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The collapse of a compressed elastic tube conveying a flow occurs in several physi- 
ological applications and has become a problem of considerable interest. Laboratory 
experiments on a finite length of collapsible tube reveal a rich variety of self-excited 
oscillations, indicating that the system is a complex, nonlinear dynamical system. Fol- 
lowing our previous study on steady flow in a two-dimensional model of the collapsible 
tube problem (Luo & Pedley 1995), we here investigate the instability of the steady so- 
lution, and details of the resulting oscillations when it is unstable, by studying the time- 
dependent problem. For this purpose, we have developed a time-dependent simulation 
of the coupled flow-membrane problem, using the Spine method to treat the moving 
boundary and a second-order time integration scheme with variable time increments. 

It is found that the steady solutions become unstable as tension falls below a certain 
value, say T,, which decreases as the Reynolds number increases. As a consequence, 
steady flow gives way to self-excited oscillations, which become increasingly com- 
plicated as tension is decreased from T,. A sequence of bifurcations going through 
regular oscillations to irregular oscillations is found, showing some interesting dy- 
namic features similar to those observed in experiments. In addition, vorticity waves 
are found downstream of the elastic section, with associated recirculating eddies which 
sometimes split into two. These are similar to the vorticity waves found previously 
for flow past prescribed, time-dependent indentations. It is speculated that the mech- 
anism of the oscillation is crucially dependent on the details of energy dissipation 
and flow separation at the indentation. 

As tension is reduced even further, the membrane is sucked underneath the down- 
stream rigid wall and, although this causes the numerical scheme to break down, it 
in fact agrees with another experimental observation for flow in thin tubes. 

1. Introduction 
Flow in thin-walled collapsible tubes has numerous applications to physiology and 

to medical devices. Laboratory experiments have found a rich variety of self-excited 
oscillations in such flow systems, which have stimulated great interest among re- 
searchers in biomathematics and bioengineering. In particular, Bertram, Raymond 
& Pedley (1990,1991) present results which reveal an interesting bifurcation structure 
leading, almost certainly, to chaotic motion in some parts of parameter space. Num- 
bers of theories, most of them one-dimensional, have been put forward to explain 
the physical mechanisms responsible for the generation of the self-excited oscillations 
(e.g. Reyn 1974; Shapiro 1977; Cancelli & Pedley 1985; Jensen 1992; Matsuzaki & 
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FIGURE 1. Two-dimensional flow configuration. Steady Poiseuille flow with average velocity Uo 
entering upstream; P d  is pressure at the downstream end of the channel, p e  is the external pressure 
and T is the tension in the membrane. For explanation of other symbols, see text. 

Matsumoto 1989; Pedley 1992). However, owing to the great complexity of the sys- 
tem, involving three-dimensional dynamic behaviour and fluid-structure interactions, 
these mechanisms are still not fully understood. 

From the mathematical point of view, a self-excited oscillation can arise only when 
a steady solution fails to exist or becomes unstable in a system with constant control 
parameters. Hence it is essential to investigate the existence and the stability of the 
steady flow in a rationally described model, including important effects such as the 
nonlinearity of the flow and wall dynamics. 

Previous studies have been carried out on two-dimensional steady flow in a rigid, 
parallel sided channel in which part of one wall is replaced by a membrane under 
tension (figure 1). These studies mainly concentrated on the existence of steady 
solutions(Lowe & Pedley 1994; Rast 1994; Luo & Pedley 1995). It was found 
that in the given range of Reynolds number and transmural pressure, although a 
steady flow solution should exist for all values of longitudinal tension according to 
one-dimensional analytic models, the numerical simulation could only achieve these 
solutions for a sufficiently large tension. Because the 'critical' value of tension for 
a given Reynolds number differed in the two finite-Reynolds-number computations 
(Rast 1994; Luo & Pedley 1995), we are now convinced that this failure to find a 
solution represents a numerical breakdown. The numerical failure could be caused 
either by an inadequate mesh which fails to cope with the extreme wall shape (too 
close to the opposite wall or too steep in the downstream region), or by the fact that 
the problem becomes quite stiff when the tension is very low (and hence the wall 
curvature becomes very large in the membrane equation). 

In this paper, we study unsteady flow in a two-dimensional channel using the finite 
element method, aiming to investigate ( a )  the stability of those steady solutions found 
in the previous study (Luo & Pedley 1995), and ( b )  the self-excited oscillations that 
develop after the steady solutions become unstable. 

We shall indeed find evidence of a sequence of bifurcations, similar to some of 
these observed experimentally by Bertram et al. (1990,1991), and suggestive of period- 
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doubling which is one of the conventional routes to chaos. Another important finding 
is that a train of vorticity waves is generated and propagates downstream during 
each cycle of oscillation. This is not unexpected, because such waves have previously 
been experimentally observed downstream of an indentation in a two-dimensional 
channel which moves in and out in a prescribed way (Pedley & Stephanoff 1985), but 
this is the first time that they have been found in a coupled flow-structure problem. 
The phase relation between the waves and the wall motion supports the proposal 
of Cancelli & Pedley (1985) that the unsteady process of flow separation and the 
associated energy loss are important parts of the oscillation mechanism. 

2. The mathematical model 
2.1. Assumptions 

The flow configuration is shown in figure 1. The rigid channel has width D ;  one part 
of the upper wall is replaced by an elastic membrane subjected to an external pressure 
pe. Steady Poiseuille flow with average velocity Uo is assumed at the entrance. The 
flow is incompressible and laminar, the fluid having density p and viscosity p. The 
longitudinal tension T is taken to be constant, i.e. variations due to the wall shear 
stress or the overall change of the membrane length are considered to be small relative 
to the initial stretching tension. Further, we assume that the inertia of the membrane 
is negligible, an assumption that is likely to be valid for rubber-like membranes if the 
flowing fluid is water, but questionable if it is air (see below). 

2.2. Governing equations 

The dimensionless momentum and the continuity equations are 

ui,i = 0, i =  1,2 (2) 

- pe = -tiT (3) 
where on is the fluid stress acting on the membrane in the normal direction, p e  is the 
external pressure, T is the longitudinal tension, and ti is the wall curvature which can 
be expressed as the derivative along the membrane of the angle made by the tangent 
to the elastic boundary with the x-axis: 

where Re  = U o D p / p  is the Reynolds number. The membrane equation is 

If wall inertia were included, a term ma would be added to the right-hand side of 
(3), where a is the (dimensionless) acceleration of the wall in the normal direction 
and m is the ratio of membrane to fluid density, multiplied by the ratio of membrane 
thickness to D. The latter ratio is assumed to be small, while the former is O( 1) when 
the fluid is water, so in that case it is reasonable to neglect wall inertia. 

All the variables are non-dimensionalized as 
2 ui = D;/Uo (i = 1,2), 0 = o / p u o ,  

p = j i /pUi,  T = T / p U i D ,  
x = X/D,  y = y / D ,  t = tUo/D, 

where variables with an overbar denote dimensional quantities. 
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FIGURE 2. Part of a typical adaptive mesh of the flow domain; there are 5060 triangular elements 
with 10603 nodes. with 22 x 124 movable nodes located in section B. 

