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On the initial configurations of collapsible channel flow

Xiaoyu Luo *, Ben Calderhead, Haofei Liu, Wenguang Li

Department of Mathematics, University of Glasgow, Glasgow Q12 8QW, UK

Received 1 June 2006; accepted 21 November 2006
Available online 17 January 2007

Abstract

This paper studies the effect of the initial configurations of the governing equations on flows in a collapsible channel where the upper
elastic wall is replaced by a pre-stretched beam. The aim is to check the existence of a ‘‘tongue’’ shaped neutral stability curve in the
Reynolds number–tension space from a fluid-beam model [Luo XY, Cai ZX. Effects of wall stiffness on the linear stability of flow in
an elastic channel. In: de Langre E, Axisa F, editors. Proceedings of the eighth international conference on flow-induced vibrations,
FIV2004, vol. II. Paris, France: 2004. p. 167–70], in a properly formulated initial strain configuration. It was found that, for a given
Reynolds number, as the tension is lowered to a critical value, the system becomes unstable, which is to be expected. However, a further
decrease of the tension re-stabilizes the system before it becomes unstable again. It was possible that this puzzling finding was an artefact
since the elastic equations used in the model were not properly derived from the zero initial stress configuration (Ogden, private com-
munication). To check this, in this paper, a range of steady solutions are studied with both zero and non-zero initial wall tension. These
are compared with the results using the finite element package Adina 8.3 using both the initial strain and initial stress configurations. As
expected, the fluid-beam model agrees with Adina when using the initial stress configuration, but not when using the initial strain con-
figuration. For cases with a small initial tension or small deformation (very large initial tension), both initial stress and initial strain con-
figurations lead to very similar results, however, when the initial tension is comparable with the stretching induced tension, there are
obvious differences in these two configurations. The ‘‘tongue’’ stability curve is then re-calculated with a zero initial tension, and re-plot-
ted in the Reynolds number–effective tension space. It is interesting to see that though slightly different in shape, the ‘‘tongue’’ stable zone
appears again when the zero initial tension is used. Thus it is highly likely that the puzzling ‘‘tongue’’ in the neutral stability curve is not
due to the modelling approximation, but indicating a real, interesting physical phenomenon.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow in collapsible tubes has been extensively studied in
the last few decades, not only for its relevance to physiolog-
ical applications, but also for the interesting fluid–structure
interactions that occur in the system [2–12]. Self-excited
oscillations in such a system are frequently observed in
the laboratory in a ‘‘Starling resistor’’ [13,14]. Similar oscil-
lations have also been reproduced using one-dimensional
[15,16], or two-dimensional models [17–20]. Due to exten-

sive computational requirements, to date except for steady
or simplified simulations [21–23], there have been almost
no reports on self-excited oscillations in truly three-dimen-
sional models, which would be desirable to make full quan-
titative comparisons with experiments. However, it is
believed that simple 1-D and 2-D models, though some
based on rather crude approximations, can serve to shed
light on many important features of the dynamics of the
system.

The fluid-membrane model employed by Luo and Ped-
ley [17–19], like other similar two-dimensional models of
this type, suffers from several ad hoc approximations: the
membrane was inextensible, the bending wall stiffness was
ignored, and the elastic wall was assumed to move either
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in the vertical or in the normal direction. Although these
may be adequate for steady flow simulations, their influ-
ence on unsteady flows, especially on the self-excited
oscillations, needs to be carefully evaluated. Recently, a
fluid-beam model in which the membrane is replaced by
a plane strained elastic beam with large deflection has been
put forward by Cai and Luo [24]. In this model the two-
dimensional solid mechanics of the wall is taken into
account, thus avoiding the above ad hoc assumptions. An
ALE (Arbitrary Lagrangian Eulerian) solver combined
with a method of rotating spines was used to solve the
two-dimensional Navier–Stokes equations fully coupled
with the two-dimensional non-linear large displacement
structural equations [24]. Extending this model to study
unsteady motions, Luo and Cai [1] discovered that the sys-
tem gives rise to various different types of self-excited oscil-
lations. It is found that the small amplitude oscillations are
in excellent agreement with those predicted by solving the
linearized Orr-Sommerfield equations of the system per-
turbed around the numerically simulated large deformation
steady solutions. Most interestingly, they found an intrigu-
ing ‘‘tongue’’ shaped neutral stability curve in the Reynolds
number-tension space, see Fig. 1.

