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The effect of wall inertia on the self-excited oscillations in a collapsible channel flow
is investigated by solving the full coupled two-dimensional membrane–flow equations.
This is the continuation of a previous study in which self-excited oscillations were
predicted in an asymmetric channel with a tensioned massless elastic membrane (Luo
& Pedley 1996). It is found that a different type of self-excited oscillation, a form
of flutter, is superposed on the original large-amplitude, low-frequency oscillations.
Unlike the tension-induced oscillations, the flutter has high frequency, and grows with
time from a small amplitude until it dominates the original slower mode. The critical
value of tension below which oscillations arise (at fixed Reynolds number) is found to
increase as the wall inertia is increased. The rate at which energy is (a) dissipated in
the flow field and (b) transferred to the wall during the flutter is discussed, and results
at different parameter values are compared with those of a massless membrane. There
is also a discussion of whether the onset of flutter, or that of the slower oscillations,
is correlated with the appearance of flow limitation, as is thought to be the case in
the context of wheezing during forced expiration of air from the lungs.

1. Introduction
There are number of physiological applications that are related to the fluid me-

chanics of flow in collapsible tubes. Examples are arteries compressed by a sphygmo-
manometer cuff, intramyocardial coronary blood vessels during systole, pulmonary
blood vessels in large intrathoracic airways during forced expiration, the urethra
during micturition, and the glottis during phonation (Shapiro 1977; Kamm & Pedley
1989).

Many experiments with model systems of collapsible tubes in the laboratory have
revealed a rich variety of self-excited oscillations (Conrad 1969; Brower & Scholten
1975; Bonis & Ribreau 1978; Bertram 1982, 1986; Bertram, Raymond & Pedley 1990,
1991). In these experiments either water or air flow has been studied in a segment
of rubber tube. The observations have stimulated several theoretical studies aimed
at understanding the possible mechanisms of the oscillations. Many such studies
have been based on plausible but ad hoc one-dimensional models, which may explain
some of the phenomena that have been observed in the experiments (e.g. Reyn 1974;
Shapiro 1977; Cancelli & Pedley 1985; Jensen & Pedley 1989; Jensen 1990, 1992;
Matsuzaki & Matsumoto 1989; Pedley 1992), but recently there have also been
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numerical simulations based on a two-dimensional model, i.e. flow in an asymmetric
collapsible channel (Rast 1994; Lowe & Pedley 1995; Lowe, Luo & Rast 1996; Luo
& Pedley 1995, 1996). This approach has provided a rational, yet feasible, description
of an experimentally realizable system, although it is still some way from the full
three-dimensional tube system.

An earlier stage of these studies concentrated on the existence of steady solutions
for flow in a channel with part of one wall being a thin membrane, for different values
of the longitudinal tension along the membrane, and different values of Reynolds
number, Re, and downstream transmural pressure (external minus internal). It was
found that there was a critical value of tension, Tc, depending on Re, below which no
numerical solution was attainable (Rast 1994; Lowe & Pedley 1995; Luo & Pedley
1995). However, simple one-dimensional analyses suggest that the breakdown was
more likely to be numerical than physical. Further study was carried out on the
stability of the steady solutions, and the main conclusion was that they give way to
a range of self-excited oscillations for values of tension smaller than Tu, where Tu is
much larger than Tc and increases with Re (Luo & Pedley 1996).

All these studies were carried out for an elastic wall behaving like a tensioned
membrane, without wall inertia. The reason for neglecting the wall inertia was that
it comes into the equation as the wall-to-fluid density ratio multiplied by the ratio
of membrane thickness to the whole channel width, which is very small if the fluid
is water. In this paper, we will extend the previous study by considering the effects
of wall inertia, not only to justify the assumption made in the previous study, but
also to look at the cases where the wall inertia is not negligible, say if the fluid is
air.

The study of flow-induced oscillation in tubes and channels has a long history, with
proposed applications in either engineering (Carpenter & Garrad 1986; Carpenter
& Morris 1990) or physiology, notably in the context of expiratory wheezing in
airways (Gavriely & Grotberg 1988; Gavriely et al. 1989; Grotberg & Gavriely
1989; Webster et al. 1985). Almost all these studies, however, consisted of linear or
nonlinear instability theories for flow in a long, parallel-sided channel, so in the basic
state the steady flow is unidirectional and the elastic walls are planar. This should be
contrasted with the present case, in which the steady flow, from which the oscillations
grow, involves a large deformation of the wall and separation of the flow (Luo &
Pedley 1995, 1996). In fact, one of the principal questions of interest in the context
of forced expiration from the lungs is whether there is a causal relationship between
wheezing and ‘flow limitation’, i.e. the phenomenon that increasing a large expiratory
driving pressure does not lead to an increase in flow rate on account of airway
collapse. Gavriely et al. (1989) and Grotberg & Gavriely (1989) sought to analyse the
phenomenon by applying their flutter theory, developed for a parallel-sided channel,
to a channel of slowly varying width, representing the narrowest part of the collapsed
airway. Their results showed an encouraging agreement with a model experiment
(indicating that flow limitation is necessary but not sufficient for the onset of flutter),
but as far as we know the present study is the first time that collapse and flutter will
have been examined together, self-consistently, in the same model problem.