2.3. Boundary conditions 
The boundary conditions imposed on the flow domain are 

inlet flow: 
rigid walls: 

u = 6y(l  - y ) ,  u = 0 
u = v = 0 

at x = 0, 0 < y < 1; 
at y = 0,O < x < L, + L+Ld,  
at y = 1,0 < x < Lu and 
L u  + L  < x < Lu + L + L d ;  

elastic section: u(t) = u,(t); u ( t )  = v,(t) at x = x,(t); y = y w ( t ) ;  
outflow: 

where P d  is the downstream pressure, chosen to be zero here. The velocity is 
prescribed on all boundaries except at the outflow, which is taken to be stress free, 
and on the elastic section, where x ,  and y, are the coordinates of a general point of 
the membrane, given by 

bt = 0, on = -Pd at x = L, + L+Ld.  0 < y < 1, 

x w  = xb + axh(t) y w  = yb + ayh(t). 

Here h is the extra unknown describing the moving boundary, also called the spine 
height (see figure 1, figure 2 and 63.1 ), X b , y b  are the coordinates of fixed base points 
along the wall section EF, and a,, ay are the components of the direction vector a of 
spine h. a is fixed in time but varies along the section EF, giving a set of spines with 
different orientations. 

For values of the Reynolds number much greater than one, as in most cases 
examined here, the stress-free conditions are the best choice for simulating the 
corresponding experiments in which the downstream pressure is fixed, though care 
must be taken to make Ld sufficiently large. 

It is the velocity boundary conditions on the elastic section that make this problem 
different from a free-surface problem under surface tension, which otherwise obeys 
the same governing equations (1)-(3). To apply these conditions, we have to find out 
in which direction the material points move on the wall. However, this is not known 
in our model since a membrane equation is used to describe the wall mechanics and 
individual elements of the membrane are not tracked. For simplicity, therefore, we 
make a further ad hoc assumption: we assume that the wall points always move in 
the direction normal to its surface. This is approximately consistent with the constant 
tension assumption used here and is in fact exact if the wall shape remains circular. 

Another possible assumption that has frequently been used in modelling flow with 
compliant walls (Kramer 1962; Carpenter & Garrad 1986; Riley, Gad el Hak & 
Metcalfe 1988; Ehrenstein & Koch 1989) is to assume that the points move along the 
vertical, y-direction. However, this is a good approximation only if the deformation 
of the wall is very small, whereas we are interested in cases for which the wall can 
experience quite large deformation. Therefore this assumption is not made in our 
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model, except that comparison of the two approximations will be made for two cases 
below, showing the results not to be significantly influenced by the choice of boundary 
condition. 

3. Methods 
We adopt the simultaneous approach used by Rast (1994) for the steady flow 

computation. The idea is to solve the incompressible Navier-Stokes equations (1) and 
(2) together with the membrane equation ( 3 )  on the elastic boundary to determine 
simultaneously both the flow field and the domain shape, instead of alternating 
between fluid and wall equations. The elastic boundary is parameterized in terms of 
spine heights in a manner similar to that which has been used successfully in studies of 
viscous free-surface flows (Silliman 1979; Ruschak 1980; Saito & Scriven 1981). The 
differences in the present implementation are that the membrane curvature equation 
( 3 ) ,  with the form (4) of the wall curvature, is used to determine the spine heights. 
The method for the steady flow is discussed in detail by Rast (1994); here we will 
concentrate on the unsteady flow simulation. 

3.1. The adaptive mesh 

The flow domain is divided into three six-node triangular finite element subdomains, 
figure 2. Subdomains A and C have nodes fixed in space, while subdomain B, under 
the elastic section, contains the mesh with moving nodes. The angles of the two 
edges of subdomain B are chosen to allow a rather steep slope of the membrane near 
the downstream end, as was observed in the steady flow simulations when tension is 
small (Rast 1994; Luo & Pedley 1995). The shape of this subdomain depends on the 
unknown elastic boundary. The elemental nodes under the elastic section lie along the 
spines which emanate from a fixed origin 0,. Each spine k is defined by the Cartesian 
coordinates of its base point, xk and y,”(= 0), and the direction from that point to the 
origin. The position of node i on spine k is given in terms of a fixed fraction W! of 
the spine height hk as 

k k k k h k  xi = Xb+a,ai , k k k  y f  = y i  + aYwi h , 

where a = (ak,,ak,) is the direction vector of spine k ,  and the spine height is simply the 
distance from the spine base to the elastic surface in the direction of a. Each spine 
height is an unknown in the problem and is to be determined as part of the solution. 

3.2. Time derivatives 

The time derivatives appearing in (1) are the Eulerian time derivatives, i.e. the nodal 
velocity field must be defined for nodes fixed in space. However, the technique for 
parameterization of the moving surface is such that the nodes are constrained to 
move along a fixed line in space-a mixed Eulerian-Lagrangian formulation. Thus 
the time derivatives in (1) must be transformed to time derivatives which follow the 
moving nodes along these lines. Denoting by 6 / 6 t  the time derivatives following a 
moving node, the relation between 6 / 6 t  and a /&  , the Eulerian time derivative, is 
given by 
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where u = (u,v} and 
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.k k k d h k  x = a m - .  
dt 

Therefore the time derivatives in (1) become 

a u  d u  
at d t  

where the second part of these expressions represents the movement of the nodes in 
the moving domain. 

3.3. Finite element algorithm 
3.3.1. Space integration 

The finite element implementation now follows fairly straightforwardly. Within 
each element, the variables are expanded isoparametrically in area coordinates, (i, q) ,  
employing a mixed interpolation, with u,v,x, and y sharing quadratic and p linear 
expansions : 

6 6 

i= 1 i=l i=l 

6 6 

i= l  i= 1 

where Li and N, are linear and quadratic shape functions respectively, and 0 is the 
angle of a spine with the vertical (Rast 1994). Equations determining the nodal values 
of u, v, p and h are derived by the Galerkin method of weighted residuals. The finite 
element equation 

(6) 
dU 
dt 

M -  + K (  U)U - I; = R = 0, 

represents a discrete-space, continuous-time approximation to (1)-(3), where U is the 
global vector of unknowns (ui, vi, p j ,  and hk), with i = 1-N, j = 1-M, k = l-Ns, where 
N is the total number of velocity nodes, M the total number of pressure nodes, and 
N, the total number of spine heights. R is the overall residual vector which should 
be zero for an exact solution. Here 

R = (Rx, Ry, &, % I T ,  
where the subscripts x, y, c, and e indicate the corresponding residuals of the x and 
y-momentum, continuity, and membrane equations, respectively. For each element, 
expressions for these quantities are 
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6 6 

Re Re 

with k = 1-3 for pressure on the vertices and 1 = 1-6 for velocities on all nodes within 
each element. Rb can be written in a similar form. Boundary elements are oriented 
so that three nodes (1 =3, 5 and 2) lie along the elastic membrane. The coordinates 
of all nodes below the elastic boundary depend on the boundary position, therefore 
4, h, ds, and the Jacobian of the coordinate transformation for those elements which 
contain these nodes, are all functions of x and y, hence of the spine height h. 