This curve shows that, for a given Re, the beam is stable
for a large value of the longitudinal initial tension, and
unstable when the tension is below a certain level. How-
ever, inside the unstable zone when tension is lower than
a critical value, there exists a tongue shaped zone when
the system becomes stable again. As it seems bizarre that
reducing the tension may re-stabilize the system, it is natu-
ral to ask if this is really physical or due to a flaw in the
model. In fact, it is possible that this puzzling finding was
an artifact, because the elastic equations used in the model

were not properly derived from the zero initial stress con-
figuration (we are grateful to Professor R.W. Ogden for
pointing this out). The concept of the eigensolution of
the system is essentially based on the energy arguments
(the total energy must be minimum), which is only valid
for solid equations derived from a zero initial stress config-
uration [25]. However in the fluid-beam model (as is com-
monly done by many other two-dimensional models), the
initial stress approach is used [1,24]. In other words, does
the ‘‘tongue’’ exist if the initial stress is free? This paper
aims to answer this question and investigate the effects of
the initial configurations on the steady solutions and on
the neutral curve.

2. The initial strain and initial stress configurations

The model consists of a steady flow in a channel in
which a part of the upper wall is replaced by an elastic
beam, see Fig. 2. The rigid channel has width D, a part
of the upper wall with length L is replaced by a pre-stressed
elastic beam subjected to an external pressure pe. Lu and Ld

are the lengths of the upstream and downstream rigid part
of the channel. Steady Poiseuille’s flow with average veloc-
ity U0 is assumed at the entrance. The flow is incompress-
ible and laminar, the fluid having density q and viscosity l.
The extensional and bending stiffness of the beam are EA
and EJ, respectively, where E is the Young’s modulus,1 A

is the thickness of the beam, and J is the bending moment.
The pre-tension in the beam (caused by an initial stretch of
the beam) is T and the density of the beam is qm. Damping
and rotational inertia of the beam are both neglected.

If the initial length of the elastic wall is l0, see Fig. 3, and
the length between the two rigid walls is l, then for zero ini-
tial stress, l0 = l. The principal stretch is then defined as
k = ds/dZ. However, if there is an initial stretch, then
l0 < l, and

k ¼ ds
dZ0

¼ ds
dZ

dZ
dZ0

¼ kxk0; ð1Þ

where kx = ds/dZ is the stretch defined with l. It is impor-
tant to realize that unless k0 = 1 (i.e. Z0 = Z), k 5 k0 5 kx.
If the principal stretch is defined with the initial length l0, as
in (1), this is known as the initial strain formulation. The
other typical method used in solid mechanics is so called
the initial stress formulation. In this formulation the prin-
cipal stretch is defined with the deformed length l, i.e., kx,
rather than k, is used. However to account for the effect
of the initial deformation, an initial stress r0 (=T/A) is
added to the stress in the governing equations. Note, the
initial strain formulation is defined with the initial zero
stress configuration. The stretching energy for this case
can be written as

Re

T
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Fig. 1. The neutral stability curve in Re–T space predicted by [1] for
cl = 600, and pe = 1.95 (see text for parameter definitions). Note there is a
stability ‘‘tongue’’ sandwiched by the otherwise unstable regions.

1 As, we consider a plane strain problem here, E here is equivalent to the
conventional Young’s modulus divided by (1 � m2), where m is the
Poisson’s ratio.
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2
ckðk� 1Þ2 ¼ 1

2
ckðk0kx � 1Þ2: ð2Þ

On the other hand, the initial stress configuration is only
an approximation of the original problem and its stretching
energy is 1

2
ckðkx � 1Þ2, which is not the same as (2) unless

k0 = 1. However, this formulation is commonly used in
many previous models [8,9,17–19]. In addition, it is often
assumed that the tension is constant along the elastic wall,
i.e., the additional tension induced by deformation and
fluid stresses is negligible, thus k = k0 = constant. Some
models also assumed that the wall moves only in the y-
direction [26,27]. These are all valid approximations pro-
vided the wall deformation is small. However, for large
deformation, non-linear, problems, if the stability analysis
is carried out on an eigenproblem which is based on energy
argument, it is important that the strain energy is calcu-
lated using the principal stretch defined by Eq. (1) [25], in
other words, the initial strain formulation should be
employed.

The strategy of the study is as follows. First, the results
from the fluid-beam model will be compared with that of
the commercial finite element package Adina 8.2, for the
same model problem, using both the initial stress and initial
strain configurations. The differences between these results
will be discussed. Then the neutral curve for the problem
with a zero initial tension will be computed, as this implies
that k = kx (k0 = 1). This new neutral curve will then be
compared with the old curve, in order to identify the exis-
tence of the ‘‘tongue’’.

