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In this research, we hypothesized that novel biomechanical parameters are dis-

criminative in patients following acute ST-segment elevation myocardial

infarction (STEMI). To identify these biomechanical biomarkers and bring

computational biomechanics ‘closer to the clinic’, we applied state-of-the-art

multiphysics cardiac modelling combined with advanced machine learning

and multivariate statistical inference to a clinical database of myocardial

infarction. We obtained data from 11 STEMI patients (ClinicalTrials.gov

NCT01717573) and 27 healthy volunteers, and developed personalized math-

ematical models for the left ventricle (LV) using an immersed boundary

method. Subject-specific constitutive parameters were achieved by matching

to clinical measurements. We have shown, for the first time, that compared

with healthy controls, patients with STEMI exhibited increased LV wall

active tension when normalized by systolic blood pressure, which suggests

an increased demand on the contractile reserve of remote functional myocar-

dium. The statistical analysis reveals that the required patient-specific

contractility, normalized active tension and the systolic myofilament kin-

ematics have the strongest explanatory power for identifying the myocardial

function changes post-MI. We further observed a strong correlation between

two biomarkers and the changes in LV ejection fraction at six months from

baseline (the required contractility (r ¼ 2 0.79, p , 0.01) and the systolic

myofilament kinematics (r ¼ 0.70, p ¼ 0.02)). The clinical and prognostic

significance of these biomechanical parameters merits further scrutinization.

1. Background
Acute myocardial infarction (MI) is a common cause of premature morbidity and

mortality. Although early survival post-ST segment elevation MI (STEMI) is

improving [1], the longer term risk of heart failure remains persistently high

[2]. The standard of care for assessing the initial severity of heart injury is left ven-

tricular (LV) systolic function, and in particular, LV ejection fraction (LVEF) [1].

Nonetheless, global measures of LV pump function are simplistic [3,4], as

compared to biomechanical parameters of pump function, such as myocardial

contractility and stiffness.

There is a growing recognition that a computational approach for ventricu-

lar biomechanics, when integrated with clinical imaging, can provide insights

into heart function and dysfunction [5,6]. For example, carefully designed

models have been used to inform various improvement therapies post-MI [7].

Cardiac dynamics are complex multi-physics problems that involve dynamic

blood flow, electrophysiology, nonlinear deformation and interactions among

them [8]. Substantial effort has been devoted to developing computational

models of the heart from simplified representations to more realistic image-

derived cardiac models [8–12]. Among the computational frameworks that have
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been developed, the hybrid finite difference–finite-element ver-

sion of the immersed boundary method (IB/FE) [13], one of the

recent extensions of the immersed boundary (IB) method, has

also been used by the authors’ group to simulate LV dynamics

with a hyperelastic representation of the fibre-reinforced

myocardium [12,14,15].

One of the challenges for modelling the heart is that the

myocardial constitutive parameters need to be determined

prior to the modelling. Various approaches have been devel-

oped to estimate those parameters by matching the available

clinical measurements (displacement, strain or pressure–

volume curve) [16–20]. For example, Genet et al. [21] developed

an image-based LV model by matching measured strain and

volume data to construct a reference stress map which may be

used in restoring LV stresses back to a normal level. Predict-

ing the systolic stress inside LV wall will further require the

incorporation of myocardial active contraction [8,9,22,23].

However, the biomechanics leading to LV adverse remo-

delling and heart failure remain incompletely understood

[24], and controversy exists [25]. Modelling of diseased hearts

has attracted a wide interest [12,26] in recent years. Using a

Fung-type constitutive law [23], Guccione and colleagues

found that the myofibre stress is increased in the infarct zone,

and the contractility in the border zone is reduced. They

suggested that the changed mechanical environment may

lead to adverse remodelling post-MI [7,16,26,27]. By develop-

ing a biomechanical porcine heart model, Chabiniok et al.
[28] estimated myocardial contractility from in vivo data at

three time points after acute-MI, and found that the contracti-

lity in the remote regions of MI increased 10 days after

acute-MI, followed by a further increase 38 days later. By simu-

lating LV dynamics using a patient-specific clinical data, Gao

et al. [12] reported that required myocardial contractility after

acute-MI was much higher compared with a control heart,

suggesting an increased use of the contractile reserve in the

myocardial remote zone for the patient. Asner et al. [29] esti-

mated peak contractility in a healthy volunteer and two

patients with dilated cardiomyopathy using personalized

mechanical LV models and, again paradoxically, the higher

peak contractility was observed in the patients. However, myo-

cardial contractility varied considerably for healthy and

diseased hearts when estimated using computational models.

The reasons for this variability are unclear but may relate to

inter-individual variations, sample size or technical factors.

Biomechanical parameters, such as myocardial contractility

and mechanical properties, are more directly linked with pump

performance than global measures of systolic function

(i.e. LVEF), and should have greater discriminative value for

heart function and prognosis. However, direct measurements

of these indices are very challenging, if not impossible

in vivo, which limits the use of higher fidelity measures of

pump function in clinic. Furthermore, it is not immediately

obvious which of the biomechanical parameters have more

clinical relevance or prognostic value [30]. The lack of a case-

controlled study of the myocardial mechanical modelling

between the healthy and diseased LVs makes it hard to identity

the links between biomechanical characteristics and MI pathol-

ogies. The aim of this work is to study how myocardial

contractility and pump function varies between healthy

subjects and patients with a recent MI. Our questions are:

(1) Does myocardial mechanically function differ in patients

versus controls?
(2) If so, what are the differences in the proposed biomecha-

nical parameters?

(3) Can these parameters be used to classify myocardial con-

tractile function and if so, which classification method

is better?

(4) What are the clinical implications of these parameters?