Boundary conditions are imposed in a standard way and the integrals are evaluated 
at Gauss points within each element. However, problems arise when we apply the 
no-slip conditions on the elastic boundary. Since normal movement is assumed for 
points on the membrane, the velocities u,, v ,  are related to the change of spine height 
through the following equations : 

where the normal vector rzk is defined on a node associated with the spine k . On 
the other hand, the normal vector h = (n,,n,) in the integrals of R in (6) is not 
uniquely defined at the nodes. Thus we have to interpolate the nodal hk from h. An 
appropriate (and unique) normal direction at a node may be determined by invoking 
mass conservation for an incompressible fluid, J J ui,idxdy = 0 (Engelman, Sani & 
Gresho 1982), which can be manipulated to give 

where 

and Nk is the shape function at the node associated with the spine k .  Applying 
Green's theorem to the above equations, we obtain 
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where the integral is defined along the arclength of the membrane. Note that equation 
(9) is the relation between the nodal normal components nk,, n t  and the components 
nx,ny of the normal that are defined at the Gauss points. 

3.3.2. Time integration 

i.e. 

where on+, is approximated by a backward-Euler first-order scheme for the first 3 4  
steps with constant time increment, i.e. 

Equation (6) is integrated with time by using an implicit finite difference scheme, 

M(Un+l)on+l + K(U,+,)U,+l - F(U,+l) = &+l(U,+l, U , )  = 0 (10) 

This is followed by a second-order predictor-corrector scheme with a variable time 
step dt,. First, the second-order-accurate Adams-Bashforth explicit approximation 

. dt, 

dt,-1 
U ,  - - on-11 

is used as the predictor at time step n + 1, which gives the truncation error 

( 'i;') (dt,J3 on+, + O(dt,)4. (13) 
1 

UP,+, - U(n + 1) = -- 2 + 3- 
12 

Since this is an explicit formula, it is only applied to velocity components and spine 
height, not to the pressure unknown whose time derivative does not appear in the 
equations. The predictor of pressure is therefore simply the solution from the previous 
time step, i.e. a zeroth-order predictor is used. 

Second, the corrector step uses the non-dissipative, completely stable trapezoid 
rule, i.e. solving equation (10) for UC,,, with an approximation for the time derivative 

The local time truncation error at step n + 1 for this scheme is 

d,+l = U",, - U(n + 1) = &(dtn)30n+l + O(dt,)4 (15) 

where U(n + 1) is the exact solution at time step n + 1. Equations (13) and (15) can 
be combined to give 

This result can be used to estimate the next time-step size based on the requirement 
that a (relative) norm of the error for the next step should be less than a pre-set input 
value E (Gresho, Lee & Sani 1979) 

Since U n + 2  = on+, + O(dt,), equation (16) permits the solution for the next potential 
time step dt,+l after setting /Idn+2 1 1  = E and neglecting higher-order terms, i.e. 

-- dtn+l - (k) = SFAC. 
dt, 
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At each time step the factor SFAC is computed and if SFAC > 1, the next time 
increment dt, is increased by SFAC, and if SFAC < 1, it is decreased by SFAC. 
However, in case SFAC becomes too large, we set another criterion SFAC < 2 to 
avoid overshoot of the solution at dt,+l (Kheshgi & Scriven 1984). 

3.3.3. Iteration scheme 
The global matrix equation (10) is assembled from the element contributions via 

the frontal solution technique (Irons 1970; Hood 1976; Rast 1994), and a Newton- 
Raphson scheme is used to solve equation (10) for U,+l. That is, we solve the 
nonlinear algebraic equations 

where j is the iteration number at time step n + 1, and 

is used to update Un+l during the iterations. Solution at time step n + 1 is obtained 
when both 

are satisfied. U;:; is then used as the solution Un+, for this time step. 
This scheme is very efficient and cost-saving. It has a good convergence rate at each 

time step and allows reasonable time increments. Note that here we use the same error 
tolerance E for both time and space. If we choose E to be then 1-7 Newton- 
Raphson iterations (depending on the parameter values for the case investigated) are 
required at each time step to achieve convergence. For higher tension and smaller 
Reynolds number, only one Newton-Raphson iteration is required. 

The computational cost is nevertheless still huge, especially when a time-dependent 
oscillating flow is pursued after steady flow has broken down. One typical parameter 
case which covers the time history of t = 0 to t = 10G150 requires about 40&800 
time steps for the self-excited oscillation to develop. Each time step on average needs 
about 15-30 CPU minutes on a Silicon Graphics Challenge XL at Leeds University 
Computing Service CIF3, and about 10-15 CPU minutes on the Supercomputer 
Fujistu VPX 240/10 at Manchester Computing Centre. 

3.4. Computational accuracy 

The numerical code has been tested for steady flows by (a)  comparing with results from 
different methods (Lowe, Luo & Rast 1995), and (b )  comparing with an analytical 
model and experiments (Luo & Pedley 1995). It has been checked again here, using 
our typical grid in which 5060 six-node triangular elements with 10603 nodes are 
allocated as shown in figure 2, that numerical solutions of a desired accuracy can be 
obtained, which are independent of the element mesh should the element number be 
increased. In other words, extensive work has been done to check the spatial accuracy 
of the solutions. We have confirmed that, in cases for which the time-dependent code 
leads to a steady solution, the steady membrane shape is graphically indistinguishable 
from that obtained previously (see figure 20a below). 

It still remains to check the temporal accuracy of the solution. This is controlled 
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FIGURE 3.  Wall position y ,  at x, = 8.5 is plotted as a function of time with error tolerance 
E = lop3 (short-dashed), E = 10-4(long-dashed) and E = lo-' (solid), for (a) case I; ( b )  case 11; and 
( c )  case 111. 

by the error tolerance e. We have checked for different values of e in the range of 
lop3 - lop5. Results are considered to be reliable when they become independent 
of e. It should be mentioned here that, although the so-called one-step Newton 
iteration method, which takes only one iteration for equation (17) and ignores the 
error thereafter during that time step, has been used successfully for other time- 
dependent problems (Gresho et al. 1979; Kheshgi & Scriven 1984), we found that 
for the present problem it is vital to achieve convergence properly within each time 
step, i.e. to ensure that conditions (18) and (19) are both satisfied. Failure to do 
so can not only lead to a very small time increment dt,, hence much smaller t for 
given computing time, but also causes deviation from the correct solutions. This is 
especially true when calculating the self-excited oscillations with large amplitude as 
discussed below. 

We have checked that results obtained for many cases are independent of E once 
e < 1 x lop3. Such an example is shown in figure 3(a), where the wall motion y, at 
x, = 8.5 is plotted as a function of time for e = lop3, E = lop4, and E = lop5. 

However, this is not the case when the system becomes highly unstable and sensitive 
to small disturbances, such as cases I1 and I11 (defined in 54.3 below). For these cases, 
wall motions start to diverge from each other after a certain time when different 
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values of E are chosen. Figure 3(b) shows the calculated oscillations for case I1 for 
E = lop4, and respectively. Within a limited length of time, solutions 
obtained for these E are quite close to each other. However, beyond that time, say 
t > 35, the result for E = And for 
t > 55, results at E = lop4 and lop5 also start to differ. The situation becomes even 
worse for case 111, figure 3(c). 

These findings are consistent with the general fact that, if a system is highly 
dynamic, it is very sensitive to small perturbations. This aspect is discussed further 
below. Here, if we can make sure that the results obtained for a certain length of time 
are independent of E ,  then we can say that the solutions are reliable at least during 
this time period. 

deviates from those for E = and 

4. Results 
4.1. Parameters 

Following the previous steady flow study (Luo & Pedley 1995), we now investigate 
the instability of the solutions for the same values of the parameters as used there, 
namely 

p = lo3 kgm-3, D = lop2 m, - - ,u = 1 x Pas, - 
L = 5 x m, L, = 5 x m, Ld = 30 x m, 
- 
Pd = pe - p d  = 0.93 pa, = 1.610245 Nm-', 

where To is the reference value of the tension. 
Hence we have, in dimensionless terms, L, = 5, L = 5, Ld = 30, D = 1, TO = 

1.610245 x 107/Re2, Pd = (9.3 x lo4 + Ap) /Re2 ,  Re = 1 - 500. The dimensionless 
parameters To and Pd are dependent on Re because of the non-dimensionlization 
used in $2.2. 

