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Modelling of fibre dispersion and its effects on
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Abstract Detailed fibre architecture plays a crucial role in myocardial me-
chanics both passively and actively. Strong interest has been attracted over
decades in mathematical modelling of fibrous tissue (arterial wall, myocardium,
etc.) by taking into account realistic fibre structures, i.e. from perfectly aligned
one family of fibres, to two families of fibres, and to dispersed fibres described
by probability distribution functions. It is widely accepted that the fibres, i.e.
collage, can not bear the load when compressed, thus it is necessary to ex-
clude compressed fibres when computing the stress in fibrous tissue. In this
study, we have focused on mathematical modelling of fibre dispersion in my-
ocardial mechanics, and studied how different fibre dispersions affect cardiac
pump function. The fibre dispersion in myocardium is characterized by a non-
rotationally symmetric distribution using a π−periodic Von Mises distribution
based on recent experimental studies. In order to exclude compressed fibres for
passive response, we adopted the discrete fibre dispersion model for approxi-
mating a continuous fibre distribution with finite fibre bundles, and then the
general structural tensor was employed for describing dispersed active tension.
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We first studied the numerical accuracy of the integration of fibre contribu-
tions using the discrete fibre dispersion approach, then compared different
mechanical response in a uni-axially stretched myocardial sample with varied
fibre dispersions. We finally studied the cardiac pump functions from diastole
to systole in two heart models, a rabbit bi-ventricle model and a human left
ventricle model. Our results show that the discrete fibre model is preferred for
excluding compressed fibres because of its high computational efficiency. Both
the diastolic filling and the systolic contraction will be affected by dispersed fi-
bres depending on the in-plane and out-of-plane dispersion degrees, especially
in systolic contraction. The in-plane dispersion seems affecting myocardial me-
chanics more than the out-of-plane dispersion. Despite different effects in the
rabbit and human models caused by the fibre dispersion, large differences in
pump function exist when fibres are highly dispersed at in-plane and out-of-
plane. Our results highlight the necessity of using dispersed fibre models when
modelling myocardial mechanics, especially when fibres are largely dispersed
under pathological conditions, such as fibrosis.

Keywords fibre dispersion · myocardial mechancis · bi-ventricle model · left
ventricle model · discrete fibre dispersion · general structure tensor

1 Introduction

Computational models have been developed over decades aiming to better un-
derstand the mechanism of the heart function under physiological and patho-
logical conditions, ranging from lumped parameter models [1, 2] to single ven-
tricles [3], to bi-ventricles and whole heart [4], and towards multiphysics per-
sonalized models for treatment planning and risk stratification [5], etc. One
of the essential parts in computational cardiac modelling is the strain energy
function, accurate and reliable stress/strain prediction essentially relies on the
constitutive modelling of myocardium. The current common practice is to use
fibre-reinforced hyperelastic material models by taking into account layered
myofibre structures, such as the widely-used strain-invariant based function
proposed by Holzapfel and Ogden [6], the so-called HO model.

Micro-structurally informed constitutive modelling in soft tissue has at-
tracted tremendous interest in this area since its introduce at 1970s [7]. With
advanced imaging techniques, such as diffusion tensor magnetic resonance
imaging, detailed three dimensional (3D) fibre distribution for the whole organ,
such as the heart, can be acquired in ex/in vivo [8, 9]. Existed measurements
have shown that fibres in myocardium are dispersed in space with a predom-
inant mean fibre direction [8, 10]. Constitutive modelling of soft tissue with
dispersed fibres have found that dispersed collagen fibres can have a significant
effect on the overall mechanical response of the soft tissue [11, 12].

To incorporate fibre dispersion into its constitutive law, one way is to as-
sume a probability distribution functions (PDF) with respect to the mean
fibre direction, such as using the π-periodic von Mises distribution [11, 13].
Then the strain energy function for the tissue can be the summarization of
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each fibre contribution along with other constituents. Broadly speaking, there
are two approaches for counting collagen fibre contributions: (1) the angular
integration (AI) approach [7], in which the stress from each fibre is added
together; and (2) the other one is the generalized structure tensor (GST) ap-
proach, which was first proposed by Gasser et al [11]. By assuming a rotational
symmetry for the fibre distribution around the mean direction, Gasser et al
derived a κ–model based on a modified squared mean fibre stretch. Later,
Holzapfel and co-workers employed this GST approach to depict mechanical
responses of various soft tissues (arterial walls, myocardium, etc.) [12, 14, 15].
Recently, Melnik [16] further extended the GST model to a coupled invariant
from two fibre families in the HO model [6].

In soft tissue mechanics, it is often considered that collagen fibres will not
bear load when compressed, thus excluding compressed fibres is necessary, or
the so-called tension-compression switch [17]. Such exclusion is simple if fibres
are not dispersed by simply zeroing out fibre stress if compressed, but can be
challenging when fibres are dispersed because a stretched domain needs to be
determined at each loading step according to its PDF. With a dispersed fibre
distribution, exclusion of compressed fibres in the AI approach is relatively
simple by only adding stress contribution from each stretched fibre [18–20]
compared to the GST approach. For example, Federico et al [19] excluded com-
pressed fibres from a planar von Mises distribution using a Heaviside function
with value to 1 when the fibre is stretched, otherwise zero. In general, the AI
approach will require significant computational resource to take into account
each fibre’s contribution at each loading step for each location. On the con-
trary, the GST approach can be much more computational efficient because
of one evaluation of the fibre potential derivative with the precomputed struc-
tural tensor, one angular integration compared to hundreds of integration in
the AI approach [21]. In recent years, a few studies have tried to address the
compressed fibre exclusion in GST. When firstly developing the GST model,
Gasser et al [11] suggested to only include fibre contribution when the mean
squared fibre stretch is greater than 1. However, as being discussed extensively
in the literature [17, 22], even though the mean fibre stretch is less than 1,
there is a portion of fibres being stretched depending on the deformation state,
thus, the original GST treatment will redistribute the fibre tensile stress over
all the fibres. Significant different consequence may happen if the formulation
of the squared mean fibre stretched is based on the volumetric/isochoric split
as discussed in [23]. To exclude compressed fibres in GST, Melnik et at [22]
introduced a Heaviside function into the integration of the structural tensor
which only includes the stretched fibres. In a recent study, Holzapfel and Og-
den [13] modified the original κ model [11] to have κ only depending on the
stretched fibre domain, rather than the whole PDF. They further compared
this modified κ model with a AI model, and concluded that both the GST
and the AI models have equivalent predictive power for characterizing various
fibre-reinforced soft tissues. In a similar way, Li et al [24] proposed a general
fibre invariant by integrating (I4 − 1)2 only over each stretched fibre.
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In both the AI and GST approaches, to exclude compressed fibres under
complex dynamics will generally require a two-dimensional integration over a
unit sphere at each computational location at each loading step, except for
some special cases where analytical solutions may exist. The numerical re-
alization of this two-dimensional integration over a unit sphere may require
hundreds of integrations, thus the computational demand can be very high
[25]. To improve computational efficiency of this 2-D integration of stretched
fibres in finite element simulation, Li et al [21] developed a discrete fibre dis-
persion model (DFD). Instead of integrating fibre contributions from thou-
sands of fibres over a unit sphere, the DFD method will firstly divide this unit
sphere into finite triangles, each triangle in the sphere surface will associate
one uniform fibre bundle which will contribute to the total stress weighted
by its corresponding density distribution determined from the corresponding
PDF. Li et al [21] further demonstrated that the computational demand was
significantly reduced for excluding compressed fibres in their DFD approach,
a speed-up of 224 times was observed in their study than using a traditional
AI approach.

It is also necessary to take into account myofibre dispersion in myocardial
active stress, which is evidenced in a recent experimental study by Ahmad et al
[8], who reported that myofibres disperse within the ventricular wall. This also
agrees with the historical experimental findings from Lin and Yin [26], who
measured around 40% cross-fibre active stress in rabbit myocardium. There
are three different approaches for modelling active stress in myocardium: the
active stress approach [14, 27], the active strain approach [28, 29], and the
hybrid approach, or the Hill model, as summarized in [30]. In the active stress
approach, the total stress tensor is consisting of passive and active parts, which
is convenient when calibrating parameters because of separately measured pas-
sive and active stresses [31]. However coupling two stress tensors from different
concepts may have issue on mathematical convexity [28]. In the active strain
approach, multiplicative decomposition of total deformation gradient tensor
into an elastic part and an activation part is carried out in order to fulfil
thermodynamic constraints, which is more inherent to the ‘sliding filament
theory’ [29]. In this study, we choose the active stress approach for modelling
myocardial stress similar as in our previous work [32] because it is conceptually
straightforward to implement by simply counting each individual myocyte’s
contribution and less complex for parameter calibration.