The two-dimensional model is briefly reviewed in §2, and the numerical methods
are given in §3, which focuses mainly on how to incorporate the wall inertia into
the numerical code. Computational accuracy is discussed at the end of the section.
Results are compared with those from the massless wall, obtained previously (Luo
& Pedley 1996), in §4, followed by a full discussion and comparison with the flutter
theories in §5.
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Figure 1. Two-dimensional flow configuration. Steady Poiseuille flow with average velocity U0

entering upstream; pd = 0 is pressure at the downstream end of the channel, pe is the external

pressure and T is the tension in the membrane. For explanation of other symbols, see text.

2. The mathematical model

2.1. Assumptions

The flow configuration is shown in figure 1. The rigid channel has width D; one part
of the upper wall is replaced by an elastic membrane subjected to an external pressure
p̄e. Steady Poiseuille flow with average velocity U0 is assumed at the entrance; the
fluid pressure at the downstream end is zero. The flow is incompressible and laminar,
the fluid having density ρ and viscosity µ. The longitudinal tension T̄ is taken to
be constant, i.e. variations due to the wall shear stress or the overall change of the
membrane length are considered to be small relative to the initial stretching tension.

2.2. Governing equations

The dimensionless momentum and continuity equations are, in standard notation,

∂ui

∂t
+ ujui,j = −p,i +

1

Re
ui,jj , (1)

ui,i = 0, i = 1, 2, (2)

where Re = U0Dρ/µ is the Reynolds number. The dimensionless membrane equation
is:

m
∂2η

∂t2
− κT − σn + pe = 0, (3)

where m is the ratio of the inertia of the membrane to the inertia of the fluid (see
below), η is the dimensionless displacement of the membrane in the normal direction,
σn is the dimensionless fluid stress acting on the membrane in the normal direction,
pe is the external pressure, T is the longitudinal tension, and κ is the wall curvature
which can be expressed as the derivative along the membrane of the angle made by
the tangent to the elastic boundary with the x-axis:

κ =
∂φ

∂s
. (4)
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All the variables are non-dimensionalized as

ui = ui/U0 (i = 1, 2), σ = σ/ρU2
0 , p = p/ρU2

0 ,

T = T/ρU2
0D, x = x/D, y = y/D,

η = η/D, s = s/D, t = tU0/D, m =
ρww

ρD
,

 (5)

where an overbar denote-dimensional variables. Note that ρw and ρ are the densities

of the membrane and fluid, respectively, and w denotes the thickness of the membrane

which is taken to be much smaller than the channel width D. Therefore, if the fluid

density is comparable with the membrane density, say if we use water and rubber,

then m should be very small; m ' 0.01 is a reasonable value for comparison with

certain experiments (Sakurai & Ohba 1986; Ohba et al. 1984). Increasing m will

yield results more relevant to gas flows than liquid flows, or to thicker membranes.

However, quantitative agreement with tube flow experiments is not to be expected,

because in this model all the stiffness of the collapsible segment comes from tension

in the membrane, not bending of the tube wall which is the major factor in many

tubes.

2.3. Boundary and initial conditions

The boundary conditions imposed on the flow domain are:
inlet flow: u = 6y(1− y), v = 0 at x = 0, 0 6 y 6 1,
rigid walls: u = v = 0 at y = 0, 0 6 x 6 Lu + L+ Ld,

at y = 1, 0 6 x 6 Lu and
Lu + L 6 x 6 Lu + L+ Ld,

elastic section: u(t) = uw(t); v(t) = vw(t) at x = xw(t), y = yw(t),
outflow: σt = 0, σn = 0 at x = Lu + L+ Ld, 0 6 y 6 1,

where, far downstream, the normal stress is equal to the pressure, chosen to be zero

here. The velocity is prescribed on all boundaries except at the outlet, which is taken

to be stress free (σt is tangential stress), and on the elastic section, where xw and

yw are the membrane coordinates of a general point on the wall, which are updated

during the computation using the method of spines (Luo & Pedley 1996).