To address these questions, we firstly carried out an

extreme case–control study of LV biomechanical behaviours

using the IB/FE method in a patient group with acute

STEMI and a control group without history of cardiovascular

disease. Secondly, we applied various machine learning and

statistical classification methods to identify the potential bio-

markers which may reflect myocardial function difference,

and then evaluated their performance. Finally, we analysed

potential associations between the proposed biomechanical

biomarkers and the LV function recovery and remodelling

at six months within the patient group.
2. Material and methods
2.1. Study design
The study involves an ‘extreme case–control’ approach [31] in

order to enhance the statistical power of the analysis while

using a limited sample size. The specific clinical focus of this

work will be patients who have suffered a large, acute STEMI

that is associated with reperfusion injury (i.e. no-reflow), which

is a major, life-threatening cause of acute LV pump failure

post-MI [32,33]. No-reflow is defined as an acute reduction in

myocardial blood flow despite a patent epicardial coronary

artery, and is independently associated with adverse remodelling

and adverse outcome [34]. Twenty-seven healthy subjects and 11

patients with acute-MI were enrolled in this study. Cardiac mag-

netic resonance (CMR) scans were used to computationally infer

biomechanical parameters that would otherwise not be available

from in vivo measurements.

2.2. Mechanical left ventricle model
2.2.1. Imaging-derived left ventricle model
In-house developed Matlab (Mathworks, Inc., Natick, MA, USA)

code was used to extract the endocardial and epicardial surfaces

at early-diastole when the LV pressure is lowest [21]. Short-axis

slices from the LV base to apex and three long-axis slices were

chosen for manual segmentation, shown in figure 1a. Figure 1b
shows the reconstructed LV geometry. Details of the CMR scans

and LV geometry reconstruction are provided in the electronic

supplementary material.

In the MI group, CMR scans at 2 days after acute-MI were

chosen for model construction. Short- and long-axis late gadolinium

enhancement (LGE) images were combined with cine images to

define the infarct region, denoted as UMI shown in figure 1c–e.
To avoid abrupt change of material properties from UMI to

functional myocardium, a transition region adjacent to UMI was

defined within a distance of 10 mm of the infarct boundary, similar

to previous work [12]. The reminder of the LV wall was assumed to

be unaffected by the infarction, denoted as Uun, or the remote

region. A Lagrangian field M(X) was introduced to describe the

extent of the infarction throughout the whole LV geometry U as

M is 1 in the infarct region, 0 in the remote region and linearly

decreases from UMI towards Uun in the transition region (figure 1f ).

In-house developed b-spline deformable registration method

was used to estimate regional circumferential myocardial strain

from four short-axis slices from the basal plane to mid-ventricle;

each slice was divided into six regions according to the AHA

http://rsif.royalsocietypublishing.org/
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Figure 1. LV model constructions for one healthy control and one MI patient based on in vivo magnetic resonance imaging data. The healthy LV model: (a) LV wall
segmentation; (b) reconstructed LV geometry. The MI model (c) short-axis LGE imaging, the infarct region is enhanced with micro-vascular obstruction appearing
dark inside the enhanced region; (d ) long-axis LGE imaging; (e) LV wall segmentation; (f ) reconstructed LV geometry, coloured by MI extent (1: 100% MI, 0: healthy
myocardium). (Online version in colour.)
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17-segments definition [35]. LV volumes at end-diastole and end-

systole were calculated using corresponding cine images. For

each LV model, the measurements from one scan consisted of

24 regional circumferential strains and the LV cavity volume.

Because it is difficult to acquire myofibre architecture in vivo, a

rule-based myocardial fibre generation method [11] was used

to describe the fibre and sheet orientations of the myocardium.

Myofibre rotates from 2608 to 608 from endocardium to epicar-

dium, and the fibre along the sheet direction rotates from 2458
to 458. Because end-diastolic pressure in MI patients is usually

higher (10–25 mmHg) than healthy subjects (5–10 mmHg) [36],

a population-based end-diastolic blood pressure of 8 mmHg

was assumed for the healthy group, and 16 mmHg was assumed

for the MI group as in [12]. The LV systolic blood pressure (SBP)

was approximated by the cuff-measured systolic pressure taken

just before the CMR scans.
2.2.2. Myocardial mechanics
The IB/FE method [13,14] is employed to model the ventricular

dynamics at end-diastole and end-systole (details can be found in

the electronic supplementary material). The myocardial stress

tensor (s s) is modelled as the summation of the active (s a)

and passive (s p) stresses, i.e.

s s ¼ s p þ s a: ð2:1Þ

The myofibre stress is

sf ¼ f̂ � (s s f̂), ð2:2Þ

where f̂ is the normalized myofibre direction in the current

configuration. s p is the passive response described using an

invariant-based Holzapfel–Ogden Law [37],

W ¼ a
2b

e½bðI1�3�2 logðJÞÞ� þ
X
i¼f;s

ai

2bi
fe½biðIw

4i�1Þ2 � � 1g

þ afs

2bfs
fe½bfsðI8fsÞ2 � � 1g, ð2:3Þ

in which a, b, af, bf, as, bs, afs and bfs are eight unknown parameters,

I1 ¼ tr(C), I4f ¼ fT
0 Cf0 ¼ f � f, I4s ¼ sT

0 Cs0 ¼ s � s, I8fs ¼ fT
0 Cs0 ¼ f � s,

f0 and s0 are the initial fibre and sheet directions, and f and s are the

current fibre and sheet directions. C ¼ FTF is the right Cauchy–

Green deformation tensor, in which F is the deformation gradient.

We assume myofibre can only bear load when taut, thus

Iw
4i ¼max (I4i,1). From (2.3), we derive

s p ¼ 1

J
@W
@F

FT � bs

J
log (J2)� pIþm[ruþ (ru)T], ð2:4Þ
where bs ¼ 1.0 � 105 Pa is the bulk modulus, p is the Eulerian

pressure, m ¼ 4 cP is the viscosity, u is the Eulerian velocity

and J ¼ det (F). (bs/J )log(J2) is used to enforce the incompressi-

bility of the immersed solid in addition to the system-wide

incompressibility condition r � u ¼ 0 [14].