There are limited numerical studies which have considered fibre dispersion
in active contraction models of myocardium using the active stress approach.
For example, Guccione and co-workers explicitly added cross-myofibre active
tension into the total active stress tensor, up to 40% in order to match in
vivo cardiac function [33–35]. Eriksson et al. [14] first incorporated myofi-
bre dispersion in both the passive and active stresses using the GST-based
κ–model when modelling a rabbit left ventricle, in which a rotationally sym-
metric fibre distribution was assumed. They found that the large dispersion in
diseased heart can greatly affect ventricular pump function. In a recent study
[32], we have studied dispersed active tension in a biventricular model using
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a non-symmetric fibre distribution derived from an ex vivo DT-MRI dataset,
the dispersed active tension was derived by following the GST approach, the
results showed that with rule-based myofibre structure, there is a need to em-
ploy a dispersed fibre model when simulating cardiac contraction, but fibre
dispersion in the passive response of myocardium was not considered.

Published studies on fibre compression-exclusion have been mainly applied
to passive responses under simplified loading conditions, i.e. simple exten-
sion or simple shear with a rotationally symmetrical fibre distributions or an
in-plane dispersion [21, 36]. There is lack of study of how compressed fibre
exclusion could affect the ventricular passive filling and further affecting to
its pump function overall.Thus there is a need to systematically quantify to
which extent the dispersion can affect ventricular dynamics both at diastole
and systole under physiological loadings. In this study, we firstly extend the
DFD approach [21] into the myocardium with a non-rotationally symmetric
fibre distribution, compressed fibres are excluded in computing myocardial
passive response, and then the dispersed active tension is modelled as in the
previous study based on the GST approach. Finally, a comprehensive study of
in-plane and out-of-plane dispersions on ventricular pump functions is carried
out, first on a myocardial strip under uni-axial stretch, followed by a rabbit
bi-ventricle model, and then a human left ventricle (LV) derived from in vivo
clinical data.

2 Constitutive law

2.1 Passive stress

It is a common practice to model myocardium as a hyperelastic fibre-reinforced
incompressible material as evidenced in various experimental studies [8, 10]
and modelling studies [27, 35, 37]. Here, a reduced form of invariant-based
strain energy function for incompressible soft tissue is used by only including
the contributions from the ground matrix and the fibres (both collagen and
myofibres), that is

Ψ = Ψg + Ψf =
a

2b
exp[b(I1 − 3)] +

af

2bf
{exp[bf(max(I4f, 1)− 1)2]− 1}, (1)

where a, b, af, bf are material constants, I1 = trace(C) and I4f = f0 ·Cf0 are
strain invariants with C = FTF and F the deformation gradient, f0 is the
mean fibre direction in the reference state. The max() in Eq. (1) is to ensure
that only the stretched fibres can bear the loads. Eq. (1) has been widely used
for modelling collagenous tissue [20, 38] and myocardium [39, 40].

In general, fibres do not align perfectly along the mean fibre direction, but
dispersed [8]. To describe such dispersed fibres, we first introduce a spherical
polar coordinate system based on the layered fibre structure, the so-called
f0− s0−n0 system, shown in Fig. 1(a), thus a single fibre can be described in



6 Debao Guan et al.

terms of the two spherical polar angles Θ and Φ in the reference configuration
as

M(Θ,Φ) = cosΘ f0 + sinΘ cosΦn0 + sinΘ sinΦ s0, (2)

within the domains of Θ and Φ defined over an unit hemisphere
S = {(Θ,Φ)|Θ ∈ [0, π/2] , Φ ∈ [0, 2π]} as shown in Fig. 1(b). Since the two
fibres lying in one line are mechanically identical, thus S only needs to be
defined over a unit hemisphere.

(a) (b)

Fig. 1: Dispersed fibre field. (a) an unit vector M (red) representing the fibre
direction defined by Θ and Φ with respect to the fibre system f0, n0 and s0.
(b) Illustration of a discrete triangular discretization of the unit hemisphere
domain centralised with the mean fibre direction f0 (the red arrow) with N
representative fibre directions Mq (blue arrows) at the centroid of each trian-
gular surface.

Fibres at any location can be described by a density distribution function
ρ(M), further assuming this distribution is essentially separately [41] with
respect to Θ and Φ, we have

ρ
(
M(Θ,Φ)

)
= ρin(Θ) ρop(Φ), (3)

in which ρop(Φ) describes the out-of-plane dispersion, and ρin(Θ) describes the
in-plane dispersion. Note that ρ

(
M(Θ,Φ)

)
is defined in the reference configu-

ration, its density at current configuration can be derived using F. Following
[15], the π-periodic von Mises distribution is adopted here for ρ(Θ) and ρ(Φ),
respectively,

ρ(γ, b) =
exp(b cos(2γ))

2G
∫ π

0
exp(b cos(x))dx

, (4)

in which γ is the fibre angle, b > 0 is the concentration parameter, 1
π

∫ π
0

exp(b cos(x))dx
is the modified Bessel function of the first kind of order zero, and G is a con-
stant to ensure ∫

S
ρ(Θ, Φ) sin Θ dΘ dΦ = 1. (5)
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Note large concentration parameter b suggests less dispersion, and vice versa.
We write Ψf in Eq. (1) as

Ψ∗
f =

∫
S
ρ(M(Θ,Φ))Ψf(I4M(Θ,Φ)) sinΘ dΘ dΦ, (6)

where I4M (Θ,Φ) = M · (CM), and Ψf(I4f) = af
2bf
{exp[bf(max(I4f, 1)−)2]− 1}.

Integrating Eq. (6) analytically can be very challenging because of the
max() function, in other words, the exclusion of non-stretched fibres. In a
recent study, Li et al [21] divided the hemisphere space domain S into N
spherical triangle elements using representative fibre bundles for excluding
non-stretched fibres, the so-called discrete fibre dispersion (DFD) approach,
shown in Fig. 1(b). For detailed description of the DFD approach, please refer
to [21]. In brief, the representative fibre direction of a triangle (q) in Fig. 1(b)
is denoted as Mq(Θq, Φq) with Θq and Φq the spherical coordinates of the
centroid of the qth triangle, ∆Sq is the triangular area, and the fibre density
distribution at this triangle is approximated as

ρq =

∫
∆ Sq

ρ(Θ, Φ) sin Θ dΘ dΦ, q = 1, · · · , N, subject to

N∑
q=1

ρq = 1,

(7)
in which N is the number of discretized triangles for the unit hemisphere.
Thus Ψ∗

f can be further approximated as

Ψ∗
f u

N∑
q=1

ρq Ψf(I
q
4M ), with Ψf(I

q
4M ) =

{
Ψf(I

q
4M ) if Iq4M > 1

0 if Iq4M ≤ 1
, (8)

where Iq4M = Mq · (CMq).
Finally, the passive stress of myocardium with dispersed fibres is

σp =J−1a exp[b(I1 − 3)]b

+ 2J−1
N∑
q=1

ρq af (Iq∗4M − 1) exp[bf(I
q∗
4M − 1)2] (mq ⊗mq )︸ ︷︷ ︸

σf

−pI, (9)

where J = det(F), b = FFT , Iq∗4M = max(Iq4M, 1), mq = FMq, p is the
hydrostatic-like pressure to ensure incompressibility, and I is the identity
matrix. Algorithm 1 lists the detailed steps of numerically calculating σf in
Eq. (9).

2.2 Active stress

To take into account dispersed active stress due to dispersed myofibres, we
followed the GST approach as in our previous study [32] by introducing a
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Data:
F: deformation gradient tensor
Result:
σf: Cauchy stress resulted from stretched fibres

All computations are performed according to the f0–s0–n0 system
Divide the S into N spherical triangles using a freely-available Matlab code a

Calculate ρq =
∫
∆ Sq ρ(Θ, Φ) sin Θ dΘ dΦ with

∑N
q=1 ρq = 1

Initialization: σf = 0 J = det(F) C = FTF
for q=1 to N : do

determine Θq and Φq
Mq(Θ,Φ) = cosΘ f0 + sinΘ cosΦn0 + sinΘ sinΦ s0
Iq4M = Mq · (CMq)
if Iq4M > 1 then

mq = FMq

σf = σf + 2J−1 ρq af (Iq4M − 1) exp[bf(I
q
4M − 1)2] (mq ⊗mq )

else
σf = σf + 0

end

end

a www.mathworks.com/matlabcentral/fileexchange/58453-spheretri

Algorithm 1: Excluding compressed fibres using the DFD framework for
computing passive stress from stretched fibres.

structural tensor H, which is also defined over the same unit hemisphere [11,
14, 15]

H =

∫
S
ρ(Θ,Φ) sinΘM⊗M dΘdΦ, (10)

in which we assume the same ρ(Θ,Φ) as defined in Eq. (3). Because of this sym-
metry assumption of fibre distributions, H is a diagonal second order tensor
as H = diag{H11, H22, H33} and H11 +H22 +H33 = 1 in the local f0− s0−n0

system. We further define the myocardial active stress as

σa = TaH11f̂ ⊗ f̂ + TaH22n̂⊗ n̂ + TaH33ŝ⊗ ŝ, (11)

in which Ta is the active tension along the myofibre direction, and described
by a time-varying elastance model that has been illustrated extensively in the
literatures [32, 33, 42], f̂ = Ff0/|Ff0|, ŝ = Fs0/|Fs0| and n̂ = Fn0/|Fn0|.
None zero H22 and H33 represent the cross-fibre contraction.