3. Governing equations

3.1. The governing equations for the fluid-beam model

For convenience, the flow velocity components ui, fluid
stresses ri, pressure p, time t, the Cartesian coordinates x,
y (originated at the left bottom of the channel), and length
l are non-dimensionlized as follows:

u�i ¼
ui

U 0

; r�i ¼
ri

qU 2
0

; p� ¼ p

qU 2
0

; t� ¼ tU 0

D
;

l� ¼ l
D
; x� ¼ x

D
; y� ¼ y

D
; ði ¼ 1; 2Þ; ð3Þ

where the non-dimensional parameters, such as the initial
tension T, the curvature j, the density of the beam qm,
the wall stiffness EA, EJ, and the Reynolds number are
similarly scaled as

T � ¼ T

qU 2
0D
; j� ¼ jD; q�m ¼

hqm

qD
; ck ¼

EA

qU 2
0D
;

cj ¼
EJ

qU 2
0D3

; Re ¼ U 0Dq
l

: ð4Þ

The variables with a star are the non-dimensional ones,
which will be used throughout this paper. In the following,
however, the stars are dropped for simplicity.

Note ck and ck are not independent to each other, and
they are related by

cj ¼ ck
A2

12D2
: ð5Þ

We define the principal stretch k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
and wall

curvature j ¼ x0y00�y0x00

k3 , where x = x(l, t), y = y(l, t), l is the
x coordinate in the undeformed configuration, and the
prime denotes differentiation with respect to l. Using the
Kirchhoff constitutive laws for the elastic beam, and drop-
ping the stars for convenience, we write the dimensionless
governing equations for the beam (for derivation of these,
see [24]):

Lu L                                                       Ld

D

A B C

Pe

Pd

U0 θ

Fig. 2. The flow-beam configuration (not to scale). Part B has part of the wall being replaced by an elastic beam.

l0

l Z

Z0

rigid wall

rigid wall
rigid wall

elastic wall

ds

x

y

o

Fig. 3. Definition of the initial configurations.
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qm

k
x0

d2x
dt2
þ y0

d2y
dt2

� �
¼ cjjj0 þ ckk

0 þ ksn ¼ 0; ð6Þ

qm

k
y0

d2x
dt2
� x0

d2y
dt2

� �

¼ cj
1

k
j0

� �0
� kjT � ckkjðk� 1Þ � krn þ kpe ¼ 0; ð7Þ

x0 ¼ k cos h; y 0 ¼ k sin h; h0 ¼ kj: ð8Þ
And the fluid flow obeys the Navier–Stokes equations:

oui

ot
þ ujui;j ¼ �p;i þ

1

Re
ui;jj; ð9Þ

ui;i ¼ 0; i; j ¼ 1; 2; ð10Þ
where h is the rotating angle of the beam in the horizontal
position, rn and sn are the normal and shear stresses of
fluid on the beam which can be expressed as

rn ¼ p � 2

Re
oun

on
; sn ¼ �

1

Re
ous

on
þ oun

os

� �
; ð11Þ

where s and n indicate the tangential and the normal direc-
tion of the beam. Note that as both cj and ck! 0, we
recover the fluid-membrane model [8].

Boundary conditions for the flow field are chosen such
that steady parabolic velocity profile is used for the
upstream inlet, the stress free condition is used for the
downstream outlet, and the no-slip condition is used along
the walls including the elastic section. Clamped conditions
are used for the two ends of the beam.

It is important to note that on deriving (6) and (7), the
initial stress configuration is used, i.e., all deformations
are defined with the length L in Fig. 3, thus k = kx, and
the initial stress is r0 = T/A.

3.2. The Adina models

To compare our results with Adina (version 8.2), we
rebuild the fluid-beam configuration (Fig. 2) using Adina’s
fluid structure interaction solver [28]. The governing equa-
tions for the fluid are the same as Eqs. (9) and (10). For the
structure, we solve a plane strain problem (as in the fluid-
beam formulation); only a slice of structure with unit thick-
ness is considered, and all strain components in z-direction
are zero. Thus the governing equation is derived from the
principle of virtual work:Z

V
sijdeijdV ¼

Z
S

f sdusdS i; j ¼ 1; 2; ð12Þ

where sij is the Cauchy stress tensor, eij is the strain tensor
corresponding to virtual displacements, and V is the vol-
ume, S is the surface on which external traction (pressure)
fs is applied, and dus are the components of virtual dis-
placement vector evaluated on the surface S. When there
is an initial tension, this can be specified with the initial
strain approach, i.e., an initial strain, e11, in the x-direction
is added to the strain tensor eij, which is defined with the
initial resting length of the beam, l0. Alternatively, this
can be specified with the initial stress approach, i.e., the ini-

tial stress r11 ¼ T
A is added to the stress tensor rij, and eij is

now defined with the length l [28].
For the two-dimensional beam, (12) is evaluated with a

unit length in z-direction, and can be written as [30]

