution function
and the local equilibrium distribution function for the Exner equation, respectively.
We assume the distribution function gα controls the local equilibrium distribution
function geq

α , and meets the condition∑
α

gα(x, t) =
∑
α

geq
α (x, t). (11)

Now, we define the bed elevation B in the distribution function as

B(x, t) =
∑

α

gα(x, t), (12)

which is the macroscopic variable to be determined.
Evidently, the choice of local equilibrium distribution function geq

α is the key of
the model. Only when an appropriate geq

α is defined can we get the right riverbed
solution from the lattice Boltzmann equation (10). In the LBM, the local equilib-
rium distribution function is determined by the method of undetermined coefficients
[He et al., 2008; Mohamad, 2011]. In general, the local equilibrium distribution
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function is expressed as a power series with some unknown constants, and then cal-
culate the unknowns according to the relevant conditions. The lattice model in this
subsection is used to recover the Exner equation. Hence, the following conditions
should hold, ∑

α

geq
α = B, (13)

∑
α

eαgeq
α = ξAu3. (14)

In these conditions, we choose eα from Eq. (7), the local equilibrium distribution
function with three particle velocities is obtained:

geq
α =




B − 9
5e2

ξ2A2u5, α = 0,

1
2e2

(
ξAu3e +

9
5
ξ2A2u5

)
, α = 1,

1
2e2

(
−ξAu3e +

9
5
ξ2A2u5

)
, α = 2.

(15)

Based on the five-velocity lattice,

eα =




0, α = 0,

e cos[(α − 1)π], α = 1, 2,

2e cos[(α − 1)π], α = 3, 4,

(16)

and geq
α for the Exner equation is

geq
α =




B − 9
4e4

(ξ2A2u5e2 − ξ4A4u9), α = 0,

1
6e4

(
4ξAu3e3 +

36
5

ξ2A2u5e2 − 9ξ4A4u9 − 27
7

ξ3A3u7e

)
, α = 1,

1
6e4

(
−4ξAu3e3 +

36
5

ξ2A2u5e2 − 9ξ4A4u9 +
27
7

ξ3A3u7e

)
, α = 2,

1
24e4

(
54
7

ξ3A3u7e − 2ξAu3e3 + 9ξ4A4u9 − 9
5
ξ2A2u5e2

)
, α = 3,

1
24e4

(
−54

7
ξ3A3u7e + 2ξAu3e3 + 9ξ4A4u9 − 9

5
ξ2A2u5e2

)
, α = 4.

(17)

2.4.2. Recovery of the Exner equation

Through the Chapman–Enskog expansion, the Exner equation (3) can be derived
from the lattice Boltzmann equation (10), which is used to prove the bed elevation
resulted from Eq. (12) is the correct solution for bed-load sediment transport. The
derivation processes of D1Q3 and D1Q5 model are similar, so we choose the former
to explain in the following.
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We assume that the time step ∆t is small and equal to the Knudsen number ε

[Yan, 2000],

∆t = ε. (18)

Substituting Eq. (18) into Eq. (10), we have

gα(x + eαε, t + ε) − gα(x, t) = −1
τ

(gα − geq
α ). (19)

Using the Taylor expansion to the left-hand side of the above equation in time and
space at point (x, t) leads to

ε

(
∂

∂t
+ eα

∂

∂x

)
gα +

1
2
ε2

(
∂

∂t
+ eα

∂

∂x

)2

gα + O(ε3) = −1
τ
(gα − geq

α ). (20)

According to the Chapman–Enskog expansion [Chapman and Cowling, 1970], gα

can be expanded around g
(0)
α , having

gα = g(0)
α + εg(1)

α + ε2g(2)
α + O(ε3). (21)

Thus, Eq. (20) to order ε(0) is

gα = geq
α , (22)

to order ε is (
∂

∂t
+ eα

∂

∂x

)
g(0)

α = −1
τ
g(1)