Accordingly, the total myocardial Cauchy stress is

σ = σp + σa. (12)

Note, the additive framework is employed here to model myocardial active
contraction, alternative approaches exist, such as the active strain framework,
please refer to [28, 43, 44] for more details on the active strain framework.

www.mathworks.com/matlabcentral/fileexchange/58453-spheretri
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2.3 Estimating I4M in the eigenvector space of C: the AI approach

In Eq. (8), Iq4M is calculated directly using C and the representative fibre
direction Mq, an alternative approach to calculate I4M is to project M into
the eigenvector space of C, and then determine whether the fibre bundle Mq

should be excluded or not. The eigenvector space of the right Cauchy-Green
tensor is

C = FTF = U2 = λ1v1 ⊗ v1 + λ2v2 ⊗ v2 + λ3v3 ⊗ v3, (13)

where λi is the ith eigenvalue and vi is the corresponding ith eigenvector. Since
there is no guarantee to ensure that v1, v2 and v3 will form a right orthogonal
system, we redefine v3 as

v3 = v1 × v2.

Then a fibre vector M can be rewritten with respect to this eigenvector
space (v1, v2, v3), that is

M(θ, φ) = cos θ v1 + sin θ cosφv2 + sin θ sinφv3, (14)

where θ, φ are polar angles in {v1, v2, v3} shown in Fig. 2 (a), and the squared
fibre stretch is

I4M (θ, φ) = M(θ, φ) · (CM(θ, φ)) = sin2 θ
(
λ2 cos2 φ+ λ3 sin2 φ

)
+ λ1 cos2 θ.

(15)
For incompressible myocardium, when F 6= I, we have

detC = λ1λ2λ3 ≡ 1 ⇒ λ1 > 1 > λ3. (16)

Replacing a = λ1 − 1, b = λ2 − 1, c = λ3 − 1, and x = sin2 θ, y = sin2 φ in
Eq. (15), we have

I4M (θ, φ)− 1 = sin2 θ[cos2 φ (λ2 − 1) + sin2 φ (λ3 − 1)] +
(
1− sin2 θ

)
(λ1 − 1)

= x[(1− y)b+ cy] + a(1− x) = (b− a)x+ a− (b− c)xy > 0,

(17)

and it can be further simplified when b− c 6= 0, we arrive{
b−a
b−c + a

b−c
1
x > y, if x > 0,

a > 0 if x = 0.
(18)

Note 0 ≤ x = sin2 θ ≤ 1 and 0 ≤ y = sin2 φ ≤ 1, b − a = λ2 − λ1 ≤ 0 and
b − c = λ2 − λ3 ≥ 0. Thus, from Eq. (18), we now consider the following 4
scenarios:

– 1): x = 0, a = (λ1 − 1) > 0 is always satisfied, see Eq. (16)
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– 2): b ≥ 0 > c, that is λ2 ≥ 1 > λ3, the x − y curve defined in Eq. (18) is
illustrated in Fig. 2(b). The x − y will stay above the x axis except when
b = 0 in which the x− y curve crosses the x axis at (1,0), and no crossing
point with the y axis. Therefore, the valid domain for stretched fibres Ωe

is the shaded region defined in Fig. 2(b) with two sub-regions (Ωe1 and Ωe2),
that is

Ωe1 =

{
y ∈

[
b
b−c , 1

]
x ∈ [0, f(y)]

, Ωe2 =

{
y ∈

[
0, b

b−c

]
x ∈ [0, 1]

, and Ωe = Ωe1 ∪ Ωe2,

(19)
where f(y) = a

(b−c)y+a−b . The corresponding polar angle domains Ω are

Ω1 =


φ ∈ [η, π − η] ∪ [π + η, 2π − η], with η = arcsin

√
b
b−c

θ ∈
[
0, arcsin

√
a

(b−c)sin2 φ+a−b

] ,

Ω2 =

{
φ ∈ [0, η] ∪ [π − η, π + η] ∪ [2π − η, 2π]
θ ∈

[
0, π2

] , and Ω = Ω1 ∪ Ω2;

(20)
– 3): 0 > b > c, the x − y curve crosses the x-axis at ( a

a−b , 0) as shown in
Fig. 2(c), the valid domain for stretched fibres is

Ωe =

{
y ∈ [0, 1]
x ∈ [0, f(y)]

, (21)

and the corresponding domain in terms of the polar angles is

Ω =

φ ∈ [0, 2π ]

θ ∈
[
0, arcsin

√
a

(b−c)sin2 φ+a−b

]
; (22)

– 4): b = c < 0, a special case of the scenario 3 by setting f(y) = a
a−c , and

the domain is

Ω =

{
φ ∈ [0, 2π ]

θ ∈
[
0, arcsin

√
a
a−b

]
; (23)

Alternatively, the fibre strain energy function per unit volume (Ψf) with
only stretched fibres can be re-defined with respect to θ and φ, that is

Ψf =

∫
Ω

ρ∗(θ, φ)Ψf (I4M(θ, φ)) sin θdθdφ, (24)

where ρ∗(θ, φ) = ρ(M(Θ),M(Φ)), and M is a mapping between (Θ,Φ) and
(θ, φ) using the following identity,

[v1 v2 v3] [cos θ sin θ cosφ sin θ sinφ]T = [f0 n0 s0] [cosΘ sinΘ cosΦ sinΘ sinΦ]T .
(25)
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(a) (b) (c)

Fig. 2: Fibre directions (M ) defined using the eigenvectors (v1, v2 and v3 )
of the right Cauchy-Green tenor C with the two fibre angles θ and φ. (b) the
stretched fibres Ωe of (x, y) represented by the shaded area for case 2 and (c)
case 3.

Finally, the total passive stress in terms of θ and φ is

σp = J−1a exp[b(I1 − 3)]b

+ 2J−1

∫
Ω

ρ∗(θ, φ)af (I4M (θ, φ)− 1) exp[bf(I4M (θ, φ)− 1)2](
m(θ, φ)⊗m(θ, φ)

)
sin θdθdφ− pI,

(26)

where m(θ, φ) = FM(θ, φ). Algorithm 2 illustrates the numerical evaluation
of the dual integration in Eq. (26), identical to the AI approach. An example
of theoretical solution for a special case is explained in Appendix C.

As has been reported by Li et al [21] and others, the dual integration in
(Eq. (26)) can be very computationally demanding. Since the strain invariant
I4M will be same either evaluated at the f0−s0−n0 system or the eigen-space
of C, and the expression of I4M according to (Eq. (15)) can be readily obtained,
we could replace Iq4M (Θ,Φ) in Algorithm 1 with Iq4M (θ, φ) which is evaluated
in the eigen-space of C, thus an updated approach based on Algorithm 1 can
be realized (Algorithm 3), see Appendix D for details.

3 Results

In this section, we first studied the influences on stress distributions resulted
from different fibre dispersions in a multi-element myocardial strip (Section
3.1) under un-axial stretching, and compared the DFD approach (Algorithm
1) with other two algorithms (2&3) in Section 3.2. We then studied pump
function in a dynamic bi-ventricular rabbit heart model (Section 3.3) using
the DFD approach for passive response and the GST approach for active
response, finally in a dynamic human LV model (Section 3.4).
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Data:
F: deformation gradient tensor;
Result:
σf: Cauchy stress of collagen fibre at each Gaussian quadrature point.

Computation in the eigen-space of right Cauchy-Green tensor
eigen() is the function to compute eigenvectors and eigenvalues of a tensor;

Initialization: σf = 0 C = FTF J = det(F);
(v1,v2,v3, λ1, λ2, λ3)=eigen(C);
Solving Eqs. 17∼22 to find out Ω, denoted as θ ∈ (f1(φ), f2(φ)) while φ ∈ (φ1, φ2)
with discrete size ∆θ and ∆φ respectively;
for φ=φ1 to φ2: do

for θ=f1(φ) to f2(φ): do
(Θ,Φ) = (M(θ),M(φ));
ρ∗(θ, φ) = ρ(Θ,Φ);
M(θ, φ) = cos θ v1 + sin θ cosφv2 + sin θ sinφv3;
I4M = sin2 θ

(
λ2 cos2 φ+ λ3 sin2 φ

)
+ λ1 cos2 θ;

m = FM;
σf = σf +2J−1ρ∗(θ, φ)af (I4M −1) exp[bf(I4M −1)2](m⊗m) sin θ∆θ∆φ.

end

end

Algorithm 2: Calculation of Cauchy fibre stress in the eigen-space of C
by only counting stretched fibres.