EJ
Z

db
dx

ddb
dx

dxþ GSk
Z

dw
dx
� b

� �
ddw
dx
� db

� �
dx

¼
Z

f dwdxþ
Z

mdbdx; ð13Þ

where f and m are the transverse and moment loadings per
unit length, EJ is the wall stiffness, w and b are the displace-
ment and total rotation of the mid-plane which is assumed
to remain a plane after deformation. G is the shear modu-
lus, S is the cross-sectional area, and k is a shear constant
which is 5/6 for a rectangular cross-section [29]. Note the
second term in (13) represents the shear effect [29], which
is considered to be small for a thin beam and is ignored
in our formulation [24]. Note if the initial stress approach
is used, the final equations Adina solves is almost identical
(except the shear effect) to the fluid-beam model, thus the
results from these two models should be the more or less
the same. However, if the initial strain configuration is
used, then these two formulations are different unless the
initial strain is zero (i.e. k0 = 1). Results from both initial
configurations will be computed and compared with those
from the fluid-beam model.

4. Numerical methods

4.1. Numerical methods for the fluid-beam model

A finite element code for unsteady flow is developed to
solve the coupled non-linear fluid–structure interactive
equations simultaneously, and an adaptive mesh with
rotating spines is used to allow for a movable boundary.
The mesh is divided into three subdomains, one of which
is placed with many spines originating from the bottom
rigid wall to the movable beam [24]. These spines are
straight lines, which can rotate around the fixed nodes at
the bottom. Thus all the nodes on the spines can be
stretched or compressed depending on the beam deforma-
tion. A numerical code is developed to solve the fluid and
the beam equations simultaneously using weighted residual
methods.

A Petrov–Galerkin method is used to discretise the sys-
tem Eqs. (6)–(10). The element type for flow is 6-node tri-
angular with second order shape function Ni for u and v,
and linear shape function Li for p. Three-node beam ele-
ments with second order shape function are used for x, y,
h, k and j. The discretised finite element equations can
be written in a matrix form as

MðUÞ dU
dt
þ KðUÞU � F ¼ R ¼ 0; ð14Þ

where U = (uj,vj,pj,xj,yj,hj,kj,jj) is the global vector of un-
knowns, and j = 1, . . .n, is the nodal number. R is the over-
all residual vector denoted by

980 X. Luo et al. / Computers and Structures 85 (2007) 977–987
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R ¼ ðRx;Ry;Rc;Rex;Rey ;Rek;RejÞ; ð15Þ

where the subscripts x, y, c indicate the corresponding
residuals of the x and y-momentum and continuity in fluid,
and ex,ey,eh,ek,ej indicate the corresponding residuals of
Eqs. (6)–(10).

An implicit finite difference second order predictor-cor-
rect scheme with a variable time step is used to solve the
time dependent problem. At each time step, the frontal
method and a Newton–Raphson scheme are employed to
obtain the converged solution for the whole system
simultaneously.

4.2. Numerical accuracy for the fluid-beam model

Validations for the fluid-beam model have been per-
formed extensively where a grid size ratio was given based
on the boundary thickness [24]. In this study, two different
grids are used. Grid B, the coarser one, where only
16 · (20 + 60 + 60) elements are used with the stretch ratio
of 1:10 towards the corners, is initially used for all simula-
tions. Grid A, a more refined one, which can solve for the
smallest value of the extensional stiffness parameter is used
to rerun the steady and unsteady simulations when large
deformation occurs. In this case, the smallest boundary
layer width is estimated to be about 0.0141, and the grid
is chosen to be 22 · (70 + 120 + 200) with the same stretch
ratio towards the two corners where the beam joins the
rigid wall in both directions. The computations are per-
formed on Euclid2, a twin PentiumIV processors
(3.4 GHz) Linux machine with 8GB memory at Glasgow
University, and take about 0.1–1 CPU min for a typical
steady solution.

4.3. Numerical methods for Adina model

Here we solve a large deformation, small strain problem
by using a total lagrange formulation [30]. For the elastic
wall, 3-node isoparametric beam elements are used, which
allows for large displacement with small strains, and 3-
node triangle elements are used for the fluid (as Adina
8.3 do not have 6-node triangle fluid element). A typical
mesh used is shown in Fig. 4.

A movable mesh was used over the fluid domain, so as
to increase the accuracy of the calculations as the flexible
wall moved.