α , (23)

to order ε2 is (
∂

∂t
+ eα

∂

∂x

)
g(1)

α +
1
2

(
∂

∂t
+ eα

∂

∂x

)2

g(0)
α = −1

τ
g(2)

α . (24)

Substitution Eq. (23) into Eq. (24) gives(
1 − 1

2τ

) (
∂

∂t
+ eα

∂

∂x

)
g(1)

α =
1
τ

g(2)
α . (25)

Taking
∑

α(23) + ε(24) about α, we have

∂

∂t

∑
α

g(0)
α +

∂

∂x

∑
α

eαg(0)
α + ε

(
1 − 1

2τ

)
∂

∂t

∑
α

g(1)
α + ε

(
1 − 1

2τ

)
∂

∂t

∑
α

eαg(1)
α

= −1
τ

∑
α

g(1)
α − ε

τ

∑
α

g(2)
α . (26)

Due to the conservation condition Eq. (11), the following relations are obtained∑
α

g(1)
α =

∑
α

g(2)
α = 0,

∂

∂t

∑
α

g(1)
α = 0. (27)

Now simplifying Eq. (26) with the relations (27), we have

∂

∂t

∑
α

g(0)
α +

∂

∂x

∑
α

eαg(0)
α + ε

(
1 − 1

2τ

)
∂

∂x

∑
α

eαg(1)
α = 0. (28)
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Substituting Eq. (23) into the above equation leads to

∂

∂t

∑
α

g(0)
α +

∂

∂x

∑
α

eαg(0)
α

= ε

(
τ − 1

2

)
∂

∂x

∑
α

eαeα
∂

∂x
g(0)

α + ε

(
τ − 1

2

)
∂

∂x

∑
α

eα
∂

∂t
g(0)

α . (29)

This is because the value of ε is small and the riverbed is updated in a steady flow
condition. So, substituting Eqs. (13) and (14) into (29), the Exner equation can be
obtained from the LBM dynamics

∂B

∂t
+

∂ξAu3

∂x
= 0. (30)

2.5. Boundary conditions

In this section, the boundary conditions of the DDF-LBMs will be discussed. The
computation domain is [0, L]. First, we consider the D1Q3 DDF-LBM, in which both
the flow and sediment distribution function are based on three particle velocities.
It is clear that four boundary conditions should be handling. At x0, the left-hand
boundary condition, the value of f2, g2 can be obtained from the streaming process,
while the f1 and g1 are unknown. The right margin, xN , is just the opposite: f2

and g2 are unknown.
In general, many different boundary conditions can be used. But since the veloc-

ity and the depth of flow and the bed elevation are known in this model; we use
the bounce-back scheme in this paper [He et al., 2008]. The unknown distribution
functions are decided as

f1|x0 = f2|x0 , g1|x0 = g2|x0 , (31)

and

f2|xN = f1|xN , g2|xN = g1|xN , (32)

where N is the total number of the discrete grids.
Like the previous model, we also use the bounce-back scheme in the D1Q5 DDF-

LBM, in which the flow distribution function is with three particle velocities, while
the sediment distribution function is with five. In this DDF-LBM, eight boundary
conditions should be handling. At x0, the left-hand boundary condition, the value
of f1, g1 and g3 are unknown. The right margin, xN , is the opposite: f2, g2 and
g4 are unknown. In addition, different from the D1Q3 DDF-LBM, the values of g3

at x1 and g4 at xN−1 are also required. The unknown distribution functions are
decided as follows:

At x0,

f1|x0 = f2|x0 , g1|x0 = g2|x0 , g3|x0 = g4|x0 . (33)

1750013-9
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At x1,

g3|x1 = g4|x1 . (34)

At xN−1,

g4|xN−1 = g3|xN−1. (35)

At xN ,

f2|xN = f1|xN , g2|xN = g1|xN , g4|xN = g3|xN . (36)

We note that the bounce-back scheme is not the only method, other options
may also be chosen as appropriate.