3.1 Uniaxial test on multi-element strip

Fig. 3(a) schematically illustrates different combinations of b1 and b2 as in [45].
Different values of N (40, 80, 160, 640) are chosen for integrating Eq. (7), the
relative differences of the numerical integrations compared to the analytical
value (1.0) is shown in Fig. 4(a). The differences with N = 640 is almost neg-

ligible for all chosen b1 and b2. While for N = 160, high accuracy of
∑N
q=1 ρq

can be achieved even for the combination of b1 = 8 and b2 = 8 in which fibres
are highly aligned both in-plane and out-of-plane. When N = 40,

∑N
q=1 ρq is

less accurate whenever fibres are highly aligned either in-plane or out-of-plane,
while good accuracy can be achieved when b1 ≤ 2 and b2 ≤ 2. Therefore, in
the following studies, unless explicitly stated, N = 160 is used when either
b1 = 8 or b2 = 8, otherwise N = 40 is chosen for the sake of computational
efficiency.

Fig. 3(b) is the uniaxial test sample with a dimension of 15× 5× 3 mm3 as
used in ex vivo experiments [10]. The fibres lie in the e1−e2 plane and linearly
rotate from −60o to 60o with respect to e1. The strip was virtually stretched
along e1 by 1.2 by fixing one end. Two sets of passive parameters were used in
this study, namely the rabbit and the human myocardium. Parameter values
for the rabbit myocardium were determined by fitting Eq. (1) to the equal-
biaxial experiments from [26] using the same optimization procedure in [37].
Detailed results can be found in Appendix A. Parameter values for the human
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(a) (b)

Fig. 3: Surface plots of ρ(Θ,Φ)M(Θ,Φ) [45] for different combinations of b1
and b2 ∈ {0, 1, 2, 8} (a), and (b) a uni-axially stretched strip with linearly
rotated fibres represented by red arrows.

Table 1: Parameters of rabbit myocardium by fitting to the experimental data
in [26] and parameters for human LV model adopted from [27]. Contractility Ta

was manually determined by achieving a physiological ejection fraction (EF)
within 50% ∼ 75%.

Parameters a (kPa) b af (kPa) bf Ta (kPa)

Rabbit 0.2678 4.5505 0.0977 5.0855 80
Human 0.224 1.6215 2.4 1.8268 145

myocardium were adopted from [27] inferred by matching the measured in vivo
heart dynamics. All parameter values are listed in Table 1. Note that fibre
dispersion was not taken into account when estimating passive parameters for
both the rabbit and human myocardium because of lack of experimental data.

Fig. 4(b) shows σ11 using N = 640 under uni-axial stretching with four
different fibre dispersions, they are

– case 1: b1 = b2 = 0, the isotropic fibre distribution;
– case 2: b1 = 0, b2 = 2, the in-plane isotropic fibre distribution;
– case 3: b1 = 2, b2 = 0, the transversely isotropic fibre distribution, in other

words, the rotationally symmetric distribution [11];
– case 4: b1 = b2 = 2, the general fibre distribution with both in-plane and

out-of-plane dispersion;

Significant differences can be found when using the human passive material
parameters, with the highest stress in the transversely isotropic fibre distribu-
tion, and the lowest in the planar-isotropic distribution. Similar trend can be
found for the rabbit myocardium, but with much less differences, which could
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be explained by much smaller af for the rabbit myocardium (rabbit: 0.097 kPa
vs human: 2.4 kPa). Figs. 4(c-d) are the contours of σ11 at the maximum stretch
with different b1 and b2 for the rabbit and human myocardium, respectively.
With more aligned in-plane fibres (b1 → 8), σ11 becomes much higher suggest-
ing stiffening along e1, the mean fibre direction. For example, σ11 is increased
by 10.6% from 3.85 Pa (b1 = b2 = 0) to 4.26 Pa (b1 = 2, b2 = 0), followed by
a 7.5% increment from b1 = 2, b2 = 0 to b1 = 8, b2 = 0. Similar trends can
be found for the human myocardium, a 62.9% increase from b1 = 0, b2 = 0
to b1 = 2, b2 = 0, and a further 21.5% increase from b1 = 2, b2 = 0 to
b1 = 8, b2 = 0. On the contrary, when b1 = 0, increasing b2 seems having
little effect on σ11 as shown in Figs. 4(c-d). Thus, a transversely isotropic fibre
distribution will reinforce the material stiffness along the mean fibre direction
overall, but not a planar-isotropic distribution.

(a) (b)

(c) (d)

Fig. 4: Relative errors of evaluating Eq. (7) using N = 40, N = 160 and
N = 640 with different b1 and b2 combinations (a), the relative error is cal-
culated in relate to the analytical value (1.0). (b) Stress-stretch responses of
the uniaxial tension in four dispersion cases by using human (blue lines) and
rabbit (red lines) material parameters, respectively. (c) Contours of stresses
at the maximum stretch when using rabbit material parameters and (2) the
human material parameters.

A compression experiment using human material parameters was further
carried out with the same strip up to 20% shortening along the mean fibre
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direction. Two dispersions were considered here, one with b1 = b2 = 1 and the
other one with b1 = b2 = 2. Fig. 5 shows the resultant σ11. It can be found
that the more dispersed fibre distribution leads to higher resultant stress in
magnitude compared to the case with less dispersion. This can be explained
by the more stretched dispersed fibres along the cross-fibre direction in the
case with b1 = b2 = 1 compared to the case with b1 = b2 = 2, although the
mean fibre direction is under compression. Therefore, dispersed fibres could
lead to increased stiffness in compression.

Fig. 5: Compression tests with b1 = b2 = 1 and b1 = b2 = 2, respectively. A
maximum of 20% compression is applied along the mean fibre direction, the
negative values mean the resultant compressive stress.

3.2 Comparison between Algorithms 1, 2 and 3

We first compared the computational efficiency between the DFD method
(Algorithm 1) and the AI method with the dual integration in the eigenvector
system (Algorithm 2), and the hybrid DFD method (Algorithm 3) in a single
hexahedron element as shown in Fig. 6(a). The mean fibre direction is along
the e1 axis with a general fibre dispersion (b1 = b2 = 2). Under a maximum
stretch of 1.3, all algorithms converge to one identical stretch-stress response,
shown in Fig. 6(b). Algorithm 1 with N = 160 took 21.1 seconds, followed by
Algorithm 3 (N = 160, 22.3 seconds), however, Algorithm 2 took about 75.7
seconds with ∆θ = ∆φ = 0.0982 in order to achieve the same accuracy as
Algorithms 1 and 2. The much longer computational time used by Algorithm
2 agrees with the findings by Li et al [21]. All computation were performed
using ABAQUS Explicit (Dasssult Systemes, Johnston RI, USA) with user-
coded subroutine for calculating myocardial stress in a Windows workstation
(CPU E5-2680 v3@2.50 GHz and 64.0 GB memory), and only one CPU was
used. Therefore, Algorithm 1 has been used in the following studies because
of its high computational efficiency.
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(a) (b)

Fig. 6: A single element model with non-rotationally symmetric fibre distri-
bution under uni-axial stretching (a), and (b) stretch-stress responses using
Algorithm 1 (the black line), Algorithm 2 (the red cycles) and Algorithm 3
(the blue squares).

Table 2: Fibre rotation angles at different regions of the rabbit heart adopt
from [47].

Regions LVFW RVFW Septum Apex

Epicardium -71.0 -78.2 -45.1 -29.6
Endocardium 59.6 28.0 51.5 69.3

3.3 The dynamic rabbit bi-ventricle model

A three-dimensional bi-ventricle rabbit heart model was constructed from an
ex-vivo dataset of a healthy rabbit heart, which was acquired using a 7 Tesla
Bruker Pharmascan magnetic resonance imaging (MRI) system. The acquired
volumetric image had a size of 160 × 110 × 110 with voxel dimensions of
0.282×0.282×0.282 mm3. Fig. 7 (a) shows one processed diffusion-tensor (DT)
MRI image. Details of MRI acquisition protocols can be found in the supple-
mentary material. The bi-ventricular wall was first segmented from the ex-vivo
MRI data using ITK-SNAP 1 (Fig. 7 (a)), then the boundary contours were
exported into SolidWorks (Dassault Systemes, MA USA) for geometry recon-
struction, and finally meshed by ICEM (ANSYS, Inc. PA USA). To take into
account varied fibre distribution at different regions, the rabbit geometry was
further divided into four regions: the left ventricular free-wall (LVFW), the
right ventricular free-wall (RVFW), the septum and the apex, as shown in
Fig. 7 (b). The layered fibre architecture (Fig. 7 (c)) was generated using a
rule-based method (RBM) [32, 46], and the fibre rotation angles varied lin-
early from the epicardium to endocardium according to the measurements
from rabbit hearts in [47], and further summarized in Table 2.