The finite element equations for the coupled fluid–struc-
ture system are derived from the Pertov–Galerkin varia-
tional formulation, which are solved using either an
iterative or a direct approach [30]. For the iterative

method, the fluid and structural domains are treated sepa-
rately, using the most recent solution for one domain to
obtain the solution for the other domain. These iterations
are carried out until the coupled equations were satisfied.
For the direct method, the fluid and structural equations
are combined into a matrix system of equations and solved
simultaneously. The direct method requires more memory,
but is faster than the iterative method. However, in cases
where the beam deformation was large, the direct method
fails to give convergence and the iterative approach has
to be used. Solutions of the matrix equations are obtained
using a sparse matrix direct solver based on Gaussian elim-
ination [28].

Results for steady simulations are obtained starting with
an initially undeformed channel, with the flexible beam
aligned with the upper channel wall. Because of difficulties
in obtaining converged solutions due to the non-linearities
associated with large beam deformations, it was necessary
to apply the inlet flow and the external pressure incremen-
tally. This minimized any element distortion normally asso-
ciated with rapid mesh deformation.

4.4. Numerical accuracy for Adina model

In order to verify the grid independence, meshes with
different numbers of elements were used and the results
compared. These verification studies were carried out with
zero pre-tension in the beam and for the Young’s modulus
of 35.89 kPa, and ck = 500. Each mesh was checked by
increasing the grid points of previously tested mesh. This
was continued until the changes of both the maximum dis-
placement of the beam and the maximum pressure in the
flow domain are within 0.5% between different meshes.
These results were also verified by comparing them to the
results obtained by Luo and Pedley [8]. The mesh eventu-
ally used had 26,839 elements.

5. Results

5.1. Parameters

Following [24], the dimensionless parameters are chosen
to be

Re ¼ 300; D ¼ 1; Lu ¼ 5; L ¼ 5; Ld ¼ 30; pe ¼ 1:95;

qm ¼ 0; ck ¼ 1� 1000; A=D ¼ 0:01� 0:1; T 0 ¼ 178:8;

where b(>0) was used by Luo and Pedley [17] to scale
tension: T = T0/b. When b!1, T = 0. A/D is the ratio
between the beam wall thickness and the channel height.

Fig. 4. A typical mesh for the deformed system in the Adina model.
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The required input parameters for Adina are the inlet
velocity U0, the external pressure Pe, the initial strain e,
the Young’s modulus E, the channel depth, and the wall
thickness A. These can be obtained from our dimensionless
parameters as follows:

U 0 ¼
Re� l
q� D

; P e ¼ peqU 2
0; E ¼ ckqU 2

0Dð1� v2Þ
A

;

T ¼ ðT 0=bÞ � qU 2
0D; e ¼ T

EA
; ð16Þ

where the Poisson’s ratio m is chosen to be 0.45, density of
fluid q is 1000 kg/m3, the viscosity of fluid l is 0.001 Pa s,
the channel height D is 0.01 m, and the channel depth (in
z-direction) is 1 m. For example, when Re = 300,
pe = 1.95, ck = 1000, b = 90, and A/D = 0.01, (16) gives

U 0 ¼ 0:03 m; Pe ¼ 1:755 Pa; E ¼ 71:775 kPa;

A ¼ 0:0001 m; e ¼ 0:0024911:

5.2. Effects of initial strain and initial stress configurations

First, consider a thin wall and choose cj = 10�5ck, i.e., A
is about 1% of the channel height. The computed elastic
wall shapes for ck = 200, 500 and 1000, and different values
of the initial tension (indicated by the values of b) are
shown in Figs. 5a–c.

For T = 0 (b =1), all three approaches (fluid-beam
model, Adina initial stress, Adina initial strain) give the
same results for ck = 500, and ck = 1000. However, some
differences are observed when ck = 200 between our results
and that of Adina. This is presumably because Adina con-
sidered the shear effect, which is absent in our model. When
the stretching stiffness is smaller, the shear effect becomes
more significant. Therefore the deformation predicated by
Adina is slightly smaller. However, in general, our fluid-

beam model agrees very well with Adina when the initial
stress configuration is used.

Now we compare the results using the initial stress
(Adina and fluid-beam) and initial strain (Adina) configu-
rations. When T = 0, these two configurations give identi-
cal results for all values of ck studied (at least for Adina).
Interestingly, the results between the initial stress and ini-
tial strain approaches start to differ as the initial tension
is increased, in both cases b = 30, and 90, the initial strain
approach gives less deformation compared with that of the
initial stress configuration. However, for b = 1 (i.e. the ten-
sion is very high), as the total deformation is now small, the
differences between these two configurations become less
obvious again. Thus for small deformation, the choice of
the initial configurations is less important. This justifies
the results from many previous studies using the initial
stress approach. However, for large deformation, the dif-
ference between these two configurations is noticeable.