3. Numerical Tests

To examine the efficacy of two DDF-LBMs, two tests, wave propagation test problem
and channel test problem, are studied in this section. For the first one, the riverbed
is fixed. It is used to illustrate the accuracy of the D1Q3 lattice model [Zhou, 2002]
for the shallow water equations. The last one is for the riverbed deformation. In
realization, there are a large number of discrete points. In order to keep the image
clarity, only a part of the points is shown in our figures.

3.1. Wave propagation problem

The wave propagation problem with a pulse present in the riverbed can be described
by the shallow water equations. The test problem is taken from LeVeque [Le Veque,
1998] and Feng [Feng et al., 2006], consisting a 1D channel of length 1. The initial
conditions are

u(x, 0) = 0, h(x, 0) =

{
1 + ω − B(x, 0) if 0.1 ≤ x ≤ 0.2,

0.5 otherwise,
(37)

and the bottom topography takes the form

B(x, 0) =




1
4

(
cos

(
π(x − 0.5)

0.1

)
+ 1

)
if |x − 0.5| < 0.1,

0 otherwise.

(38)

Following Le Veque and Feng, the value of ω is taken as 0.2, and the gravitational
constant g is 10.

For this problem, the grid with 1000 cells is used together with the relaxation
time τ = 0.6. The boundary conditions on x0 and xN are shown in (31) and (32),
respectively. We obtain the numerical results in Figs. 2–4. Figure 2 shows the bottom
topography and the water surface at time t = 0.7, while the water depth h and
velocity u over the hump are shown in Figs. 3 and 4. In order to examine its
accuracy, we use a reference solution (RS) as the comparison one. The RS is based
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Fig. 2. The water surface at time t = 0.7 and bottom topography.

Fig. 3. The water depth at time t = 0.7.

Fig. 4. The water velocity at time t = 0.7.

1750013-11
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on the CWENO-type central-upwind finite difference schemes and has fifth-order
accuracy in smooth regions [Feng et al., 2006].

From Figs. 2 to 4, excellent agreements are obtained in the water surface h + B

and depth h, while the water velocity u looks a little different from the RS. This is
presumably because the RS we used here is based on the fifth-order schemes. This
is relatively low and cannot meet such a high accuracy. By comparing the numerical
solution (NS) with RS, we can see that the accurate results have been produced
from the D1Q3 flow lattice model at time t = 0.7. Therefore, the D1Q3 flow lattice
model for the shallow water equations is accurate, and can be used to develop the
DDF-LBMs.

3.2. The channel test problem

The previous section discussed the correctness of the flow lattice model. Now, we will
check the efficiency of the D1Q3 and D1Q5 DDF-LBMs for the bed-load sediment
transport. The test case is taken from Hudson [Hudson, 2001]. It consists of a
channel of length 1000 with the following dummy initial conditions

u∗(x, 0) =
Q

h∗(x, 0)
, h∗(x, 0) = D − B(x, 0), (39)

where the discharge Q and the water surface D are constant whose value is 10 in
this paper and the bottom topography is

B(x, 0) =




sin2

(
π(x − 300)

200

)
if 300 ≤ x ≤ 500,

0 otherwise.

(40)

As we know, the shallow water equations and Exner equation should be solved in
turn to obtain a realistic result of the riverbed deformation. When we calculate the
water depth h and velocity u, the riverbed is fixed. When the riverbed B is solved,
the hydrological variables are fixed. We always fix one and solve the other one. Thus,
the consistency of the water flow and bed is important in the initial conditions and
will impact the stability of the model. However, the initial flow condition in this test
is a dummy one. So, we fix the riverbed and iterate the water flow in the flow LBM
model to an equilibrium state. This equilibrium state means the absolute change in
velocity between current and last iterations is less than 1.0× 10−6. The results are
illustrated in Figs. 5 and 6.

From Figs. 5 and 6, we can see that the real initial conditions are roughly
coincidence to the dummy one. This means the dummy conditions of the water flow
are consistent with the bed.