The dynamic bi-ventricular rabbit model was implemented in ABAQUS
Explict. In order to simulate diastolic filling and systolic ejection, a lumped

1 http://www.itksnap.org

http://www.itksnap.org


Title Suppressed Due to Excessive Length 17

(a) (b) (c) (d)

Fig. 7: The reconstructed bi-ventricle rabbit heart geometry from a DT-MRI
data (296785 linear tetrahedral elements and 55957 nodes). (a) An example
DT-MRI rabbit heart with delineated ventricular wall enclosed by the red
lines; (b) Four regions are defined for the rabbit heart with different colors,
f0, s0, n0 are the fibre–sheet–normal system, in which f0 is the mean fibre
direction, s0 is the sheet direction, in general along the transmural direction
from endocardium to epicardium, and n0 is the sheet-normal direction; (c)
Rule-based fibre architecture with fibre rotation angles defined in Table 2;
(d) A schematic illustration of the bi-ventricular rabbit model coupled with
a circulatory system. MV: mitral valve, AV: aortic valve, RA: right atrium,
TV: tricuspid valve, PV: pulmonary valve, LA: left atrium, RA: right atrium,
Ao: aorta, Sys: systemic circulation, Pul: pulmonary circulation and PA: pul-
monary artery. Grounded spring with a stiffness of k is tuned to provide the
appropriate pressure-volume response (i.e., compliance) for the corresponding
cavity. CV is the viscous resistance coefficient for describing resistance between
cavities. Flow through valves is realized by only allowing uni-directional fluid
exchanging between two cavities.

model of the pulmonary and systemic circulation systems was attached to this
bi-ventricle, which was realized through a combination of surface-based fluid
cavities and fluid exchanges [48] as shown in Fig. 7 (d). After preloading both
ventricles with the prescribed end-diastolic pressures (LV: 8 mmHg and RV:
3 mmHg) within 0.1 s, the iso-volumetric contraction starts and the ventricular
pressures increase sharply, followed by the systolic ejection at around t = 0.15 s
after the valves open when the LV and RV pressures exceed the pressure in
the aorta (90 mmHg) and the pulmonary artery (10 mmHg), respectively. The
systolic ejection ends at around t = 0.3 s. We further assumed myocardium
contracts simultaneously across the whole wall immediately after end-diastole.
Further details of this bi-ventricle rabbit model can be found in Appendix
B. Cardiac dynamics were simulated with the four representative cases as
mentioned in the Section 3.1, and an additional case with perfectly aligned
fibres (case 5, without dispersion).

Fig. 8 depicts the end-diastolic and end-systolic fibre stress distributions
for the five representative cases. Both the end-diastolic stress distributions and
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the deformed shapes are very similar for all cases, but large differences can
be found at end-systole. For example, nearly no contraction for case 1 with
isotropic fibre distribution (b1 = b2 = 0). Excessive longitudinal shortening
(≈ −20%) and wall thickening (≈ 120%) in case 2 with b1 = 0, b2 = 2, which
has in-plane isotropic fibre distribution. The heart contracts less in case 3
with b1 = 2, b2 = 0 compared to the general fibre structure in case 4 with
b1 = 2, b2 = 2, which behaves similarly to case 5 (no dispersion) at end-
diastole and end-systole. Fig. 9(a) illustrates the pressure-loops (p-v) for all
cases, again, different combinations of in-plane and out-of-plane dispersions
can significantly affect the pump function of both the LV and RV. Because of
no contraction in case 1, its pressure loop degenerates to a point as indicated
in Fig. 9(a). Case 2 has the highest cardiac work, that is the area enclosed
by the p-v loop, in particular in the RV. Cases 4 and 5 have similar cardiac
outputs with better performance than case 3. Figs. 9(b, c, d) show the long-
axis shortening, average myofibre stress at mid-ventricle (σff) and the apical
twist for the five cases during systole. For case 1, due to the isotropic fibre
distribution, there is little contraction in systole with the smallest long-axis
shortening and the apex twist, and nearly zero myofibre stress due to the
counteraction of symmetrical fibre distributions. While case 2 is on the other
extreme, with the highest long-axis shortening (≈ −20%), the lowest myofibre
stress due to the isotropic in-plane distribution, and the highest apex twist.
For cases 3, 4 and 5, the long-axis shortening, the myofibre stress and the apex
twist follow similar trends as shown in Figs. 9(b, c, d). Considering the largest
long-axis shortening and the apex twist, and excessive wall thickening in case 2
compared to experimentally reported values (around 46% in [49], 40% in [29]),
it may suggest that the dynamics of case 2 can be unphysiological, especially
in systole.

Fig. 8: Myofibre stress (σff) distributions with deformed shapes at end of
diastole (top) and end of systole (bottom) in the rabbit bi-ventricle model for
case 1 (b1 = b2 = 0), case 2 (b1 = 0, b2 = 2), case 3 (b1 = 2, b2 = 0), case 4
(b1 = b2 = 2), and case 5 without fibre dispersion.
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(a) (b)

(c) (d)

Fig. 9: Systolic function for the five cases with different dispersed fibres in
the rabbit heart model. (a) Pressure-Volume loops; (b) long-axis shortening,
and the long axis is defined as the line segment between the LV basal centre
and the apex (the black line in Fig. 8); (c) average myofibre stress σff in the
middle ventricle enclosed by the black rectangle in Fig. 8, and (d) the apex
twist angles.

Figs. 10(a) and (b) show the differences of end diastolic volume (EDV) of
the LV and RV for different combinations of b1 and b2 by comparing with case
5 without fibre dispersion. It can be found that the differences in LV EDV and
RV EDV are not significant compared to case 5, with a maximum difference of
2% and concentrated close to the isotropic distribution (b1 → 0 and b2 → 0).
However, significant differences exist for end systolic volume (ESV) of LV and
RV as shown in Figs. 10(c) and (d), in particular when b1 → 0 and b2 → 0.
The solid and dashed lines in Figs. 10(c) and (d) indicate the differences within
the 5% range compared to case 5. The b1-b2 space within 5% range is much
narrower in the LV than RV, indicating that including fibre dispersion in
the LV is necessary for this rabbit model. Our results further suggest that
fibre dispersion can significantly affect both the LV and RV systolic function
for this rabbit heart model, but less in the diastolic filling. With high in-
plane dispersion (small b1) and less out-of-plane dispersions (b2 → 8), both
the LV and RV can contract more, while with high in-plane and out-of-plane
dispersions, both the LV and RV pump functions are reduced significantly
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especially when b1 = b2 = 0, despite slightly larger end-diastolic volumes for
both the LV and RV chambers.

(a) (b)

(c) (d)

Fig. 10: Relative differences of ESV and EDV values with different dispersion
parameters compared to case 5. (a) EDV differences of the rabbit LV and (b)
RV, (c) ESV differences of the rabbit LV and (d) RV, respectively.

3.4 The human LV model

A human LV model from our previous work is used here [27] to study how
different fibre dispersions can affect the pump function in the human LV.
Fig. 11(a) shows the LV model with a rule-based fibre structure as illustrated
in (b) with linearly varied fibre rotation angle from the epicardium (-60o) to
the endocardium (600). A similar simplified circulation system was attached
to the LV model as in the rabbit model, whereas only the aorta and the left
atrium (Fig. 11(c)) were included. To simulate LV dynamics, we first preload
the LV to 8 mmHg within 0.3 s, then the iso-volumetric contraction begins,
followed by the systolic ejection around at t = 0.4 s when the LV pressure
exceeds the aortic pressure (75 mmHg), and finally the ejection ends when the
LV pressure is lower than the aortic pressure. We also assumed simultaneous
contraction in this LV model. The same five cases with varied fibre dispersions
are analysed in this section.
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(a) (b) (c)

Fig. 11: A human LV model with 133042 linear tetrahedral elements and 26010
nodes (a) and its fibre architecture (b) generated by a rule-based method with
fibre rotation angles from −60o at epicardium to 60o at endocardium. (c) A
schematic illustration of the human LV model with a circulation system, and
the definitions of various symbols are same as those in Fig. 7(d).

The end-diastolic and end-systolic fibre stress distributions for the five
cases are shown in Fig. 12. Myofibre stresses at end-diastole are similar across
the five cases with slight difference in the deformed shapes. The end-systolic
shapes are largely different among the five cases. Similar as in the rabbit model,
no contraction happens in case 1, and excessive contraction experienced by
case 2. Although cases 3, 4 and 5 have similar end-systolic shapes, the stress
distribution is different in case 3 with stress concentration near the base, which
may be caused by the less long-axis shortening compared to cases 4 and 5.
Fig. 13 (a) further summarizes the p-v loops for the five cases. For the cases
either with b1 = 0 or b2 = 0, a larger end-diastolic volume can be achieved,
suggesting an increased compliance in diastole because of dispersed fibres.
But those dispersed fibres seem compromising active contraction because of
the counteracting effects as in case 1 in which all fibres are equally distributed
over the unit hemisphere, resulting no contraction at all under incompressible
assumption (Fig. 13 (a)). Interestingly, the cardiac output from case 4 with a
general fibre dispersion is slightly larger than the non-dispersed case 5, that
may be because of the larger end-diastolic volume in case 4, which leads to
higher active contraction according to the ‘Frank-Starling’ law. Figs. 13(b, c,
d) show the long-axial shortening, the fibre stress and the apex twist in systole,
respectively. Again, an excessive long-axis shortening can be found for b1 = 0
and b2 = 2 with a peak value of -36.8% (case 2), nearly no shortening in
case 1, and the long-axis shortening in case 4 is around 20%, higher than
cases 3 and 5. The myofibre stress at mid-ventricle is extremely low in case
1 due to the counteraction of dispersed myofibres, and followed by case 2
with in-plane isotropic fibres. Similar trends can be found in cases 3, 4 and
5 but with different levels. Note because of dispersed myofibres, there are
cross-active tension along the sheet and sheet-normal direction, which also
affect myocardial contraction. For example, even though the myofibre stresses
in cases 2 and 3 are low, because of the in-plane myofibre distribution, large
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contractile stress can be found along the sheet-normal direction, which will
further contribute to contraction as suggested in [32]. The maximum apex
twist angles are similar for cases 2, 3 and 5 (around 25o), 15o for case 4,
and lowest in case 1 as expected. Thus for this human LV model, a fully
dispersed myofibre structure (case 1) is non-physiological because of nearly
no contraction, while an in-plane isotropic fibre structure (case 2) can lead
to non-physiological dynamics in systole because of the excessive long-axis
shortening.