X

Y

5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial strain, Adina

Initial stress, Adina

Fluid-beam model

β=1

β=30

β=90

T=0

cλ=200

Fig. 5a. The elastic wall shapes for ck = 200, and b = 1,30,60,90, 1
(T = 0). The thicker solid lines are results from Adina with initial strain,
and the thinner solid lines are from Adina with initial stress. The symbols
are from the fluid-beam model.
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y
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Initial strain, Adina
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β=90
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cλ=500

Fig. 5b. As in Fig. 5a, but for ck = 500.
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Fig. 5c. As in Fig. 5a, but for ck = 1000.
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The corresponding streamlines and pressure contours
predicted by both Adina (with the initial strain configura-
tion) and the fluid-beam model are shown in Figs. 6 and
7 for ck = 500, and ck = 1000, respectively. It can be seen
that the results are again similar (though the scaling is
not exactly the same as these plots are output from two dif-
ferent software). The strength and range of the flow re-cir-
culation is predicted by both models (though the fluid-
beam model has less smooth stream functions due to the
simple interpolations used). As the fluid-beam model gives
slightly greater wall deformation (see Figs. 5b and c), this is
reflected in the pressure field especially underneath the
maximum deformation of the wall. The shaded semi-circle
area (indicating the lowest pressure zone) is also larger in

the fluid-beam model than in the Adina model. This is
more obvious for ck = 500, as the differences in initial stress
and initial strain configurations must be greater for lower
values of ck.

5.3. The wall thickness effect

As all our previous results are obtained for a very thin
wall thickness (A � 1%), it is constructive to provide a set
of solutions for different values of wall thickness. In doing
so, we keep the Young’s modulus E fixed (=35.9 kPa), and
vary the wall thickness A from 1%, to 2%, 4%, 6%, 8%
and 10% of the channel height, respectively. This implies
that in the fluid-beam model, both ck and cj are changed

Fig. 6. Streamlines for ck = 500, and b = 30, 60 90, and T = 0. Overlapped are the corresponding pressure contours with bright colour indicating the
higher pressure contour values.

X. Luo et al. / Computers and Structures 85 (2007) 977–987 983



Aut
ho

r's
   

pe
rs

on
al

   
co

py

accordingly, see Eqs. (16) and (5), (e.g. ck � 500 for
A = 1%). The elastic wall shapes thus obtained are shown
in Fig. 8. The solid curves are from Adina with the initial
strain configuration, and the symbols are from the fluid-
beam model. Again, the agreement between the two models
for T = 0 is excellent.

The same results are shown in Fig. 9 but with an initial
tension, b = 30. The differences between these two models
(Adina uses the initial strain configuration and fluid-beam
uses the initial stress configuration) become less and less
noticeable as the wall thickness is increased from 1% to
10%. This is because the corresponding values of ck are
greater in the thicker walled beam, and the initial tension
chosen becomes less dominant compared with the stretch
induced tension.

6. Discussions

We have successfully re-produced all our results using
Adina with initial stress formulation. Initial stress
approach is commonly used in many engineering applica-
tions where the previous loading history is unknown. How-
ever, the initial strain approach is defined more rigorously
in the sense that all equations are derived from the zero ini-
tial stress configurations. Thus when the eigenvalue prob-
lem is solved [1], it may be essential that the initial strain
configuration is used.

The key finding is that although the differences from
these two initial configurations are small for the collapsible
channel with small deformation, there are sufficient
changes in the steady solutions using these two configura-

Fig. 7. Streamlines for ck = 1000, and b = 30, 90, and T = 0. Overlapped are the corresponding pressure contours with bright colour indicating the higher
pressure contour values.
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tions when the deformation is larger. These could lead to
different results in the stability analysis, as the basic flow
is slightly changed.

To make sure that the initial configuration is not respon-
sible for the ‘‘tongue’’ observed in the neutral stability
curve, we re-solve the eigenvalue problem with a zero initial
tension, and then see if the ‘‘tongue’’ still occur. Note that
in order to compare the new results with Fig. 1, we need to
use the concept of the effective tension, which is defined as
[24]:

T eff ¼ T 0 þ ckðk� 1Þ; ð17Þ

where k is the principal stretch (=kx) defined in Section 3.1.
Since the principal stretch k varies along the beam, we need
to estimate the effective tension by calculating k at a fixed

station along the beam, say at the downstream end (calcu-
lating k at any other position does not change the results
significantly).