The actual value of dimensionless tension T appearing in equation (3) is given by 
T = TO//?, where /3 is a parameter (> 1) which is increased in order to investigate the 
effect of lowering membrane tension. Note that a longer downstream length (Ld = 30) 
is used here than in Luo & Pedley (1995), where Ld = 7 was shown to be reasonable 
for steady flow with a required accuracy. For unsteady flow, however, we choose 
a much longer downstream length in order to ensure that downstream boundary 
conditions are properly imposed and to minimize possible wave reflections from the 
downstream boundary. As a result, an extra term Ap estimated from the Poiseuille 
flow (= 12(Ld - 7) /ReD)  is introduced so that we have approximately the same 
parameters as those in the steady flow study (Luo & Pedley 1995). To test whether 
the downstream length L d  has any significant effects on the results, especially on the 
motion of the elastic section during the oscillation, we calculated the oscillation using 
Ld = 30 and Ld = 32, respectively, and compared the wall motion y, (at x, = 8.5) 
for both values of Ld at Re  = 300, in figure 4(a) for a regular oscillation, and figure 
4( b)  for an irregular oscillation. 

It is seen from figure 4(a) that the wall motion with the downstream length of 
Ld = 32 seems to have a slightly larger period than that of Ld = 30. This is pre- 
sumably because the longer downstream length increases the downstream resistance 
and inertance. We have adjusted the downstream transmural pressure Pd assuming 
that the flow in the additional two units of length is Poiseuille flow, whereas in fact, 
for flow with Reynolds number as high as 300, and for unsteady cases, the flow at 
the downstream end is not entirely Poiseuille flow, and therefore has a slightly larger 
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resistance than assumed. A greater discrepancy is observed in figure 4(b) which cor- 
responds to case I11 below, where the oscillation is more irregular, and we therefore 
know that a small difference in a parameter (resistance or inertance in this case) will 
inevitably lead to divergent output as time progresses. Despite these aspects, however, 
we can see that the results remain qualitatively unchanged for the different values of 
Ld, and we henceforth keep Ld = 30. 

Several parameters can be varied, namely the Reynolds number Re, the membrane 
longitudinal tension T ,  the external pressure with respect to downstream pressure P d ,  

and the length of the elastic section L. Owing to the extensive computing requirement 
for the unsteady flow, however, we limit ourselves to investigating cases with different 
values of Re and T only, while values of Pd and L are fixed. One reason for focusing 
on the tension parameter is that previous studies have demonstrated breakdown of the 
steady solution if T becomes small enough (Pedley 1992; Lowe & Pedley 1995; Rast 
1994; Luo & Pedley 1995), although as stated above we now believe that in all but the 
first of these the breakdown was numerical not physical. The other reason is that it 
was found in our steady flow study (Luo & Pedley 1995) that the effect of increasing 
Pd is similar to that of lowering T .  Morever, in the corresponding one-dimensional 
analytical model, L can be combined with T in a single dimensionless parameter 
A = L/T'/' (Luo & Pedley 1995). Extending this finding into two-dimensional flow, 
we expect the effect of increasing L to be equivalent to that of reducing TI/'. 
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FIGURE 5. Steady solutions at Re = 300. (a) The elastic wall shape at different tensions, and ( b )  the 
minimum wall postion ymin against f i ,  where the upper curve is the numerical result and the lower 
curve is the prediction from the one-dimensional model (Luo & Pedley 1995). The bulging point T,, 
is marked as a circle, the unsteady point T,, is marked as a dot, and the critical tension T, where 
the numerical scheme broke down is marked as a star. 

We have calculated results for different values of Re from 1 to 500, and different 
values of T .  The most interesting results in terms of complicated self-excited oscil- 
lations and flow separations, yet still reliable in the sense that all convergence and 
accuracy checks were satisfactory and the flow remains reproducible, are found at 
Reynolds numbers of 100-300. To demonstrate the unsteady features, we focus below 
on the results obtained at Re = 300. 

4.2. Instabilities of the steady solutions 
Steady solutions at Re = 300 are shown in figure 5(a,b), for T =  TO/^, where 
j3 = 1,5,10, ... 190 is the reduction factor. For more discussion of these steady 
solutions, see Luo & Pedley (1995). 

A small disturbance is imposed on the steady solution by using a steady solution 
with a slightly different value of the tension as the initial condition, and the cor- 
responding time-dependent flow is calculated. If the steady solution is stable, the 
time-dependent flow should eventually approach it. If, instead, the flow deviates from 
it, then we can say that the steady solution is unstable. By doing this, we are able to 
show that the steady solutions are stable for /3 < 27.5, shown as solid lines in figure 
5(b), and (dashed lines) are unstable for j? 3 27.5. Hence the unstable tension is given 
by T, N T0/27.5, for Re = 300. Values of the corresponding pu for different Reynolds 
numbers are listed in table 1 (there was no instability at Re = 1).  We can see that 
the unstable tension T, increases as Re increases. These are accurate within 1.0 (the 
nearest value of p which was tested and gave stability was pu - 1.0). Thus flows of 
higher Reynolds number are less stable than those of lower Reynolds number for the 
same tension and transmural pressure; hence both the tension and viscosity in this 
case are primarily stabilizing factors. 

It is noted that the steady solution first becomes unstable at the bottom of the 
curve in figure 5(b), before the membrane starts to bulge out at the upstream end 
(Luo & Pedley 1995). The same is true for the other Reynolds numbers investigated 
here, except Re = 1. In other words, steady flow with upstream membrane bulging 
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Re= 1 100 300 400 500 
/Iu N 54.0 27.5 20.0 15.0 

TABLE 1. Relation of /Iu with Re 

is unlikely to be stable except perhaps at very small Re. The steady solution shows 
that, when the membrane bulges out upstream, the pressure drop no longer increases 
as flow rate increases. In other words, pressure-drop limitation occurs and the curve 
of pressure drop against flow rate appears to be more or less flat after this point. Not 
very surprisingly, oscillations have been observed often when pressure-drop limitation 
is reached in experiments for three-dimensional tube flows (Bonis & Ribreau 1978; 
Brower & Scholten 1975). This may also explain why such a partly bulged wall shape 
has not been observed in the experiments that C. D. Bertram has performed (personal 
communication), though he mainly used thick tubes in his experiments where bending 
stiffness and inertia of the tube wall may also have played important roles in the 
onset of the oscillations; morever the fluid flow was turbulent in his experiments. 

It would be interesting to perform a stability analysis of the one-dimensional 
version of this problem, as Jensen did for his similar model of flow in a collapsable 
tube (Jensen 1990), to compare with our two-dimensional numerical predictions. The 
disturbances applied here are not necessarily infinitesimal and the time evolutions 
are nonlinear. Therefore, the instabilities obtained will not be exactly the same as 
those derived from linear stability theory. Nevertheless, a comparison would help us 
to understand more of these instabilities and the role that each parameter plays, as 
well as help us to pick up the parameters corresponding to the most important and 
interesting flow behaviour more efficiently. Morever, it might save the trouble of an 
exhaustive parameter search, which we have only been able to begin. 