Fig. 12: Myofibre stress distributions (σ ff ) at the end of diastole (top) and
at the end of systole (bottom) for the human LV model with different combi-
nations of b1 and b2.

Fig. 14 is the contour plot of the relative EDV and ESV differences with
varied b1 and b2 compared to the case with non-dispersion fibres (case 5), the
superimposed lines indicate the parameter space with differences in the range
of ±5%. The parameter space with > 5% difference for EDV mainly locates
near the b1 axis and b2 axis, with a maximum difference of 18% when b1 = 0
and b2 = 0. The differences in ESV are much more significant as shown in
Fig. 14(b). Still, the regions near the b1 and b2 axis have reduced myocardial
contraction with much larger ESV compared to case 5. In Fig. 14(b), we can
also find a region enclosed by the dashed line which has much less ESV com-
pared to case 5, this can be explained by the large in-plane dispersion which
can enhance pump function as found in our previous study [32]. Thus for this
human LV model, when (b1, b2 ∈ [0, 2]), there is a need to incorporate fibre
dispersion, beyond that, the differences of LV EDV and ESV are in general
within 5% range compared to the case without considering fibre dispersion. In
fact, the same parameter space of b1, b2 ∈ [0, 2] can be found for the rabbit
model, where the large difference (i.e. > 5% ) exists as shown in Fig. 10. The
measured fibre dispersion in human myocardial samples from [10] is repre-
sented by the white dot in Fig. 14, which lies in the < 5% region of the EDV
and ESV differences compared to case 5.
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(a) (b)

(c) (d)

Fig. 13: Systolic function for the five cases in the human LV model. (a)
Pressure-Volume loops; (b) long-axis shortening, the long-axis is defined as
the link between the LV basal centre and the apex (the black line in Fig. 12);
(c) average myofibre stress σff in the middle ventricle indicated by the black
rectangle in Fig. 12, and (d) the apex twist angles.

4 Discussion

In this study, we have focused on how different fibre dispersions will affect my-
ocardial mechanics both passively and actively. Fibre dispersion is described
by a non-rotationally symmetric distribution based on recent experimental
studies [8, 10]. In order to exclude compressed fibres for passive response, we
adopted the discrete fibre dispersion model developed in [21], and then the
general structural tensor [11] was employed for describing dispersed active
tension as in our previous study [32]. We first studied the numerical accuracy
of the integration of fibre contributions using the DFD approach, then studied
the different mechanical response in a uni-axially stretched myocardial sam-
ple with varied fibre dispersions. Two heart models were further employed in
this study, the rabbit bi-ventricle model and the human LV model. Cardiac
dynamics from diastole to systole were simulated with different fibre disper-
sions. Our results show that fibre dispersion can have significant effects on
myocardial mechanics and the pump function, which highlights the necessity
of using appropriate dispersion models when modelling myocardial mechanics,
especially when fibres are largely dispersed.
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(a) (b)

Fig. 14: Relative differences of EDV (a) and ESV (b) with different dispersion
parameters compared to case 5 for the human LV model. The contour lines
indicate ±5% difference, and the white dot is the measured dispersion (b1 =
4.5, b2 = 3.9) from Sommer et al [10].

The strain energy function for myocardium (Eq. (1)) only includes two
strain invariants I1 and I4 . We further fitted this strain energy function to
the biaxial stretching experimental data of human tissues reported by Sommer
et al [10], see Appendix F. Good agreements were achieved along the fibre
direction and the cross-fibre direction. Myocardium was further assumed to
be incompressible, a widely adopted assumption in literature [6, 27, 33–35].
In our human LV model, J = 1 ± 0.008 at end-diastole and J = 1 ± 0.009 at
end-systole, which suggests myocardial incompressibility was achieved in our
simulations, and the very small standard deviation is due to the numerical
realization of the incompressible penalty. Interested readers can refer to [50]
for a recent contemporary review of constitutive modelling of myocardium.

To model fibre dispersion, the AI approach and the GST approach have
been widely used in various soft tissue mechanics, such as arterial wall, my-
ocardium, tendon, valvular tissue, and skin, etc. One striking feature of col-
lagen fibres is that they can not bear the loading when compressed, thus it
is necessary to exclude compressed fibres. In this study, we have adopted the
DFD approach developed in [21], which is a numerical approximation of the
AI approach. By discretizing an unit hemisphere into N spherical triangles,
the DFD approach can then integrate stress contributions from stretched fibre
bundles in a much faster way as demonstrated by Li et al [21], and also in this
study. The advantage of the DFD approach is that by replacing the double
integration in the AI approach with finite representative fibre bundles, it pre-
serves the straightforward compressed fibre exclusion from the AI approach.

In our previous study [32], we have determined the dispersed active ten-
sion from a DT-MRI acquired fibre structure using the GST approach along
with a rule-based fibre structure. We found that this GST-based dispersed
active stress model can well approximate the systolic function in a bi-ventricle
model compared to the DT-MRI derived fibre structure, the most realistic
fibre structure. Since there is no need to exclude any myofibre during active
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contraction, the GST approach is naturally convenient to take into account
dispersed active tension for the sake of computational efficiency. In this study,
we further tested the DFD approach for the active stress with one hexahedra
element, and the total active tension is σa = Ta

∑N
q=1 ρq m̂q ⊗ m̂q where

m̂q = mq/|mq|. Because the active tension is much higher compared to the
passive stress part at systole, a much larger N was needed compared to the
value used for the passive response during the numerical integration of the
fibre contribution. We then compared the DFD-based and GST-based active
tension in the human LV model with N = 160, the end-systolic volume differ-
ence was negligible for this two approaches, while the computational time was
much longer for the DFD-based active tension, which took 6 times longer for
one cardiac cycle than the GST-based active tension.

According to the studies from Sommer et al [10] and Ahmad et al [8], the in-
plane and out-of-plane dispersions are largely different, thus a non-rotational
symmetry assumption is more appropriate than the rotationally symmetry
distribution as assumed in the κ model [14]. Furthermore, the non-rotational
symmetric fibre distribution allows us to study how different degrees of in-plane
and out-of-plane dispersions can affect ventricular dynamics, for example from
the fully isotropic to the in-plane isotropic fibres, the transversely isotropic fi-
bres, the general dispersion, and the highly aligned fibre structures as depicted
in Fig. 3(a).

In the DFD approach, the dispersed fibre distribution within an hemisphere
is first divided into N triangles before excluding compressed fibres, see Fig. 4.
In Li et al’s study [21], they used N = 640 for the hemisphere discretization
when modelling the simple shear and the uniaxial tests. Because the compu-
tational demanding for the rabbit and human heart models can be very high
even without fibre dispersion, usually hours for one cardiac cycle, thus we first
determined the possible minimum N for integrating fibre contributions with
different b1 and b2. We found that in general N = 40 can achieve a fairly good
agreement with the theoretical value if fibres are not highly aligned (Fig. 4(a)),
but except for b1 = 8 or b2 = 8 in which a larger N will be needed. A further
test on the human LV model with N = 160 and N = 40 showed that the com-
putation time with N = 160 was almost 3.2 times longer than with N = 40,
while the pump function was nearly identical.

Fibre dispersion seems having little influence on the passive filling of the
rabbit bi-ventricle, but not for the human heart. This agrees with the our
previous work using a neonatal porcine biventricle model [32], in which the
LV and RV end-diastolic volume differences were around 1.4% between a rule-
based fibre structure without dispersion and a DT-MRI fibre structure which is
naturally dispersed. The size of the neonatal porcine heart in [32] is similar to
the rabbit heart in this study. The possible reasons for the different impacts
from fibre dispersion between the rabbit and LV models are: (1) the much
thinner wall in the rabbit heart (4 mm) compared to the human heart (10 mm),
thus the changing of mean fibre angle is more rapid in the rabbit heart than the
human heart, which may indicate that the diastolic filling in the rabbit heart
could be more sensitive to the mean fibre rotation angle; (2) different fibre
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structures, i.e. different fibre rotation angles; (3) different passive material
properties; (4) the much smaller size of the rabbit heart compared to the
human heart.