The active stress is computed as

s a ¼ Taf̂� f̂, ð2:5Þ

where Ta is the active tension computed from

Ta ¼ Treq C(lf , z), lf ¼
jFf0j
jf0j
¼

ffiffiffiffiffi
I4f

p
, ð2:6Þ

where Treq is the active tension generated by the myocardium

when lf ¼ 1, i.e. Treq is the minimum value required to meet

the pumping demand at the time of imaging. If the innate ability

of the myocyte to contract under the maximum activation is

denoted as Tmax, which may be measured through stress CMR,

then the difference between Tmax and Treq reflects the contractility

reserve of the myocardium. C(lf, z) is the effects of myofilament

kinetics described by Niederer et al. [38] as

Cðlf ,zÞ ¼
Ta

Treq
¼ ð1þ b0ðlf � 1ÞÞ

� z
zmax

1þ a
P3

i¼1 Qi

1�
P3

i¼1 Qi
if
P3

i¼1 Qi � 0,

1þ ð2þ aÞ
P3

i¼1 Qi

1þ
P3

i¼1 Qi
otherwise,

8>>>><
>>>>:

ð2:7Þ

where z is the available fraction of actin binding sites that is

dependent on the intracellular calcium transient, zmax is the maxi-

mum fraction of actin binding sites at a given lf, b0 is a constant

and a is a measure of the curvature of the force–velocity

relationship, Qi(i ¼ 1, 2, 3) are calculated from

dQi

dt
¼ Ai

dlf

dt
� aiQi, ð2:8Þ

where Ai and ai are constants. A simple model of intracellular

calcium dynamics [39] is used to trigger the myocardial con-

traction simultaneously. In our simulations, Treq is inversely

estimated to model the patient-specific systolic LV dynamics,

other parameters (b0, a, Ai, ai, etc.) involved in active tension

generation are adopted from Niederer et al. [38]. To evaluate sys-

tolic myofilament kinetics, we also assess the value of C(lf, z) at

end-systole, denoted by Cs.

The differences of the passive and active myocardial responses

in the remote, transition and the infarct regions are modelled

by changing the strain energy function and active stress [12,26].

http://rsif.royalsocietypublishing.org/
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Figure 2. Optimization of Treq in a healthy heart. (a) Finding optimal Treq by
minimizing objective function (equation (2.12)); (b) strain comparison
between CMR measurements and values from the LV model Treq. The differ-
ence in the strain between the measurements and the model prediction is
0.008+ 0.02. (Online version in colour.)
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Previous studies showed that tissue stiffness due to MI scar

increases by 50-fold compared with the remote myocardium

[12,27]. Given the similar biological process leading to a MI scar,

we assume that the MI scar of all patients is 50 times stiffer

WMI ¼ (1þ 49M) W , ð2:9Þ

where M [ [0, 1] takes 0 in the functional myocardium and 1 in the

MI region, with a linear transition between them. We further

assume the MI tissue does not contract, thus the active tension in

the MI heart is

sa ¼ (1�M)Ta f̂� f̂, ð2:10Þ

note that partial contractility within MI region is not conside-

red, but assuming the whole MI region is non-contractible. In

addition, we adopt the definition used in [21] to define normalized

Ta and sf,

Tnorm
a ¼ Ta

SBP
and snorm

f ¼ sf

SBP
: ð2:11Þ

2.2.3. Material parameter identification
Material parameters, including a, b, af, bf, as, bs, afs, bfs and Treq, are

determined so that the simulated LV dynamics are in good agree-

ment with corresponding CMR measurements. Specifically, the

passive myocardial parameters are inversely determined from

in vivo data (LV cavity volume and the regional circumferential

strain) using a multi-step optimization scheme [20]. The active

parameter Treq is determined by matching the measured LV end-

systolic volume and systolic circumferential strain (CS) of the

clinical measurements. All other parameters in the active tension

generation model are kept the same as in [12]. The strains are cal-

culated with the reference configuration set at end-diastole. For the

healthy subjects, we first inflate the LV model to the end-diastolic

pressure and estimate the passive parameters, then initiate the

systolic contraction to determine Treq. The objective function is

Objhealhty ¼
PN

i¼1 (1i � 1mearsured
i )2

N
þ V � Vmeasured

Vmeasured

� �2

, ð2:12Þ

where 1i, V are the ith regional circumferential strain and LV cavity

volume from the model, and 1mearsured
i , Vmeasured are correspond-

ing measured data. N is the total number of the control points.

Figure 2a shows the optimization of Treq in a healthy LV model,

and figure 2b is the strain comparison between the CMR measure-

ments and values from the model predications using the

optimized Treq, with good agreement.

For the MI subjects, we only determine the parameters in

the remote regions because the MI region is modelled as

non-contractile and 50 times stiffer. The passive parameters are

determined similarly as for the healthy models, but Treq in the

remote region is determined by minimizing the objective function

ObjMI ¼
PNun

i¼1 (1i � 1mearsured
i )2

Nun
, ð2:13Þ

in which Nun is the number of segmental remote regions. The aver-

age strain data from the unaffected region in the MI group is 13+3

out of 24 segments.

Further comparisons on LV cavity volume and strains with

in vivo CMR measurements are summarized in electronic

supplementary material, table S1.

2.3. Statistical classification methods
The general characteristics that define the difference between a

healthy heart and one that experienced an MI are well known.

However, it is less clear whether the functional myocardium

and its associated biomechanical factors are sufficient to classify

the myocardium from a healthy heart or heart after acute-MI.

Here we will apply seven different techniques from multivariate
statistics and machine learning to assess the potential of myocar-

dial classification given several biomechanical factors and to

identify the methods that yield the highest prediction accuracy.

Our portfolio of methods includes univariate logistic

regression, multivariate logistic regression with several pre-

dictors and the k-nearest neighbours classifier (KNN).

Furthermore, linear discriminant analysis (LDA) will be applied,

as well as sparse logistic regression with L1 regularization

(Lasso). We will evaluate two tree-based methods that exploit

the change of entropy in the data, as defined in electronic

supplementary material, eqn. (S13). This includes decision trees

trained with the C5.0 algorithm, and random forests based on

bagging with feature sub-selection. Finally, we will apply a

non-parametric Bayesian approach with Gaussian processes

and automatic relevance determination (GP-ARD). All these

methods are described in more detail in electronic supplementary

material, §S0.5.