4.3. Selfexcited oscillations 
After the flow becomes unstable, self-excited oscillations occur. The flow behaviour 
becomes quite complicated and interesting. We present three cases I, I1 and I11 at 
Re = 300, each with a slightly different tension. 

(a) Case I: 

This is the simplest case, in which periodic oscillations are developed for T < T,,. 
The wall position y ,  close to the site of maximum deformation, x, = 8.5, is plotted 
as a function of time t in figure 6(a). The amplitude of this wall motion is nearly 
20% of the channel height. The evolution of the elastic wall shape with time during 
one of the periods, marked as a darker line from (i) to (ii) in figure 6(a), is plotted in 
figure 6(b). The corresponding wall pressure at x ,  = 8.5 is also plotted as a function 
of time in figure 7(a) ,  and the evolution of the pressure drop along the elastic wall 
is shown in figure 7(b). It is observed that the oscillations of the wall coordinate yw 
and wall pressure p ,  appear to be roughly in phase. This is due to the fact that there 
is no energy loss in the wall, and the mass of the membrane is neglected, so that the 
wall pressure should be in phase with the wall curvature. When the nonlinear term 
in the wall curvature is small (i.e. when the wall slope is small), the wall curvature 
has roughly the same phase as the wall coordinate y,. 

The oscillations seems to become quite regular after t > 20.08. A fast Fourier 
transform performed on the traces of figure 6(a)  or figure 7(a) gives a fundamental 
frequency, or Strouhal number, of 0.0838. 

p = 30 
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FIGURE 6. Case I: (a)  elastic wall position y ,  at x,. = 8.5 plotted as a function of time; (b )  time 
evolution of the elastic wall shape during the period t = 27.078-39.79, marked as darker line from 
(i) to (ii) in (a). 

Streamline plots at different times within an oscillation period are shown in figure 
8. It can be seen that flow separation occurs both at the upper corner and on the 
plane walls of the channel, and several eddies are generated. A vorticity wave is 
generated downstream of the membrane; the positions of the wave crests and troughs 
are depicted by A, B, C, and D in figure 8. An 'eddy doubling' appears at the upper 
corner at time t = 31.49. This is very similar to the vorticity wave generated in 
channel flow with a prescribed moving indentation (Pedley & Stephanoff 1985; Ralph 
& Pedley 1988, 1989, 1990). The speed of the vorticity wave crest at position B is 
approximately 0.348, lower than the mean flow velocity, which is one unit. 
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FIGURE 7. Case I: (a) wall pressure at x, = 8.5 plotted as a function of time; (b)  time evolution of 
the pressure distribution along the elastic wall, during t = 27.0798-39.1058, marked as darker line 
from (i) to (ii) in (a). 

To compare with the computations of flow with a moving indentation, we plot the 
positions of wave crests and troughs B, C, and D against the scaled time with respect 
to the period t, 1: 12.71, in figure 9. The figure also includes the corresponding plots 
by RaIph & Pedley (1990, figure 12), for a case in which the wall indentation was 
given a relatively small oscillation about a mean corresponding to y, 1: 0.6. Figure 9 
shows that these two cases have very similar wave crests and troughs, even though we 
have different parameters here, Re = 300 and S t  1: 0.0838 compared with Re = 500 
and S t  = 0.05 in Ralph & Pedley (1990), and the Strouhal number S t  is an output 
for our case as the flow is coupled with the wall motion. It shows that a vorticity 
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FIGURE 8. Instantaneous streamlines for case I. Up to fifteen equally spaced streamlines are plotted 
between ymax and wmm, during the period t = 27.08-39.79: (a) wmax = 1.0856, ymm = -0.0217: 
(b)  Vmax = 1.0826, Ymm = -0.0434. 
Y m m  = -0.0471; 
(g)  Wmax = 1.0267, Wmin = -0.0052; 
1 ~ ) m m  = -0.0015; (j) vmax = 1.0953, vmrn = -0.0368 

(c) Ymax = 
1.03325 Y m i n  = -0.0357; 

1.06999 ~ m l n  = -0.0555: ( d )  ~ m a x  = 1.0504. 
(f) ~ m a x  = 1.0181, v m l n  = -0.0174; 

(i) vmax  1 1.0690. 
( e )  Y m a x  = 

(h)  Ymax = 1.0439, p m p j  = -0.0004: 

wave is generated in the coupled problem just as in a flow with a prescribed moving 
indentation. 

( b )  Case 11: fl = 32.5 

When tension is reduced slightly, from f i  = 30 to = 32.5, the oscillations become 
more complicated. Figures 10(a) and 10(b) are the time history of the wall position 
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FIGURE 9. Case I, positions of wave crests and troughs B, C, and D plotted against the scaled time 
tlt,, where t ,  N 12.03 is the period: the solid curves are the present computation, and dashed curves 
are the results obtained by Ralph & Pedley (1990). 

y ,  at x, = 8.5 and evolution of the wall shape with time for one period, respectively. 
The corresponding pressure results are plotted in figure 1 l(a,b). 

In this case, not only has the amplitude of the wall oscillations increased to about 
30% of the channel height, but the wave pattern has changed as well. The overall 
period t ,  has increased to about 20.75. There is alternation between large and small 
oscillations; and the oscillation is dominated by a slower phase with roughly half of 
the first fundamental frequency in case I. In other words, the motion appears to have 
experienced a 'period-doubling bifurcation'. 

The streamline contours are shown in figure 12. More eddies are generated along 
both sides of the channel. At the start, while the pressure at x = 8.5 is largest, the 
eddy immediately downstream of the indentation appears to be enlongated at first, 
then it splits into two. One of the eddies moves upstream and is dissipated near the 
membrane, the other propagates downstream and is eventually smeared out there. 
During the second pressure peak there is only small wall movement, therefore the 
same eddy stays more or less stationary. It is slightly enlongated at t E 47.21, with a 
possible tendency to split into two, but it returns to its rounder shape at a later time, 
t = 49.17. This shape is retained until the next period starts. 

The wave crests and troughs B, C, and D are plotted against time for case I1 in 
figure 13. It is seen that the vorticity wave is travelling at a somewhat greater speed 
than in case I ;  the average propagation speed of crest B is about 0.527. 

(c) Case 111: p = 35 

As tension is further reduced by increasing p to 35, the wall oscillates violently and 
rather irregularly, as shown in figures 14 and 15. The amplitude of the oscillations 
has now increased to be almost 70% of the channel height. There is no evidence 
of overall periodicity; the 'period between the two wave 'triples' is about 42.1, 
suggesting that a further period-doubling bifurcation has occurred, though the shape 
of the wave form indicates that the bifurcations have greater complexity than simple 
period-doublings. 
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FIGURE 10. Case 11: (a)  elastic wall position y ,  at x, = 8.5 plotted as a function of time; (b )  time 
evolution of the elastic wall shape during the period t = 35.6-56.35, marked as darker line from (i) 
to (ii) in (a). 

The streamline plots for case I11 are shown in figure 16. During the first ‘triple- 
peak’ phase, from t = 11.78 to 33.99, see figure 16(a-j), several waves, with associated 
eddies, are generated downstream of the membrane. The sizes and the strengths of 
the eddies become much bigger than in the previous two cases. The ‘eddy doubling’ 
occurs both at the upper corner and on the bottom of the channel. The following 
double-peak phase, from t = 33.99 to 52.99, seems to have kept the character of the 
double-peak phase of case 11, as is shown in figure 16(k-t). 