We would like to emphasis that the introduction of the
effective tension is essential here since our new results are
obtained for a zero initial tension. As defined in Eq. (17),
the effective tension is the measure of the real tension that
the beam experiences, whether or not the initial tension is
zero. In the earlier study where the ‘‘tongue’’ was found,
the initial tension was not zero. The use of the effective ten-
sion makes the two cases comparable. In other words, we
need to plot both the neutral stability curves in the Re–Teff

space. Thus in scenario A, we prescribe T0 and replot the
neutral curve from Fig. 1 in the Re–Teff space, and in sce-
nario B, we let T0 = 0, but adjust ck so that a same value
of Teff can be calculated from (17). All other parameters
are kept to be the same. The results are shown in Fig. 10.
For details of the eigenvalue problem, see [1,31].

It is highly interesting to see that although the new neu-
tral curve (solid) is shifted downwards slightly in the Re–
Teff space (partly due to the small differences in basic flows
using different initial configurations, and partly due to the
fact that a finer mesh is used for the new results in the
eigensolver), the two curves are very similar, both present
the same qualitative features, i.e., both have the ‘‘tongue’’
structure. The first implication of this is that the concept
of the effective tension is robust, and can be used as a
key control parameter for the system. The other, more
important observation, is that the ‘‘tongue’’ still exists,
showing that it is not due to the fact the initial stress con-
figuration was used.
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Fig. 8. Elastic wall shapes for different wall thickness obtained from the
fluid-beam (symbols) and Adina initial strain (solid line), all with Young’s
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It may be said that a better way to check the tongue’s
existence is to simply run the unsteady simulations, and
see if the solutions around this zone present same behav-
iour as predicted by Fig. 10. However, care should be taken
here as the unsteady simulations are also obtained from the
governing equations based on the initial stress configura-
tions (unless T is zero), thus may suffer the same problem.
Now that we have obtained the new neutral curve, we can
run the unsteady simulations with the zero initial tension.
Take the points u1, s, and u2 in Fig. 10, for example. If
the tongue is true, then the unsteady solutions at u1, and
u2 should be unstable, while at point s it should be stable.
To obtain these solutions, an initial perturbation is applied
to the corresponding steady solutions at these points, and
the time response of the system is obtained. The results
are shown in Fig. 11. The wall displacement in the y-direc-

tion at the mid-point of the beam initially is plotted against
time. It is seen that the solution at s is indeed stable, as the
perturbation decays with time. The solution at u2 it is
indeed unstable, and the self-excited oscillation is devel-
oped and is growing with time. However, from the
unsteady simulation it is harder to see that if solution at
u1 is unstable or not in the longer term, since its growth
rate seems to be very small. This is presumably because it
is closer to the neutral curve than u2. It is for this reason,
we could not use the unsteady simulations alone to deter-
mine the neutral curve, as on the neutral curve, all solu-
tions have a zero growth rate, and an infinitely long time
would be required to determine the growth rate. However,
it is encouraging that the unsteady simulations support the
existence of the tongue.

7. Conclusions

The effects of the initial configurations on the steady
solutions and the neutral stability curve of flow in collaps-
ible channel are studied in this paper. Two independent
numerical models are employed. One is the fluid-beam
model [24]; the other is the iso-beam model (with a fluid–
structure interaction solver) from the Adina with both
the initial strain and initial stress configurations. As
expected, the fluid-beam model agrees very well with Adina
for the initial stress configuration; however, they differ
when the initial strain configuration is used. The differences
in the steady solutions between these two configurations
are small if either the deformation is very small (tension
is large) or the initial tension is small compared with the
stretched induced tension. However, when these conditions
are not met, there are some discrepancies between these
two, suggesting that the principal stretch needs to be
defined properly with the (zero-stressed) initial length.
The most important finding is that we found that the same
stability ‘‘tongue’’ exists in the Reynolds number-effective
tension space, regardless of the initial configuration used.
This is also supported by the full unsteady numerical sim-
ulations. Thus although a complete physical explanation of
the ‘‘tongue’’ remains to be found, this work suggests that
the ‘‘tongue’’ presents a real and interesting physical
phenomenon.

Acknowledgements

This work is supported by the EPSRC (Grant No. GR/
M07243) and the Royal Society of London (2005/R4-JP).
Special thanks to Prof. R. Ogden and Prof. ZX Cai for use-
ful discussions.

References

[1] Luo XY, Cai ZX. Effects of wall stiffness on the linear stability of
flow in an elastic channel. In: de Langre E, Axisa F, editors.
Proceedings of the eighth international conference on flow-induced
vibrations, FIV2004, vol. II. Paris, France: 2004, p. 167–70.

Fig. 11. The unsteady solutions at the three points u1, s, and u2 across the
tongue zone, as shown in Fig. 10. Plotted is the y-displacement initially at
the middle point of the beam against time.

986 X. Luo et al. / Computers and Structures 85 (2007) 977–987



Aut
ho

r's
   

pe
rs

on
al

   
co

py

[2] Shapiro AH. Steady flow in collapsible tubes. ASME J Biomech Eng
1977;99:126–47.