Another important topic is the identification of relevant

factors that exhibit the greatest influence on the classification out-

come. In this study, we attempt to find those biomechanical

factors that possess the strongest explanatory power for the

differentiation of myocardial contractile function from a healthy

heart or a heart with acute-MI. Several of the previously men-

tioned methods provide a measure of factor importance,

including the Lasso, Decision-Trees, Random Forests and

GP-ARD. We will combine the importance measure of these

methods into a single-ranked relevance score to identify the bio-

mechanical factors with the highest explanatory power. The

results for both studies are presented in §§3.4 and 3.5.
2.3.1. Method evaluation
We assess the accuracy of correctly predicting myocardial

contractile function from either a healthy or MI heart in

http://rsif.royalsocietypublishing.org/


Table 1. Basic characteristics of healthy controls and MI patients. p-Value is from Student’s t-test. CS, systolic circumferential strain; GLS, global longitudinal
strain.

characteristics patients healthy controls p-value

age (year) 57.2+ 10 44.5+ 15.4 0.02

sex (male : female) 9 : 2 16 : 11

systolic blood pressure (mmHg) 118.6+ 16.4 144.6+ 31.2 0.01

diastolic blood pressure (mmHg) 73+ 14 83+ 15 0.09

LV EF (%) 43+ 6 57+ 5 �0

LV EDV (ml) 145.5+ 28 127+ 21 0.02

LV ESV (ml) 83+ 21 55+ 14 �0

GLS (%) 211.5+ 3.9 221.4+ 4.1 �0

CS (%) 20.16+ 0.01 20.18+ 0.02 0.005

infarct size (% LV volume) 39+ 6.0 —

microvascular obstruction (% LV mass) 10.6+ 5 —
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terms of the true positive (TP), true negative (TN), false positive

(FP) and false negative (FN) counts. Positive labels refer to MI

heart; negative labels refer to healthy heart. Hence, a true positive
is the correct identification of an MI heart, a true negative is the

correct identification of a healthy heart, a false positive is the mis-

classification of a healthy heart as an MI heart and a false negative
is the misclassification of an MI heart as a healthy heart. These

counts are obtained out of sample with leave-one-out-cross

validation (LOOCV). With LOOCV, a method predicts the

class for one observation i [ f1, . . ., ng at a time based on the

training set of the remaining (n 2 1) observations, where n is

the total number of observations in the labelled dataset. From

the TP, TN, FP and FN counts, we compute the sensitivity,1

specificity2 and the total misclassification error3 to assess

the classification accuracy of a method.
We plot, for all methods included in our study, the sensiti-

vity against the complementary specificity (i.e. 1 minus the

specificity). The results will be shown later in figure 10. The

convex hull of theses scores presents the receiver operating

characteristic (ROC) curve of the ensemble of classifiers we

have trained.4 By numerical integration, we obtain the area

under the ROC curve (AUROC) as an overall indication of

the classification performance. An AUROC value of 0.5 indi-

cates random expectation, whereas the maximum value of 1

gives perfect predictive accuracy.
For the non-parametric Bayesian approach, the regularization

parameters are optimized by maximizing the marginal likelihood

of the training data. For the non-Bayesian approaches, the regular-

ization parameters are obtained based on LOOCV. It is important

to note that the out-of-sample data used for evaluating the

classification performance must not be used for tuning regulariz-

ation parameters, to avoid an overoptimistic bias. We, therefore,

need two nested LOOCV schemes, one for regularization

parameter tuning, the other for method evaluation. This is

best illustrated with an example. Considering four data points

f1, 2, 3, 4g. For method evaluation, we use an outer LOOCV

scheme as follows: training on f1, 2, 3g, evaluating on f4g; training

on f1, 2, 4g, evaluating on f3g; training on f1, 3, 4g, evaluating

on f2g; training on f2, 3, 4g, evaluating on f1g. For each training

set, we use an inner LOOCV scheme for regularization parameter

tuning. So for the first fold, f1, 2, 3g, we have: training on f1, 2g,
regularization parameter tuning on f3g; training on f1, 3g, regular-

ization parameter tuning on f2g; and training on f2, 3g,
regularization parameter tuning on f1g.
3. Results
3.1. Characteristics of subjects
The CMR findings of the MI group and the healthy group are

summarized in table 1. Distributions of age, end-diastolic

volume (EDV), SBP, LVEF and CS are shown in figure 3.

3.2. Left ventricle mechanics
Figure 4 shows examples of the mechanical modelling of LV

dynamics in a healthy subject and a MI patient. Figure 4a,b is

the simulated LV geometries from the healthy control at end-

diastole and end-systole, superimposed on CMR cine images,

and figure 4c,d is from the MI model. Figure 4e,f is the distri-

butions of systolic active tension Ta and myofibre stress sf in

the healthy subject. Since there is no active contraction in the

MI region, the MI region is over-stretched to bear the systolic

pressure, as shown in figure 4k, in which the myofibre strain is

positive (in blue), and the remote myocardium region is shorten-

ing. The distribution of myofibre stress sf is more homogeneous

in the healthy heart compared with the MI heart. Similar pattern

is shown in myofibre strain in figure 4i,k. Figure 4j,l shows the

LV twist relative to the LV base, which linearly increases

towards the apex with a maximum apical rotation of around

148 in the healthy model, but only 48 in the MI model.

Table 2 summarizes the average passive parameters of all

the healthy and MI subjects. Figure 5 plots the average passive

stiffness along the myofibre direction, and shows that the pas-

sive myofibre stiffness in the remote regions of the MI patients

is much stiffer than the controls. This is a consequence of the

myocardium adaptivity to MI and simply modelled using a

higher end-diastolic pressure for the MI patients [36]. This

increase corresponds with a stiffer myocardium for a given

deformation [20].