The wave crests and troughs B, C, and D during the first ‘triple-peak’ phase are 
plotted against time in figure 17. The average wave speed during this period (at the 
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Case 11: (a)  wall pressure at x, = 8.5 plotted as a function of time; (b )  time eve-tion o 
the pressure distribution along the elastic wall, during the period t = 35.6-56.35,' marked as darker 
line from (i) to (ii) in (a). 

position B) is about 0.572, though the actual wave speed changes during this phase; 
the wave travels more slowly during the first peak, then faster during the second peak, 
and then faster still during the third peak. This is different from cases I and 11, see 
figure 9 and figure 13, where only a small and smooth change in wave speed is seen. 

4.4. The sucking phenomenon 
When the tension is reduced even further, we have a problem of the wall becoming 
too soft. The membrane at the downstream end is sucked under the rigid wall so 
far that it intersects the right-most spine. We cannot yet deal with the problem 



t =  35-61 

37.38 

38.91 

Unsteady Jlow in a two-dimensional collapsible channel 21 1 

40.50 (4 

42.46 (e )  

cn 44.83 

47.2 1 (s) 

(h)  49.17 

(0 51.18 

0’) 53.53 

RGIJRRE 12. Instantaneous streamlines for Case 11. ut, to fifteen equally spaced streamlines are dot- 
ted between ymnx and ymb, during the ‘double-peak’ period t = 35.656.35: (a) ymax = 1.0948, 

( d )  wmax = 1.0093, vmin = -0.0125; (e) y m a  = 1.0310, vmin = -0.0069; (f) vnuu = 1.0720, 
vmj,, = -0.0369; 

vmb = -0.0192; 
(i) vmax = 1.0582, tpmh = -0.0040; 0’) vmnax = 1.0948, vmin = -0.0369. 

(b)  W- = 1.0838, vmin = -0.0814; 

(g) vmx = 1.0404, ~ m i n  = -0.0399; 

(c) vnrcuc = 1.0400, vmi,, = -0.0434; 

(h )  vrnx = 1.0364, vmin = -0.0137; 

when the wall position is multiple-valued, and the numerical scheme therefore breaks 
down. However, we can observe the early stages of the process since our spines are 
at an angle to the vertical, as shown in figure 18 for the case f i  = 50,Re = 300. 
Sucking under is also a phenomenon that has been observed in experiments with 
a thin tube (Ohba et al. 1984). It is to avoid the phenomenon that a thick tube 
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FIGURE 13. Case 11, positions of wave crests and troughs B, C, and D plotted against the scaled 
time tlt,, where t, E 20.49 is the period. 

is preferred in many experiments on flow in collapsible tubes (Bertram 1982,1986; 
Bertram et al. 1990,1991). 

In principle, it would be possible to simulate the sucking phenomenon by using a 
more suitable grid. However, the assumption of constant tension in our model is also 
questionable if the tension is too low. Therefore, a more sophisticated wall model will 
be required before the sucking phenomenon can be properly investigated. For this 
reason, we will not pursue it any more in this study. 

5 .  Discussion 

5.1.1. The constant tension assumption 
One of the assumptions of this model is that tension remains constant throughout 

the oscillations. This is problematic since (a)  there is viscous shear stress which causes 
the tension to fall with distance along the membrane, and (b )  the overall membrane 
length S changes, causing the tension to vary with time. In fact, the tension at position 
s along the membrane is a function of the membrane length and the shear stress: 

5.1. Justijication of the model assumptions 

PS 

where S is the membrane length, s is the arclength measured from the downstream 
end, where T = To(S), and nl is the fluid shear stress in the tangential direction along 
the membrane. 

The second part of equation (20) represents the shear stress contribution, whose 
effect on the membrane has been investigated in some of the previous steady flow 
studies (Lowe & Pedley 1995; Rast 1994). It was found, however, that the variation due 
to shear stress is small compared with the initial tension To(S) fixed at the downstream 
end of the membrane: for the parameter values chosen here, the maximum shear 
stress contribution is about 5% of To(S). Therefore to keep the model simple to start 
with, it seems reasonable to neglect the shear stress contribution. 
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FIGURE 14. Case 111: (a)  wall position y, at x, = 8.5 plotted as a function of time; ( b )  time 
evolution of the elastic wall shape during the 'triple-peak' phase, t = 11.79-33.45, marked as darker 
line from (i) to (ii) in (a). 

The first part To(S) of (20) is a function of the membrane length, and it may vary 
during the oscillations. To assess the validity of neglecting this, we calculated the 
membrane length variations for the three cases at Re = 300, and p=30, 32.5, and 
35. Figure 19 shows that the variation (S - &)/SO, where So is the initial membrane 
length at the equilibrium state, is quite small during the oscillations. For case I, where 
the wall oscillation amplitude is about 20% of the channel height, the maximum 
variation (S - So)/&, is only 1%. For case 11, where a wall oscillation amplitude is 
about 30% of the channel height, the maximum variation is only about 2%. Even for 
the most violent oscillation, case 111, where the oscillation amplitude is about 70% of 
the channel height, the maximum variation still remains about 5%. This implies that 
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FIGURE 15. Case 111: (a)  wall pressure at x, = 8.5 plotted as a function of time; (b)  time evolution 
of the pressure distribution along the elastic wall during the ‘triple-peak’ phase, t = 11.79-33.45, 
marked as darker line from (i) to (ii) in (a). 

the overall variation of tension is within 5% of the initial equilibrium tension To for 
all our calculations. This should not have significant effect on the basic qualitative 
features of the system, and hence on the self-excited oscillations illustrated above. 

5.1.2. The wall mouement assumption 
The static membrane equation used in the model determines the equilibrium state 

of the elastic wall at every time instant; it does not, however, track the movement 
of individual elements of the wall. In general, if the the wall shape is circular, then 
a self-consistent wall motion with the constant tension assumption should be one 
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FIGURE 16. Instantaneous streamlines for Case 111. Up to fifteen equally spaced streamlines are plot- 
ted between yniux and ipminr during (a-j) the first ‘triple-peak’ period and (k- t )  the first ‘double-peak’ 
period: (a) I,!I,,,~.~ = 1.1708, yniin = -0.1672; ( b )  vmax = 1.1559, y,,in = -0.1631; (c) vmax = 1.1397, 
ymin = -0.1404; ( d )  ymax = 1.0856, ymin = -0.0967; (e )  y,nax = 1.0287, ymin = -0.0694; 

ymin = -0.0010; (i) wmax = 1.0163, ymin = -0.0018; (j) ymax = 1.0888, wmin = -0.0213. 
(f) ymox = 1.0095, ymin = -0.0264; (g) ymax = 1.0027, ~ m i n  = -0.0089; (h)  vmax = 1.0019, 

in which all elements are equally stretched or compressed. This, however, would be 
difficult to prescribe in advance without knowing the final position of each element, 
and would require a further round of iterations to achieve. 