The consistency between the water flow and the bed has been verified. Next,
we should calculate the riverbed. Before this, an approximate solution (AS) will be
given for this problem. In the case, the total height of the river and the discharge
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Fig. 5. The water surface and depth of real initial conditions.

Fig. 6. The water velocity u of real initial conditions.

throughout the whole domain are constant, which means it has an AS [Hudson,
2001]. For the sediment transport flux q(u) = Au3, the AS of bed elevation B(x, t) is

B(x, t) =




sin2

(
π(x − 300)

200

)
if 300 ≤ x ≤ 500,

0 otherwise,

(41)

where the value of x is determined by x0 and t. The formulate of x is

x = x0 + 3AξQ|Q|2t




(
10 − sin2

(
π(x0 − 300)

200

))−4

if 300 ≤ x0 ≤ 500,

10−4 otherwise.

(42)
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With this AS, we will verify further the effectiveness of our D1Q3 and D1Q5 DDF-
LBMs.

In this problem, we use the grid with 1000 cells, and set the parameters A =
0.001, ∆t = 0.1, τ = 1. The boundary conditions on x0 and xN are offered from (31)
to (36). The numerical results of double-distribution-function LBM models at t =
50000 s, t = 100000 s and 200000 s are obtained. The AS and NS of the D1Q3 DDF-
LBM are shown in Fig. 7, while Fig. 8 shows the results of the D1Q5 DDF-LBM.

From Figs. 7 and 8, it can be seen that as time goes on, the riverbed is chang-
ing gradually. By comparing the NS with AS, we can conclude that the excellent
agreements have been obtained between the NS and AS. That means the D1Q3 and

Fig. 7. The bed elevation B in the D1Q3 DDF-LBM.

Fig. 8. The bed elevation B in the D1Q5 DDF-LBM.
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Table 1. The 2-norm errors of D1Q3, D1Q5
DDF-LBMs and FDM [Hudson, 2003].

Times D1Q3 D1Q5 FDM

50000 s 0.0139 0.0073 0.0158
100000 s 0.0355 0.0082 0.0389
200000 s 0.2195 0.0225 0.2013

D1Q5 DDF-LBMs proposed in the Sec. 2 are accurate. Therefore, both the DDF-
LBMs in our research can be used to simulate the 1D bed-load sediment transport
correctly, and have a definite application value.

Of course, the calculation of bed elevation is the key of the sediment transport.
In order to further compare the accuracy of the D1Q3 and D1Q5 DDF-LBMs, the
error based on the 2-norm is defined for the bed elevation, which is

Er =

[
N∑

i=1

(BNS
i − BNA

i )2
] 1

2

, (43)

where N is the total number of the discrete grids, BNS
i is the NS of the riverbed

in the node i, BAS
i is the AS of the riverbed in the node i. The errors of two

DDF-LBMs are presented in Table 1.
As we can see from Table 1, both errors of the DDF-LBMs are small. The error

of the D1Q3 DDF-LBM and the FDM are almost the same. But the error of the
D1Q5 DDF-LBM is smaller than the error of D1Q3 DDF-LBM and FDM. Based on
analyzing characteristics of the 2-norm errors for the D1Q3 and D1Q5 DDF-LBMs,
we can find that the DDF-LBM with five-velocity lattice is more accurate. It offers
better accuracy than the D1Q3, although with an increased cost.

4. Conclusions

Two DDF-LBMs for 1D sediment transport based on the quasi-steady approach
are presented in this paper. Both of the D1Q3 and D1Q5 DDF-LBMs can be used
to obtain the numerical approximation of the equations governing sediment trans-
port. Their basic features are that they can be formulated on a natural extension
of the local equilibrium distribution functions and can offer a simple procedure,
while keeping better efficiency. This makes the DDF-LBM a good method for the
large-scale practical sediment transport problems. Two numerical tests are used to
demonstrate the simplicity, accuracy and efficiency of our DDF-LBMs.
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