The average Treq in the healthy group is 157+25 kPa, and

156+27 kPa in the MI group, as shown in figure 6a. No signifi-

cant difference is found in Treq for the two groups. Similar results

are found for Ta and systolic myofibre stress sf as shown in

figure 6b,c. However, the average Tnorm
a in the healthy group

is much lower than the MI group (0.45+0.06 kPa mmHg21—

healthy versus 0.55+0.07 kPa mmHg21—MI, p , 0.01).
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Similar trend is shown in snorm
f (0.35+0.05 kPa mmHg21—

health versus 0.47+0.09 kPa mmHg21— MI, p , 0.01). The

systolic myofilament kinetics Cs is 0.42+0.04 in healthy

group, which is slightly lower than 0.44+0.13, p ¼ 0.50 in

the MI group. Figure 7 shows the distributions of Tnorm
a ,

snorm
f and Cs. Interestingly, even with a wider range of SBP,

the standard deviations of Tnorm
a , snorm

f and Cs in the healthy

group are much smaller compared with the MI group.

From the biomechanical models, we choose Ta, Treq, Tnorm
a ,

sf and Cs as potential biomarkers for myocardial contractile

function, but not passive stiffness and diastolic stress because

of uncertainties in assumed end-diastolic pressure. A linear

correlation analysis is further carried out to decide which fea-

tures should be included in statistical feature classification and

summarized in the electronic supplementary material. The cri-

teria are that if two features are highly correlated in both the

healthy and the MI groups, and further related to other fea-

tures and CMR measurements in a similar way, then the

more reliable feature will be selected. For example, Ta and sf

are generally inter-related through the myocardial mechanical

model, see equation (2.1), as is also confirmed by the linear cor-

relation analysis. Furthermore, Ta and sf relate to other features

in a similar way, but part of sf is dependent on the passive

stress (equations (2.1) and (2.2)). Therefore, Ta is selected.
Although Cs is correlated to Ta in both groups, they relate to

CMR measurements in different ways; therefore, Cs is

included. Similarly, for Treq and Tnorm
a . We also include

EDV and SBP from CMR measurements because both are

inputs for modelling the LV contraction, but not EF, systolic

strain and end-systolic volume, which can be reproduced

from the LV models. In summary, the selected features for

classification of myocardial contractile function between the

healthy group and the STEMI group are: SBP, EDV, Ta,

Tnorm
a , Treq and Cs.

3.3. Datasets
Three datasets, based on the analysis in §3.2, are evaluated,

which differ in the selected biomechanical factors that serve

as predictors: the first dataset D1 includes the factors Treq,

Ta, SBP, EDV, Cs and Tnorm
a . The second set denoted with

D2 lacks the ratios. The third set D3 includes Ta, EDV, Cs

and Tnorm
a but not SBP and Treq, whose effects are included

in Tnorm
a and Cs, respectively.

3.4. Factor importance
In this section, we discuss the relevance or importance of the

various explanatory variables included in the three datasets.

http://rsif.royalsocietypublishing.org/
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Table 2. Average passive material parameters.

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

controls 0.18+ 0.1 2.6+ 0.8 3.34+ 0.94 2.73+ 1.06 0.69+ 0.26 1.11+ 0.40 0.31+ 0.18 2.58+ 0.71

MI subjects 0.09+ 0.04 4.05+ 1.6 6.8+ 3.25 5.53+ 1.84 1.5+ 0.66 1.93+ 0.78 0.16+ 0.07 4.22+ 1.7
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For Lasso, the importance measure of an explanatory variable

is given by the absolute value of the average regression

coefficient associated with that variable. For GP-ARD,

the importance measure is expressed as the inverted and

normalized length scale associated with the corresponding

explanatory variable. The larger the length scale, the larger

the change of the corresponding variable has to be to have

any effect on the output. For the extreme case of an infinite

length scale, any finite change in the corresponding explana-

tory variable has no effect on the output, and this variable

has therefore effectively been switched off. The Decision-

Tree provides (figure 8) the usage metric to quantify the

importance of an explanatory variable, showing the percen-

tage of times the respective explanatory variable has been

selected by the C5.0 algorithm to build the tree. For the

Random Forest, the importance measure is the mean decrease

in classification accuracy incurred when excluding an

explanatory variable from the training set.

For each of these methods, we rank the explanatory vari-

ables, and combine the results in an accumulative rank score,

which serves as an indicator for the overall factor relevance.
These accumulative scores are shown in figure 9, which

shows the cumulative ranks based on the importance from 0

to ( p 2 1), where ( p 2 1) is the highest rank. The height of

the bars in figure 9 provides a global indication of the associ-

ation of the respective input variables with the output, or to

paraphrase this: the higher the bar in figure 9, the greater is

the relevance of the corresponding factor for predicting the

classification outcome. It is seen that, overall, the two ratios

Cs and Tnorm
a have the strongest explanatory power in predict-

ing myocardial contractile function from healthy or MI hearts.5

However, our classification results, discussed below and suc-

cinctly summarized in figure 10, show that the best

performance is achieved when all the available factors are

included in the set of predictors. Hence, no individual

factor is completely irrelevant.
3.5. Classification performance
We have applied the classification methods mentioned in §2.3,

and described in more detail in electronic supplementary

material, §S0.5, to the three datasets described in §3.3. The

http://rsif.royalsocietypublishing.org/
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results are shown in table 4 and in figure 10. Table 4 shows the

sensitivity, specificity and overall misclassification error. The

overall method ranking is shown in the last row of table 4

and is based on the sum of misclassification errors over all data-

sets. Given these scores, KNN and GP-ARD are the preferred

methods. Figure 10 shows the sensitivity–specificity score

pairs obtained with the different statistical/machine learning

methods, for the three datasets described in §3.3. As described

in §2.3.1, the convex hull of these scores, indicated by a dashed

line, defines the ROC curve that connects the best methods.