Because of the wavy structure of the collagen network in the soft tissue,
collagen fibres are initially crimped, and gradually recruited to bear the load-
ing with increased stretch [51, 52]. Only recently, Cheng et al [52] assessed
collagen fibre recruitment in bladder tissue using advanced bioimaging, and
experimentally demonstrated that the low resistance in the toe regime, cor-
responding to the low stretch regime, can be explained by the no-discernible
recruitment of collagen fibres. This will support the fundamental hypothesis
in this study, also among others [21, 53], that is a straight fibre under com-
pression will buckle and not support load because of its crimped configuration.
This assumption is also necessary for reasons of stability as discussed in [53].
Including recruitment into the strain energy function would be more phys-
iologically relevant compared to the simple tension-compression switch [54].
Another way to take into account the crimped wavy collagen fibre network is
to adopt a multiscale approach from nanoscale up to the macro-scale using
homogenisation techniques as in [55]. In this study, the tension-compression
switch is used because of its simple numerical implementation.

The importance of convexity of a strain energy function has been studied in
[53] for ensuing material stability and meaningful mechanical behaviour. Here
we will briefly discuss the convexity of the strain energy function in the DFD
approach when only considering myocardial passive response, see Eqs. (1)(7).
The convexity of the isotropic part in Eq. (1) has been demonstrated in [6],
thus we only discuss the convexity of the anisotropic part (Eq. (7)). For each
fibre bundle, ρq is constant, thus for the local deformation tensor C, we have

∂Ψf(I
q
4M )

∂C
= Ψ

′

f (Iq4M )Mq⊗Mq,
∂2Ψf(I

q
4M )

∂C∂C
= Ψ

′′

f (Iq4M )Mq⊗Mq⊗Mq⊗Mq,

(27)
and

Ψ
′

f (Iq4M ) = af (Iq4M − 1) exp[bf(I
q
4M − 1)2],

Ψ
′′

f (Iq4M ) = af exp[bf(I
q
4M − 1)2] [1 + 2bf(I

q
4M − 1)2].

Because af and bf are positive parameters. When the fibre bundle (Mq) is

under stretch, Iq4M > 1 ensures both Ψ
′

f (Iq4M ) > 0 and Ψ
′′

f (Iq4M ) > 0; When
the fibre bundle is under compression, by setting Iq4M = 1 or equivalently

Ψf(I
q
4M ) = 0, then Ψ

′

f (Iq4M ) = Ψ
′′

f (Iq4M ) = 0. Therefore,
∑N
q=1 Ψ

′

f (Iq4M ) > 0 and∑N
q=1 Ψ

′′

f (Iq4M ) > 0 ensure the convexity of Eq. (7) . During active contraction,
the adopted active stress approach may violate the thermodynamic constraints
[28], and might further lead to no-convexity and instability issue. As discussed
in other studies [28, 29], the active strain approach would be an alternative
approach if thermodynamic constraints need to be enforced. Nevertheless, we
have not met instability issue in this study.
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We further found that active contraction is sensitive to fibre dispersions
for both the human and rabbit models. For example, the isotropic fibre distri-
bution leads to almost no contraction, while the in-plane isotropic fibre distri-
bution results purely in-plane active stresses with a high proportion of active
tension along the sheet-normal direction, which leads to excessive longitudinal
contraction in the human model (-36.8%) than reported the normal range in
human (−16.7 ± 2.2% [56], and −17.75 ± 5.44% [57]). For both the LV and
rabbit models, a general dispersed fibre structure, i.e. b1 = 2 and b2 = 2 can
achieve a slightly larger cardiac output than the non-dispersed fibre structure,
that is because the cross-fibre active stress can enhance the pump function as
demonstrated in our previous study [32] and other studies [26, 35].

We would like to mention limitations. First, the passive strain energy func-
tion only incorporates the matrix and fibre contributions, but not including
the terms associated with the sheet-direction and the sheet-normal as in other
studies [6, 37], that is because of lack of experimental data for identifying
all parameters and dispersed fibre measurements in those two directions. Sec-
ondly, fibre dispersion is only considered along the fibre direction f , it is pos-
sible to include the sheet dispersion and the sheet-normal direction as in [16],
but it would make the computation very challenging. Thirdly, a lumped cir-
culation model is used for the ventricular models to provide physiologically
accurate pressure boundary conditions. This lumped circulation model is sim-
ilar to the Windkessel model and realized by a combination of surface-based
fluid cavities and uni-directional fluid exchanges [32, 35]. Using a more realistic
circulation model, such as one-dimensional models, will allow us to systemat-
ically investigate the interactions between ventricles and blood flow in vessels
[58, 59]. A further limitation is that the electrophysiology is not modelled in
this study, but assuming all myocytes contract simultaneously following our
previous studies [32, 46, 58] and other studies [35]. Reasons are that in healthy
hearts (1) the action propagation in the left ventricle is much faster than the
mechanical contraction, (2) an electromechanical model will significantly in-
crease the modelling complexity, such as the Purkinjie fibre network [60], and
further difficulties in parameter calibration. We refer interested readers to the
review [61] for multi-physics modelling. Last but not the least, the experi-
mental data for the rabbits were from different studies, and rule-based fibre
structures were assumed for both heart models. A combined experimental
measurements (bi-axial and shear mechanical tests, DT-MRI fibre acquisi-
tion, ventricular pressure measurements, in vivo dynamics imaging, etc.) with
the computational modelling from the same heart will be desirable to gain
a deeper understanding of how different fibre structures affecting ventricular
pump function.

Despite those above limitations, the present computational framework can
be readily to be extended to subject-specific multi-physics simulations [61] by
including other heart chambers, electrophysiology, ventricular blood flow, and
perfusion within myocardium, etc. Future studies shall also explore state-of-art
assimilation methods in computational cardiology for clinical translation [5],
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and fast computation using cutting-edge machine learning approaches [50, 62].

5 Conclusion

This study systematically investigates the impact of fibre dispersions on my-
ocardial mechanics both passively and actively, first on a myocardial strip, then
a rabbit bi-ventricle model, and finally a human LV model. The fibre disper-
sion in myocardium is characterized by a non-rotationally symmetric distribu-
tion using a π−periodic Von Mises distribution. To exclude compressed fibres,
two different approaches are compared, including the discrete fibre model and
the angular integration based approach within the eigen-space of the right
Cauchy-Green tensor. The dispersed active tension is derived from the gen-
eral structural tensor approach. Our results show that the discrete fibre model
is preferred for excluding compressible fibres because of high computational
efficiency as already demonstrated in the literature. Our results further sug-
gest that both diastolic filling and systolic contraction can be largely affected
by dispersed fibres depending on the in-plane and out-of-plane dispersion de-
grees, especially for systolic contraction. The in-plane dispersion seems af-
fecting myocardial mechanics more than the out-of-plane dispersion, an inap-
propriate dispersed fibre structure will result in a non-physiological dynamics
(i.e. in-plane isotropic fibres). Despite different effects in the rabbit and hu-
man models caused by the fibre dispersion, large differences in pump function
exist when b1, b2 ∈ [0, 2], suggesting the necessary including fibre dispersion
in cardiac models when the fibre dispersion is high, especially for pathological
myocardium, i.e. fibrosis.
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Supplementary Material

A: Fitting rabbit heart equibiaxial experimental data

Equibiaxial stress-strain measured data from Lin and Yin [1] was chosen as
shown in Figure A1, the sample size is 20×20×2 mm3 with 36o fibre rotation
according to [1]. Passive material parameters were estimated by formulating a
non-linear least square minimization problem, and the Matlab function fmin-
con (MatLab, MathWorks 2017) was used to minimize the loss function

L(β) =

N∑
n=1

[σsimulation
n (β)− σexperiment

n ]2, (1)

where β denotes the set of unknown parameters, N is the total number of data
points. The fitting procedure is similar as in [2]. The fitting result is shown in
Fig. A1.

Fig. A1: Inference of rabbit myocardial passive property from the equibiaxial
experimental data of Lin and Yin [1]. Red circles and blue squares are measured
data along the mean fibre direction and the cross fibre direction, respectively,
and the solid lines are the final fitted result.

B: The lumped circulation model

Lumped circulation models were attached to the rabbit heart model and the
human LV model, which were realized through a combination of surface-based
cavities in ABAQUS as in [3–5]. Fluid exchanges between two connected cav-
ities are driven by the pressure difference (∆p),

∆pA = CV ṁ+ CH ṁ|ṁ|, (2)

where CV is viscous resistance coefficient, CH is hydrodynamic resistance co-
efficient which is set to be zero in this study, A is the effective area between
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Table B1: Parameter values for the lumped circulatory model as shown in
Fig. 6 (d) and Fig. 10 (c). CV is the viscous resistance coefficient, and k is the
stiffness of the grounded spring.