To apply the no-slip boundary conditions on the membrane, we assumed that the 
wall is constrained to move in the direction normal to the wall surface, which does 
represent a self-consistent wall motion when the membrane forms a circular arc. Since 
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FIGURE 16 (continued). ( k )  ymax = 1.1297, ymrn = -0.1155; (1) vmax = 1.0999, ymln = -0.1043. 
(m) wrsax = 1.0602. ymln = -0.0611; ( n )  wmax = 1.0351, wnln = -0.0371; (0) y,,lax = 1.0093, vymLn = 

-0.0107; ( p )  v m a x  = 1.0237, 1 / 1 , t w  =z -0.0098; ( 4 )  v m a x  = 1 0605, vmrn = -0.0081; (Y) vmnx = 1.0296. 
v m m  = -0.0288; (s) w m u \  = 1.0355,  ma, = -0.0111; ( t )    ma^ = 1.0838, vmln = -0.0158. 

this does not require the final position of the elements to be known, it provides a 
feasible alternative choice to the wall motion. 

One can check whether the choice of wall motion has an important bearing on 
the oscillations by making a different assumption and comparing the results. The 
alternative choice made here is that of vertical (y-direction) wall motion. According 
to linear theory this should give a good approximation to the actual wall motion 
when the wall slope is small. We therefore compared the wall motions y, at x, = 8.5 
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FIGCIK~ 17. Case 111, positions 01- wave crests and troughs B, C, and D plotted against the scaled 
time t / t , ,  where t ,  ‘v 20.54 is the duration of the ‘triple-peak’ phase of the oscillation. 
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FIGURE 18. Membrane is sucked underneath the rigid wall at the downstream corner and causes 
the numerical scheme to break down at Re = 300 and B = 50. 

obtained from these two assumptions for a case where T = T0/25, R e  = 300; 
see figure 20(a). In this case, the wall motion approaches its equilibrium position. 
corresponding to steady flow, in a similar manner for each assumption. We also 
compared the two results for case I which has a small oscillation amplitude; see 
figure 20(h). Again, the two assumptions lead to very similar wall motions. However, 
when the wall slope is large, the normal assumption is considered to make more sense 
than the vertical one. The latter cannot describe, for example, the extreme case when 
the membrane wall is sucked under the downstream rigid wall, as seen in 94. 

Of course, if we wish to understand in more quantitative detail the effects of the 
assumptions in this subsection and the previous one, 45.1.1, we will need to investigate 
more realistic wall models for the coupled problem in future. 

5.2. Possible mechanisms of the instabilitji and oscillations: energy dissipation 
Simple models of oscillations in finite-length collapsible tubes, whether lumped (Katz, 
Chen & Moreno 1969; Schoendorfer & Shapiro 1977; Bertram & Pcdley 1982), or 
one-dimensional (Matsuzaki & Fung 1979; Cancclli & Pedlcy 1985; Matsuzaki & 
Matsumoto 1989; Jensen 1990, 1992), have indicated that there must be some mech- 
anism for energy to be dissipated as the flow passes the time-dependent indentation. 
If the fluid mechanics were purely inviscid there would be no mechanism for the 
collapse of a massless membrane, once begun, to be halted and reversed, and there 
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FIGURE 19. The variation of the overall membrane length, (S - &)/So x loo%, during the 

oscillations for (a) case I, SO = 5.17509; ( b )  case 11, SO = 5.18890; and (c) case 111, So = 5.19018. 

would be complete collapse to zero cross-section. We are interested in the principal 
site of such energy loss in the present case. 

Vorticity waves are generated in all cases of self-excited oscillation, and appear 
to be very similar to those obtained by Ralph & Pedley (1990) in channel flow 
with a prescribed indentation. This strongly suggests that the movement of the wall 
itself, whether self-excited or prescribed, is responsible directly for the presence of 
vorticity waves in the channel downstream. At first sight this also suggests that 
energy transfer into the vorticity waves might be the required dissipative process. 
However, the mechanism of wave generation can be shown to be an essentially 
non-viscous consequence of the displacement of a non-uniform vorticity distribution 
(Pedley & Stephanoff 1985; Ralph & Pedley 1989), and attempts to couple the 
inviscid description of the waves to displacements of an elastic membrane have failed 
to produce oscillations (Borgas 1986; L. Nicolas, private communication). 

The process of flow separation from a constriction in a tube at high Reynolds num- 
ber does lead to substantial energy loss, a crude model of which has formed the basis 



Unsteady $ow in a two-dimensional collapsible channel 

I_ 

- 

- 

Y W  - -- - 

219 

t 

0.7 

0.6 

Yw 0.5 

0.4 

0.3 
0 10 20 30 40 

t 
FIGURE 20. Comparison of wall positions y, at x, = 8.5 obtained from the normal wall motion 
assumption (solid) and vertical wall motion assumption (dashed), for (a) /I = 25, Re = 300; and ( b )  
fl  = 30, Re = 300. The horizontal lines are the corresponding steady solutions. 

of successful models in the lumped or one-dimensional category (e.g. Schoendorfer & 
Shapiro 1977; Cancelli & Pedley 1985; Matsuzaki & Matsumoto 1989; Jensen 1990, 
1992). Examination of the streamline plots in figures 8, 12, and 16 of this paper shows 
that the flow does indeed separate from the constriction. However, these plots also re- 
veal that the point of flow separation varies very considerably during the oscillations, 
especially for larger amplitudes (figures 12, 16), and does not always occur at (or just 
downstream of) the point of minimum cross-section as it would in steady flow and as 
assumed in the above simplified models. Sometimes, indeed, the flow is not separated 
anywhere on the indentation even when it is quite large (e.g. figure 16, t = 16.28), 
whereas at other times it does separate from the narrowest point (figure 16, t = 11.79, 
31.02). Morever, there does not seem to be a simple phase lag between indentation 
height and separation point, as suggested by experiments on impulsively started flow 
(Bertram & Pedley 1983). This suggests to us that there may be a coupling between 
the phase of the vorticity wave and the position of the separation point, and hence 
perhaps to the energy dissipation required for the membrane oscillations. 

We have used our numerical results for Re = 300 to compute the rate of viscous 
energy dissipation per unit volume, @ = (uSi + ~ ~ , ~ ) ~ / 2 R e ,  at each point in the flow 
domain at a number of times throughout the computation. The greatest local values 
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of @ generally occurred in the thin boundary layers on the two channel walls in the 
neighbourhood of and upstream of the narrowest point. However, moderately high 
values were also seen in various places downstream, in the shear layer at the edge 
of the primary separation zone and on the channel walls near the crests and troughs 
of the vorticity wave. To see which should be regarded as dominant, we present the 
results in the form of volume integrals of @ over the whole channel cross-section and 
over two ranges of x-values: 5 ,< x ,< 8.5, representing the flow under the constriction 
as far as (approximately) the narrowest point, and 8.5 ,< x ,< 20, representing the 
flow downstream of the narrowest point, including the strongest vorticity waves. To 
see that this does not give undue prominence to the downstream section, note that 
in steady flow the upstream section has over 10 times more dissipation than the 
downstream section (see the horizontal lines on figure 21). 

The dissipation values as functions of time are given for case I ( p  = 30) in figure 
21(a); the times chosen correspond to the oscillation cycle for which the streamlines 
are shown in figure 8. We see that in this case the upstream dissipation sites dominate 
the downstream throughout the cycle, but that at the times when the total dissipation 
is greatest, the downstream section contributes a greater proportion. We note that 
there is a slight delay between the time of greatest constriction and that of maximum 
dissipation, but for these gentle oscillations the boundary-layer dissipation wins. 