Methods that lie below this ROC curve are suboptimal. It is

seen that none of the statistical/machine learning methods is

optimal for all three datasets. However, KNN and GP-ARD

are optimal for two datasets, and close to optimal for the

third. In agreement with table 4, they can thus be regarded

as the best methods overall. Note, in particular, that the uni-

variate methods either clearly fall below the convex hull, or

give the trivial score pair of both sensitivity and complemen-

tary specificity equal to zero (which is obtained when

patients are always classified as healthy). This finding confirms

the need for multivariate methods. As discussed in §2.3.1,

the ROC curve corresponds to a combination of the best-

performing methods, and the area under the ROC curve

(AUROC) is a measure of the overall classification perform-

ance. Our study indicates that the AUROC score depends on

the dataset and varies between 0.77 and 0.9. This is consider-

ably better than random expectation (0.5) and, in the latter

case, close to optimal prediction (1.0).

3.6. Associations between biomechanical factors at
baseline and left ventricle function atsix-month
follow-up

Section 3.4 shows that Tnorm
a and Cs are the strongest explana-

tory factors in predicting myocardial contractile function

between healthy subjects and MI patients, followed by Treq.

Therefore, in this section, the association between Tnorm
a , Cs,

Treq and LV pump function recovery at six months is further

analysed. Figure 12 shows the relationship between LV

pump function recovery at six months and Treq, Cs at baseline

in the MI group. It can be seen that a strong linear relationship

between Treq, Cs at baseline and LVEF changes at six months.

With a lower Treq, the MI patient could have a better LVEF

recovery after six months. Thus, we hypothesize that for
acute-MI patients with a similar calcium handling dynamics,

a lower Treq suggests a potential to further increase the contrac-

tile function, without going into de-compensated states,

compared with cases when the myocardial contractility

already reaches the maximum. Since the maximum myocardial

contractility is limited, less usage of the contractile reserve will

give the heart more resilience in the longer term. We also

observe that Cs is positively related to LV EF changes at six

months. Since Cs is associated with the myofilament kinetics,

this presumably suggests there are more binding sites available

at systole for generating the active tension. However, no corre-

lations are found between Ta, Tnorm
a , sf, s

norm
f and LV function

at six-month follow-up, which are summarized in table 3.
4. Discussion
4.1. The LV mechanical modelling
The major determinant of long-term survival after an acute-MI

is the efficiency of LV pump function. Despite decades of

research, the pathophysiology and disease mechanisms of the

failing heart remain incompletely understood, engendering a

knowledge gap for the development of new therapies. It is

believed that novel mathematical tools are required to solve

those fundamental patho-physiological questions. In this

study, we have modelled the LV dynamics at end-diastole

and end-systole in healthy controls and in patients with

recent STEMI. The computational contracting LV models are

based on in vivo CMR data. Using this approach, we inversely

determine the passive parameters and contractility for all the

LV models. We have shown for the first time that, compared

with healthy controls, patients with recent STEMI exhibit

increased active tension, i.e. increased contractility and

increased active tension, when normalized by SBP.

It is challenging to estimate myocardial passive stiffness

inversely, especially with limited measurements in vivo. Our

previous study [20] showed that although the eight constitutive

parameters from the Holzapfel–Ogden Law (equation (2.3))

cannot be uniquely estimated inversely, the mechanical

response along myofibre direction for a functional myocardium

can be robustly obtained. One of the main limitations in estimat-

ing the passive myocardial parameters in this study is the

assumed population-based end-diastolic pressure, and the MI

group has a higher end-diastolic pressure (16 mmHg) compared

to the healthy control groups (8 mmHg). The end-diastolic

pressure is one of the key input in the parameter estimation,

and a higher pressure is associated with a stiffer myocardium.

Without knowing the actual end-diastolic pressure for the MI

and healthy groups, the quantitative change in the myocardial

stiffness may be subject to some uncertainty. However, previous

studies [17] and our own experiments show that the passive

stiffness uncertainty arising from end-diastolic pressure has

few effects on the contractility (Treq) estimation because of the

matched EDV and the strain data.

The patient-dependent myocardial systolic contractility in

our simulations is controlled by the parameter (Treq), all other

parameters of the active tension generation are kept fixed. This

allows us to match measured LV dynamics in end-systole, and

avoid the complexity of determining many parameters in the

electromechanical models from different functional and struc-

tural scales. This approach has been widely applied when

mathematically simulating LV systolic dynamics [12,21,26,27].

The average required myocardial contractility for the control
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group is 157+25 kPa in our study, which is comparable with

the reported value by Genet et al. [21] from five normal

human subjects, the peak contractility reported by Arsner

et al. [29] in one healthy volunteer (139 kPa), and the average

contractility reported by Wang et al. [40] from six healthy

human subjects.

A transition region is defined in MI hearts to avoid abrupt

change of material properties from MI to functional myocar-

dium following our previous study [12]. We remark this does
not necessarily represent the MI border zone which can also

be modelled with partial contractility as in [41]. We did not

attempt to model the detailed border zone region effects in

this study as we could not extract the border zone and its via-

bility from the CMR images. Thus, we adopted a simplified

approach to only consider two regions in the MI hearts: the

functional myocardium and non-contractile MI region. Future

work to accurately define the border zone and the material

properties within and around the scar based on new imaging

http://rsif.royalsocietypublishing.org/
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protocols and detailed experimental tests is required. Indeed,

mathematical models have been developed which can map

the myocardial viability from LGE images that provide partial

contraction inside MI [42].
It has been found that myocardial mechanics are depen-

dent on the underlying fibre architecture [11]. However,

because of the difficulties of acquiring detailed subject-

specific fibre architecture in vivo, such fibre structures are

http://rsif.royalsocietypublishing.org/
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Table 3. Associations between global measures of LV systolic function early post-MI and surrogate outcomes of LV function at six-month follow-up. A p-value
�0.05 is taken as statistically significant (in bold).