[3] Grotberg JB, Gavriely N. Flutter in collapsible tubes: a theoretical
model of wheezes. J Appl Physiol 1989;66:2262–73.

[4] Kamm RD, Pedley TJ. Flow in collapsible tubes: a brief review.
ASME J Biomech Eng 1989;111:117–79.

[5] Jensen OE, Pedley TJ. The existence of steady flow in a collapsed
tube. J Fluid Mech 1989;206:339–74. 623–59.

[6] Matsuzaki Y, Fujimura K. Reexamination of steady solutions of a
collapsible channel conveying fluid, a technical brief. ASME J
Biomech Eng 1995;117:492–4.

[7] Grotberg JB. Pulmonary flow and transport phenomena. Annu Rev
Fluid Mech 1994;26:529–71.

[8] Luo XY, Pedley TJ. A numerical simulation of steady flow in a 2D
collapsible channel. J Fluids Struct 1995;9:149–74.

[9] Pedley TJ, Luo XY. Modelling flow and oscillations in collapsible
tubes. Theor Comp Fluid Dyn 1998;10:277–94.

[10] Davies C, Carpenter PW. Instabilities in a plane channel flow
between compliant walls. J Fluid Mech 1997;352:205–43.

[11] Davies C, Carpenter PW. Numerical simulation of the evolution of
Tollmien–Schlichting waves over finite compliant panels. J Fluid
Mech 1997;335:361–92.

[12] Heil M. Stokes flow in collapsible tubes: computation and experi-
ment. J Fluid Mech 1997;353:285–312.

[13] Bertram CD. Two modes of instability in a thick-walled collapsible
tube conveying a flow. J Biomech 1982;15:223–4.

[14] Bertram CD, Raymond CJ, Pedley TJ. Mapping of instabilities for
flow through collapsed tubes of differing length. J Fluid Struct
1990;4:125–53.

[15] Jensen OE. Instabilities of flow in a collapsed tube. J Fluid Mech
1990;220:623–59.

[16] Jensen OE. Chaotic oscillations in a simple collapsible tube model.
ASME J Biomech Eng 1992;114:55–9.

[17] Luo XY, Pedley TJ. A numerical simulation of unsteady flow in a 2D
collapsible channel. J Fluid Mech 1996;314:191–225.

[18] Luo XY, Pedley TJ. The effects of wall inertia on flow in a 2-D
collapsible channel. J Fluid Mech 1998;363:253–80.

[19] Luo XY, Pedley TJ. Flow limitation and multiple solutions in 2-D
collapsible channel flow. J Fluid Mech 2000;420:301–24.

[20] Jensen OE, Heil MH. High frequency self-excited oscillations in a
collapsible-channel flow. J Fluid Mech 2003;481:235–68.

[21] Hazel AL, Heil MH. Steady finite-Reynolds-number flows in three-
dimensional collapsible tubes. J Fluid Mech 2003;486:79–103.

[22] Marzo A, Luo XY, Bertram CD. Three-dimensional flow through a
thick-walled collapsible tube. J Fluid Struct 2005;20:817–35.

[23] Heil M, Waters SL. Transverse flows in a rapidly oscillating, elastic
cylindrical shells. J Fluid Mech 2006;547:185–214.

[24] Cai ZX, Luo XY. A fluid-beam model for flow in a collapsible
channel. J Fluid Struct 2003;17:125–46.

[25] Steigmann DJ, Ogden RW. Plane deformations of elastic solids with
intrinsic boundary elasticity. Proc R Soc London A 1997;453:853–77.

[26] Carpenter PW, Garrard AD. The hydrodynamic stability of flow over
Kramer-type compliant surfaces. Part 2. Flow-induced surface
instabilities. J Fluid Mech 1986;170:188–232.

[27] Ehrenstein U, Koch W. Three dimensional wavelike equilibrium
states in plane Poiseuille’s flow. J Fluid Mech 1989;228:111–48.

[28] ADINA theory and modelling guide, vol. 1–3. ADINA R&D Inc.;
2003.

[29] Bathe KJ. The finite element procedures. Englewood Cliffs, NJ:
Prentice-Hall Inc.; 1996.

[30] Bathe KJ, Zhang H. Finite element development for general fluid
flows with structural interactions. Int J Numer Meth Eng 2004;60:
213–32.

[31] Luo XY, Cai ZX, Li WG, Pedley TJ. The cascade structure of linear
stability in collapsible channel flows. J Fluid Mech [submitted for
publication].

X. Luo et al. / Computers and Structures 85 (2007) 977–987 987