The corresponding results for cases I1 and I11 ( p  = 32.5 and 35.0) are shown in 
figures 21(b) and 21(c); the times chosen are those for which streamlines are presented 
in figures 12 and 16(a-j). There are two things to notice in particular: (i) phases of 
the motion exist for which the downstream dissipation exceeds the upstream, and (ii) 
the dissipation is far from quasi-steady. In this case the separated-flow dissipation is 
important. It is clear that the boundary layers, the unsteady separation and the link 
to the vorticity waves need a much more detailed investigation. 

It would be desirable to relate the instability found here to previous models of 
boundary-layer instability over infinitely long compliant walls (Carpenter & Garrad 
1986; Carpenter & Morris 1990; Weaver & Paidoussis 1977; Grotberg & Reiss 
1984; Grotberg & Shee 1985; Lucey & Carpenter 1992; Davies 1995; Davies & 
Carpenter 1995, 1996). Apart from Tollmien-Schlichting waves, which occur when 
the boundaries are rigid, the two main types of such boundary-layer instabilities 
are: divergence, which occurs in the form of a stationary or very slowing moving 
wave when the wall stiffness is unable to balance the perturbation pressure exerted 
by the fluid; and travelling-wave flutter, which typically has phase speeds close to 
the free-stream velocity and is associated with an irreversible energy transfer from 
the fluid to the wall. However, the oscillation in our model normally occurs at a 
velocity well below any of the critical velocities of those flow-induced instabilities, 
as calculated by Davies & Carpenter (1995, 1996), for example. This is not too 
surprising since the critical velocities were calculated using linear theory for a basic 
flow with zero mean pressure gradient in an infinitely long channel with compliant 
walls which are parallel (Davies 1995; Davies & Carpenter 1995, 1996). Probably the 
most significant difference in our case is the fact that the steady state is one in which 
the membrane is already significantly deformed, so even for infinitesimal disturbances, 
analysis of the instability requires the time-dependent perturbation of separated flow. 
In addition, the membrane in our case has no mass and the tension is constant, 
meaning that there could not be an irreversible energy transfer from the fluid to the 
membrane, thus precluding travelling-wave flutter. Tollmien-Schlichting waves are 
known to cause instability only when interacting with a travelling-wave flutter or 
on their own at very high Reynolds number (where Re - 8000, C. Davies, personal 
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FIGURE 21. The volume integrals of @ over the whole channel cross-section Jd Jp @dxdy(solid 
curve); the upstream section Jd 1:' @dxdy (dashed curve); and the downstream section Jd 1:: @dxdy 
(dotted curve), for (a)  case I ( p  = 30), ( b )  case I1 ( p  = 32.5), and (c) case 111 ( p  = 35). The horizontal 
lines represent the energy dissipation integrals obtained from the corresponding steady solutions. 

communication). Therefore they are highly unlikely to be relevant in the cases studied 
here. Qualitatively, though, we might be able to explain the oscillation in case I (see 
§4.3), in terms of a divergence instability. However, the bifurcations and nonlinear 
evolution of cases I1 and I11 cannot be explained using linear stability theory. 

Finally, it should be remembered that channel flow instabilities become three- 
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dimensional at sufficiently large Reynolds number and sufficiently far downstream 
from the initial disturbance (e.g. Orszag & Patera 1983), and there is no reason to 
doubt that the same will be true for flow in a collapsible channel. Certainly the 
vorticity waves observed by Stephanoff & Pedley (1985) became three-dimensional 
far downstream. Therefore even a complete survey of the present two-dimensional 
model will not give the whole picture, especially when it is remembered that most 
experiments are performed on collapsible tubes. 

5.3. Chaos? 
It is still an open question whether the dynamical system represented by flow through a 
compressed elastic tube of finite length is one that gives rise to chaotic behaviour. Such 
behaviour is certainly indicated by the (turbulent) experiments (Bertram 1982, 1986; 
Bertram et al. 1990, 1991) although chaos could not be certainly identified because of 
the limited lengths of recording made in the experiments, and by the one-dimensional 
model of Jensen (1992). We too are limited in the lengths of time for which the 
computations could be run. However, strong evidence for chaos in our numerical 
simulation comes from the dependence of the long-time wall motions on the tolerance 
level e (see 93.4 and figure 3 ) .  Further numerical investigation is clearly required. 

5.4. Comparison with experiment 
It is desirable to compare our results with experimental measurements. However, 
a direct comparison is not feasible since no experimental data are available in the 
literature for flow in a two-dimensional collapsible channel. Nevertheless, there 
are indirect experimental observations in tubes which may support the predictions 
here. First, the location of the calculated unstable points seems to agree with the 
experimental observations of the conditions at which steady flow gives way to self- 
excited oscillations in tubes (see figure 2 in Bertram et al. 1990; Bertram 1982; Bonk 
& Ribreau 1978; Luo & Pedley 1995), as we have discussed in 84.2. Second, the 
wall and pressure oscillation patterns, with ‘double-peak‘ and ‘triple-peak’ phases, 
look analogous to the recordings of the tube area and pressure in the experiments 
by Bertram et al. (1990), and by Bertram (1982). These also include apparent 
chaos as the oscillation becomes more complicated (Bertram et al. 1991). Third, 
the vorticity waves generated downstream have similar features to those observed 
in the case of a prescribed indentation, which have been visualized in experiments 
(Pedley & Stephanoff 1985). The wave speed is also comparable to the speed of the 
indentation-flow vorticity wave; see figure 9. And finally, when the tension is too low, 
implying a very thin membrane, we have the membrane sucking, which agrees with 
experimental observations in very thin tubes (Ohba et al. 1984). Thus many features 
of the oscillations predicted are consistent with a variety of experiments. 

6. Conclusion 
A time-dependent code has been developed using a simultaneous approach and 

an adaptive mesh to solve the flow-membrane interaction problem. The stability of 
the steady solutions from our previous study (Luo & Pedley 1995) is investigated by 
simulating the unsteady flow after applying a small perturbation to these solutions. 

For small Re, the unsteady flow approaches the corresponding steady flow for all 
values of tension and external pressure that were studied, i.e. the steady solutions 
for small Re  are stable. For moderate Re ( R e  = 100 - 500), however, the unsteady 
flow approaches the steady flow only if T is large enough. If T is smaller than T, 
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(b > 27.5 for Re = 300, say), then the steady solution becomes unstable. The unstable 
tension T, increases with Re, and is smaller than (but quite close to) the bulging 
tension Tb (Luo & Pedley 1995) in all the cases studied. For all Re in the 'moderate' 
range, self-excited oscillations were found for T < T,. The flow patterns become 
increasingly complicated as tension is decreased from T,. There is a lower value of 
T below which the amplitude of the membrane motion becomes very large and the 
membrane tends to be sucked underneath the rigid wall downstream. This sucking 
phenomenon has been observed in experiments on thin tubes (Ohba et al. 1984). 

The present simulation provides a good opportunity to look at the details of 
the flow pattern, and should enable us to build up improved analytical models to 
investigate and understand the physical mechanisms. 

The next stage of the numerical work is to improve our model by introducing a 
properly described wall using beam theory. Ultimately, we would also like to see 
whether a fully coupled, three-dimensional model will give similar results. Before that, 
however, we have already shown that a rich variety of self-excited oscillations exists 
even over a small parameter range for this two-dimensional model problem based on 
very simple wall assumptions. 

We are grateful to the University of Leeds Academic Development Fund and to 
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