change in LVEF after six months GLS after six months

baseline coefficient 95% CI p-value coefficient 95% CI p-value

LVEF (%) 20.26 [20.74, 0.41] 0.45 20.43 [20.82, 0.23] 0.19

GLS (%) 20.05 [20.63, 0.57] 0.90 0.73 [0.22, 0.92] 0.01

CS (%) 0.43 [20.23, 0.82 ] 0.19 0.12 [20.52, 0.67] 0.73

Treq (kPa) 20.79 [20.94, 20.37] 0.003 0.27 [20.40, 0.75] 0.43

Ta (kPa) 0.33 [20.33, 0.78] 0.31 20.13 [20.68, 0.51] 0.70

sf (kPa) 0.46 [20.19, 0.83] 0.15 20.14 [20.68, 0.50] 0.68

Tnorm
a (kPa mmHg21) 0.24 [20.42, 0.73 ] 0.48 20.08 [20.65, 0.55] 0.82

snorm
f (kPa mmHg21) 0.48 [20.17, 0.84] 0.13 20.13 [20.68, 0.51] 0.70

Cs 0.70 [0.16, 0.91] 0.02 20.26 [20.74, 0.41] 0.45
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usually not included in computational LV models. Instead,

most models, this study included, employ rule-based fibres

[7,26,42]. To assess the sensitivity of the results due to small

changes of fibre architecture, we further increased the myofi-

bre angle by 10% in a healthy heart, that was, 2668 to 668,
compared with the original myofibre rotation from 2608 to

608. We found that Treq was decreased by 6%, and Ta was

slightly reduced by (� 1.8%).
We are aware that our current mechanical model is still

necessarily simplified, in particular, with one chamber and

the LV dynamics are simulated at two time points only (end-

diastole and end-systole). Moreover, a simplified intracellular

transient is used to trigger active contraction simultaneously,

due to lack of parametrization in cellular level, Cs may only

represent an ‘apparent’ myofilament kinetics under same

intracellular calcium dynamics.
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Table 4. Overview of misclassification error rate and sensitivity/specificity measures for different methods and datasets. A low error, and high sensitivity/
specificity indicate better prediction accuracy. The corresponding ROC plot is shown in figure 10. For the univariate logistic regression (Univariate LR), only the
prediction with the lowest error is shown. The best scores for each dataset are shown in bold. The last row indicates the method ranks based on the sum of
errors from each dataset. The lowest ranks correspond to methods with the highest classification accuracy.

Lasso Univariate LR Multivariate LR KNN LDA Decision-Tree Random-Forest GP-ARD

D1 error 0.11 0.24 0.079 0.11 0.11 0.18 0.21 0.13

specificity 0.96 0.85 0.96 1 0.96 0.93 0.96 0.93

sensitivity 0.73 0.55 0.82 0.64 0.73 0.55 0.36 0.73

D2 error 0.24 0.26 0.21 0.11 0.26 0.18 0.29 0.11

specificity 0.89 0.89 0.89 1 0.89 0.96 0.85 0.96

sensitivity 0.45 0.36 0.55 0.64 0.36 0.45 0.36 0.73

D3 error 0.21 0.24 0.21 0.18 0.21 0.21 0.18 0.18

specificity 0.93 0.85 0.89 0.89 0.93 0.93 0.93 0.89

sensitivity 0.45 0.55 0.55 0.64 0.45 0.45 0.55 0.64

rank

(error sum)

4

(0.56)

8

(0.74)

3

(0.49)

1

(0.4)

6

(0.58)

5

(0.57)

7

(0.68)

2

(0.42)
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However, this is a starting point towards clinical trans-

lation in terms of real time prediction, and our combined

mechanical, statistical and MRI study already show promis-

ing value in evaluating myocardial functions between the

healthy subjects and MI patients.
4.2. Statistical classification
Our ultimate aim is to build a classifier (case versus control)

based on in vivo imaging data described in the electronic

supplementary material. However, working directly on the

images, e.g. representing them as grey-level pixel vectors

and building a classifier in this high-dimensional space, leads

to the well-known curse-of-dimensionality problem [43].

Standard approaches, therefore, carryout a dimension reduction

first. In the simplest case, this can be done with principal com-

ponent analysis. More advanced methods aim to improve
dimension reduction by identifying low dimensional submani-

folds of the high-dimensional configuration space that contain

the relevant information related to the classification problem

at hand. Our present research can be seen as an extension of

previous work whereby the low-dimensional configuration

space is directly spanned by the parameters of an explicit

biomechanical model. This is model-based rather than purely

data-driven dimension reduction, with the advantage that

for a reliable and accurate model, the reduced configuration

space is a priori highly likely to contain physiologically

relevant information.

We have worked in the biomechanical parameter space

with a variety of methodological tools. We have started with

a simple univariate analysis, followed by a multivariate

approach, where we have used the latter to evaluate the relative

explanatory relevance of the various biomechanical parameters

with respect to the classification task and to compare the

http://rsif.royalsocietypublishing.org/
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performance improvement obtained with several multivariate

classification methods over the univariate approach.

In the univariate approach, by simply comparing the

different biomechanical parameters, several parameters are

identified for classifying myocardial contractile function from

either a healthy heart or a MI heart, including SBP, EDV,

Tnorm
a , Treq, Cs and Ta. However, the simplified comparison,

such as using the S student t-test, has its limitations, as

shown in figure 7. Only Tnorm
a is found to be significantly differ-

ent between the control group and the MI group. In the second

part of the study, we have shown that multivariate statistical

methods provide more powerful tools for classifying the

difference in myocardial contractile function after acute-MI.

In the second part, we have used several machine learning

and computational statistical methods to identify the biomecha-

nical factors that possess the strongest explanatory power for

predicting the changes in myocardial contractile function after

acute MI. Our study has revealed that Cs and Tnorm
a are the

most relevant factors for this classification task, but that no

individual factor is completely irrelevant. For details, see §3.4.

In the next evaluation step, we have predicted myocardial

contractile function between healthy and MI hearts based on

the previously mentioned biomechanical factors with eight

different methods. Figure 10 and table 4 summarize the predic-

tion performance and the overall best possible performance

given all methods. The univariate approach (Univariate LR)

shows the poorest performance, as discussed in §3.5. Among

the multivariate approaches, KNN and GP-ARD show the

best performance (see §3.5 for more details). GP-ARD allows

us to visualize the posterior probability of MI heart as a func-

tion of the two most important factors; this is shown in

figure 11. The plots in this figure illustrate three things. Firstly,

it requires more than one factor or variable to separate the data

into the two classes. This confirms that a univariate approach is

too restrictive, and that a multivariate approach is needed.