Rabbit heart model Human heart model
Name Value Unit Name Value Unit

CAV
V 30.0 MPa · mm2 · s/tonne CAV

V 1.2 MPa · mm2 · s/tonne
CMV

V 20.0 −− CMV
V 1.2 −−

CPV
V 30.0 −− CPV

V −− −−
CTV

V 10.0 −− CTV
V −− −−

CSys
V 4500.0 −− CSys

V 92.0 −−
CPul

V 500.0 −− CPul
V −− −−

kAo 2.0 N/mm kAo 1.0 N/mm
kPA 0.8 −− kPA −− −−
kLA 0.01 −− kLA 0.1 −−
kRA 0.01 −− kRA −− −−

the two connected cavities, and ṁ is the mass flow rate, defined as

ṁ = ρ ˙̄V A, (3)

where ρ is the blood density, and ˙̄V is the fluid flux. This type of lumped
circulation model is equivalent to a simplified two-element Windkessel model
[6]. Parameters for the lumped circulation model of rabbit and human heart
are listed in Table B1. Note, values of this rabbit model are much higher than
that of the human model because of human valves areas are much bigger than
rabbit. For example, the aortic valve area for human is around 3.7 cm2 [7],
much larger than the rabbit aortic area, which is 0.23 cm2 [8].

C: An example of analytical solution in the eigen-space of C

In this section, the analytical solution of Cauchy fibre stress resulted from dis-
persed fibres under uni-axial stretch is presented using the angular integration
(AI) approach, by using the eigen-space of the right Cauchy-Green tensor C
based on Section 2.3. Considering a single element as shown in Fig. 5 (a), the
mean fibre direction is along e1([1, 0, 0]), the uniaxial stretch is also along
e1. We further assume the dispersed fibres is transversely isotropic. Thus un-
der uni-axial stretch λ along e1, the deformation gradient tensor and right
Cauchy-Green tensor are

F =

λ 0 0
0 1√

λ
0

0 0 1√
λ

⇒ C = FTF =

λ2 0 0
0 1

λ 0
0 0 1

λ

 . (4)

Therefore, the eigenvalues of C are λ1 = λ2, λ2 = 1/λ and λ3 = λ2, and the
corresponding eigen vectors are e1, e2, and e3. The stretched fibre domain can
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be determined as the scenario 4 in Section 2.3 (Eq. 23 in main text), that is

Ω =

{
φ ∈ [0, 2π ]

θ ∈
[
0, arcsin

√
λ2+λ
λ2+λ+1

] . (5)

The fibre direction within the eigen-vector space of C can be expressed as

M(θ, φ) = [cos θ sin θ cosφ sin θ sinφ]T , (6)

then

m = FM = [λ cos θ
1√
λ

sin θ cosφ
1√
λ

sin θ sinφ]T , (7)

and

m⊗m =

 λ2 cos2 θ
√
λ cos θ sin θ cosφ

√
λ cos θ sin θ sinφ√

λ cos θ sin θ cosφ 1
λ sin2 θ cos2 φ 1

λ sin2 θ cosφ sinφ√
λ cos θ sin θ sinφ 1

λ sin2 θ cosφ sinφ 1
λ sin2 θ sin2 φ

 (8)

For demonstration purpose, a simple strain energy function of fibre contri-
bution is assumed as

Ψf = af(I4f − 1)2, (9)

where af is material parameter. A simple transverse isotropic fibre distribution
is also assumed,

ρ(θ, φ) = ρ(θ)ρ(φ) = (C1 + C2θ)C0, (10)

in which C0, C1, C2 are constants. According to Eq. 15 (main text), the squared
fibre stretch is

I4f(θ, φ) = sin2 θ

(
1

λ
cos2 φ+

1

λ
sin2 φ

)
+λ2 cos2 θ =

1

λ
sin2 θ+λ2 cos2 θ. (11)

Finally, the total Cauchy fibre stress is

σf = 4af

∫
Ω

(C1 + C2θ)C0(
1

λ
sin2 θ + λ2 cos2 θ − 1)m⊗m sin θdθdφ, (12)
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and in components

σ11
f =

afC0πλ

450
{240

(
3λ3 − 5λ+ 2

)
C1 + 450

(
λ3 − 2λ+ 1

)
(C2 sin(ζ)− (C1 + C2ζ) cos(ζ))

+ 25
(
3λ3 − 4λ+ 1

)
(C2 sin(3ζ)− 3(C1 + C2ζ) cos(3ζ))

+ 9
(
λ3 − 1

)
(C2 sin(5ζ)− 5(C1 + C2ζ) cos(5ζ))},

σ22
f =

afC0π

900λ2
{480

(
λ3 − 5λ+ 4

)
C1 + 450

(
λ3 − 6λ+ 5

)
[C2 sin(ζ)− (C1 + C2ζ) cos(ζ)]

+ 25
(
λ3 + 4λ− 5

)
[C2 sin(3ζ)− 3(C1 + C2ζ) cos(3ζ)]

+ 9
(
λ3 − 1

)
[5(C1 + C2ζ) cos(5ζ)− C2 sin(5ζ)]},

σ33
f =

afC0π

900λ2
{480

(
λ3 − 5λ+ 4

)
C1 + 450

(
λ3 − 6λ+ 5

)
[C2 sin(ζ)− (C1 + C2ζ) cos(ζ)]

+ 25
(
λ3 + 4λ− 5

)
[C2 sin(3ζ)− 3(C1 + C2ζ) cos(3ζ)]

+ 9
(
λ3 − 1

)
[5(C1 + C2ζ) cos(5ζ)− C2 sin(5ζ)]},

σ12
f = 0, σ21

f = 0, σ13
f = 0, σ31

f = 0, σ23
f = 0, σ32

f = 0.

(13)

in which ζ = arcsin
√

λ2+λ
λ2+λ+1 . Therefore, an analytical expression of fibre

Cauchy stress can be obtained for simplified fibre distribution function.

D: Algorithm 3 (the hybrid approach)

In Algorithm 3, instead of evaluating Iq4M (Θ,Φ) in Algorithm 1 in the local
material coordinate system f0–s0–n0, we evaluated Iq4M (θ, φ) in the eigen-space
of C (Algorithm 2).
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Data:
F: deformation gradient tensor;
Result:
σf: Cauchy stress of collagen fibre.

Computation is in the f0 − s0 − n0 system
Divide the S into N spherical triangles
Calculate ρq =

∫
∆ Sq ρ(Θ, Φ) sin Θ dΘ dΦ with

∑N
q=1 ρq = 1

Initialization: σf = 0 J = det(F) C = FTF
eigen() is the function to compute eigenvectors and eigenvalues of a
tensor;
(v1,v2,v3, λ1, λ2, λ3)=eigen(C);
for q=1 to N : do

determine Θq and Φq;
(θq, φq) = (M(Θq),M(Φq));
Mq(θq, φq) = cos θq v1 + sin θq cosφq v2 + sin θq sinφq v3;
Iq4M = sin2 θq

(
λ22 cos2 φq + λ23 sin2 φq

)
+ λ21 cos2 θq;

if Iq4M > 1 then
mq = FMq;
σf = σf + 2J−1 ρq af (Iq4M − 1) exp[bf(I

q
4M − 1)2] (mq ⊗mq );

else
σf = σf + 0;

end

end

Algorithm 3: A hybrid approach by evaluating squared fibre stretch
I4M in the eigen-space of C within Algorithm 1.

E: DT MRI acquisition protocol

Diffusion-weighted images (DWI) of a fixed rabbit heart were acquired on
a 7T Bruker Pharmascan MRI system, with a micro-imaging gradient in-
sert (model BG-6) and 100-A gradient amplifiers that provide linear mag-
netic field gradient pulses of up to 300 mT/m. The heart was contained
in a 50 ml syringe (Terumo, Belgium) of inner diameter 29.1 mm. The wa-
ter was degassed with a slight vacuum and air bubble removed by agita-
tion. The sample syringe was placed in a 35 mm Bruker birdcage radio fre-
quency resonator. Using a spin-echo diffusion weighted sequence, the echo
time (TE) was 27 ms, the repetition time (TR) was 2000 ms, the diffusion
gradient separation was 14 ms, and the diffusion gradient duration was 7 ms.
Diffusion weigthed imaeges were acquired for 6 directions with a b-value of
500 s/mm2, additionally one b0 image (with no diffusion gradients) was ac-
quired. The field-of-view was fixed to 4.5×3.1×3.1 cm3, matrix 160×110×110,
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with voxel dimensions of 0.282×0.282×0.282 mm3. The total scanning time
acquiring one average, along six diffusion directions, took around 47 hours.
Using the DTI reconstruction software dtifit in FSL [9], freely available at
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, the 6 DWIs and the b0 images
were corrected for eddy currents, and then the metrics of the tensor, i.e. the
three eigenvalues, were computed. The radial diffusivity was then calculated
by averaging of the second and third eigenvalues.

F: Fitting to biaxial stretching data

We further fit the strain energy function (Eq.(1)) to the biaxial stretching
experimental data on human tissues reported by Sommer et al [10], as shown
in Fig. B1. The experimental is re-digitized from the Figure 9(b) in Sommer
et al’s study. It can be found that Eq.(1) agrees well with experimental data
both along the fibre direction and the cross-fibre direction.

Fig. B1: Fitting results to an equal-biaxial tension test in Sommer et al. [10]
using Eq.(1).
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