Secondly, the separation boundaries are nonlinear. This

explains why the nonlinear methods, KNN and GP-ARD,

show in general a better performance than their linear
counterparts. Thirdly, the folding of the decision boundary is

very narrow. This explains why the best performance with

KNN is achieved with low values of k.

The overall predictive accuracy given all methods can be

summarized with the AUROC score, which is displayed in

figure 10 for each dataset. As it was previously mentioned,

the overall accuracy improves from 0.86 to 0.9 when Cs and

Tnorm
a are added to the single factors present in dataset D2.

This AUROC value is considerably larger than random

expectation (0.5) and quite close to perfect prediction (1.0).

To rule out that Cs and Tnorm
a are for themselves sufficient

predictors for the two heart conditions, we excluded Treq

and SBP and found a significant drop in the AUROC value

to 0.77. This implies a synergy, i.e. interaction effect, of the

involved factors. Hence all the available factors present in

D1 are important myocardial contractile function indicators

that should be used in conjunction to differentiate myocardial

contractile function between healthy and MI hearts.

4.3. Clinical implication
The estimated overall myocardial contractility Treq, Tnorm

a and

Cs, as suggested in the classification part, might potentially be

biomarkers for risk stratification of MI patients. However,

since our study has a limited sample size with selected

patients, it is not immediately obvious which, if any, of the bio-

mechanical parameters might have clinical prognostic value,

and further research is warranted. The linear correlation analy-

sis (figure 12) might suggest that Treq and Cs could be

potentially used to identify MI patients who may have better

recovery by using inotropic treatment if Treq is in a normal

range or by reducing Treq if it is high.

Future prospective studies should investigate the mechan-

ism of how Treq, Cs and Tnorm
a link with myocardial contractile

function through different pathways. The effects of novel thera-

pies on these biomechanical parameters should also be

assessed. Finally, future studies should evaluate whether

these to determine the incremental prognostic value of Treq,

Cs and Tnorm
a to identify individual patients at high risk of

heart failure post-MI, over and above standard prognostic mar-

kers such as natriuretic peptides. The strategy to achieve such

improvements could involve identification of high-risk patient

subsets, identification of subsets of patients with viable myo-

cardium who might be expected to respond to therapy, and

implementation of more intensive therapy. Future heart failure

management and therapies may be targeted to restore the over-

all LV contractile reserve according to the level of myocardial

contractility and its reserve, such as either downregulating of

adrenergic signalling to reduce contractility or using inotropic

treatments to enhance it.
5. Conclusion
Using combined personalized computational cardiac biome-

chanical modelling and statistics analysis, we have studied

systolic LV dynamics for one patient group consisting of 11

acute STEMI patients with no-reflow and a group of healthy

control subjects, based on CMR imaging. The passive response

and active contractile properties of myocardium are determined

by matching the simulated LV dynamics (volume and circum-

ferential segmental strains) to the CMR measurements. We

find that, compared with healthy controls, patients with

STEMI exhibit increased LV wall active tension when

http://rsif.royalsocietypublishing.org/
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normalized by SBP. This suggests that the functional myocar-

dium in the patients are overcompensating in order to

preserve the stroke volume. Different machine learning and

multivariate statistical analysis methods are applied to identify

the biomechanical factors that possess the explanatory power in

terms of the changed myocardial contractile function after

STEMI. The individual required contractility (Treq), normalized

active tension Tnorm
a and the systolic myofilament kinetics Cs are

found to have the strongest explanatory power, and the statisti-

cal method KNN has shown the best performance for the

classification of myocardial contractile function, followed by

GP-ARD. We further observe strong correlations between the

biomarkers (Treq, Cs) and the changed LVEF at six months

from baseline (r ¼ 2 0.79, p , 0.01, r ¼ 0.70, p ¼ 0.02). We con-

clude that the patient-specific contractility Treq, the normalized

active tension Tnorm
a , and the myofilament kinetics Cs all have

potential clinical values for prognostication on LV contractile

status post-MI, their significance merits further study in larger

and unselected patient cohorts.
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Endnotes
1The sensitivity, also called the true positive rate (TPR) or recall, is the
proportion of correctly identified MI hearts, and is defined as TP/
(TP þ FN).
2The specificity, also called the true negative rate (TNR) or 1 minus
false positive rate, is the proportion of correctly classified healthy
hearts, defined as TN/(TN þ FP).
3The total misclassification error is defined as (FNþ FP)/n¼ (FNþ FP)/
(TPþ FPþ TNþ FN).
4Consider two classifiers, with true positive rates TRP1 and TRP2, and
with true negative rates TNR1 and TNR2. Now define a family of new
classifiers as follows: with probability l [ [0, 1], they use classifier 1,
and with probability (1 2 l), they uses classifier 2. The expected
true positive and true negative rates of these classifiers are lTRP1 þ
(1 2 l)TRP2 and lTNR1 þ (1 2 l)TNR2, respectively; hence, they lie
on a straight line connecting the scores of the two original classifiers,
(TRP1, TRN1) and (TRP2, TRN2). From the TRP and TNR scores of the
ensemble of classifiers, we can thus obtain the convex hull by linear
interpolation between the most extreme (TRP, TNR) pairs. This is the
ROC curve representing the optimal classifier combinations (figure 10).
5This can be seen from figure 11a. The figure shows the classification
boundaries between MI patients and healthy controls in the two-
dimensional space spanned by two parameters: Cs and Treq. The
two patient groups can be clearly separated by the nonlinear decision
boundaries. However, a successful classification requires informa-
tion about both values of Cs and Treq together. The values for Cs are
distributed across the whole parameter range for both classes; so know-
ing Cs alone, without Treq, will not allow successful classification of
myocardial contractile function as MI versus control.
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