Strictly speaking, the direction of the velocity on the elastic section is not known

in our model since a membrane equation is used to describe the wall mechanics and

individual elements of the membrane are not tracked. For simplicity, therefore, we

make a further ad hoc assumption: we assume that the wall points always move in the

direction normal to its surface. This is approximately consistent with the constant-

tension assumption used here and is in fact exact if the wall shape remains circular.

Results obtained with this assumption differed very little from those obtained on the

assumption that wall points move only in the y-direction (Luo & Pedley 1996).

For values of Re much greater than 1, as in most cases examined here, the stress-free

condition at the downstream end is the best choice for simulating the corresponding

experiments where the downstream pressure is fixed, though care must be taken to

make Ld sufficiently large (see Luo & Pedley 1996).
For every time-dependent computation, the initial condition was taken to be the

computed steady state for a slightly different value of T (tension). As T is decreased,
therefore, one can determine critical conditions for instability by finding the first value
of T for which the perturbation does not decay to zero.
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Figure 2. Part of a typical adaptive mesh of the flow domain. There are 5060 triangular elements
and 10603 nodes, with 2829 movable nodes located in section B.

2.4. Parameters

The parameters used here are the same as in the previous unsteady flow study (Luo &
Pedley 1996). However, to concentrate on the effects of wall inertia, here we will only
consider cases with Re = 300. Hence the corresponding dimensionless parameters are

Lu = 5, L = 5, Ld = 30, Re = 300, T = 178.916/β, pe − pd = 1.953,

where β is a parameter (> 1) which is increased in order to investigate the effect of
lowering membrane tension. The numerical constants in T and pe − pd arose from
the desire to compare the results of Luo & Pedley (1995, 1996) with those of Lowe
& Pedley (1995), who used a different non-dimensionlization. In the previous study,
it was found that for a tension with β > βc, where βc is a critical value (βc = 27.5
for Re = 300), steady flow gives way to self-excited oscillations (Luo & Pedley 1996).
Three values of β were investigated in detail for a massless membrane: these were
β = 30, 32.5 and 35, named as Case I, Case II, and Case III, respectively. Here we
will investigate these cases again with wall inertia, plus cases at a higher value of
tension (β = 25).

3. Methods
The method of solving the unsteady problem when the wall has no mass has been

described in detail in a previous paper (Luo & Pedley 1996) where a simultaneous
approach is employed, i.e. the fluid and wall motions are computed together. The
movable mesh is made adaptive by using the method of spines in a mixed Lagrangian–
Eulerian reference frame (Rast 1994; Silliman 1979; Ruschak 1980; Saito & Scriven
1981). A second-order predictor-corrector difference scheme with a variable time
increment controlled by the error tolerance is used to solve the time-dependent
coupling problem (Gresho, Lee & Sani 1979). In this section, we will concentrate on
how to incorporate the inertia term of the membrane into the numerical scheme.

The flow domain is divided into three six-node triangular finite element subdomains
(figure 2). Subdomains A and C have nodes fixed in space, while subdomain B, under
the elastic section, contains the mesh with moving nodes.

The elemental nodes under the elastic section lie along the spines which emanate
from a fixed origin Os. Each spine k is defined by the Cartesian coordinates of its base
point, xkb and ykb(= 0), and the direction from that point to the origin. The position
of node i on spine k is given in terms of a fixed fraction ωk

i of the spine height hk as

xki = xkb + αkxω
k
i h

k, (6)

yki = ykb + αkyω
k
i h

k, (7)

where α = (αkx, α
k
y) is the direction vector of spine k, and the spine height is simply the

distance from the spine base to the elastic surface in the direction of α. Each spine
height is an unknown in the problem and is to be determined as part of the solution.



258 X. Y. Luo and T. J. Pedley

The variables are as usual expanded isoparametrically in area coordinates, (ζ, η),
employing a mixed interpolation, with u, v, x, and y sharing quadratic and p linear
expansions,

u =

6∑
i=1

uiNi(ζ, η), v =

6∑
i=1

viNi(ζ, η), p =

3∑
i=1

piLi(ζ, η), (8)

x =

6∑
i=1

xi(h, θ)Ni(ζ, η), y =

6∑
i=1

yi(h, θ)Ni(ζ, η), (9)

where Li and Ni are linear and quadratic shape functions respectively, and θ is the
angle of a spine with the vertical (Rast 1994). Boundary elements are oriented so
that three nodes (l = 3, 5 and 2) lie along the elastic membrane. The coordinates of
all nodes below the elastic boundary depend on the boundary position, therefore φ,
n̂, ds, and the Jacobian of the coordinate transformation for those elements which
contain these nodes, are all functions of x and y, hence of the spine height h.

As the Newton–Raphson method is used to solve the finite element equations of
the whole system simultaneously, we need to find the inertia term m∂2η/∂t2 in (3)
explicitly in terms of dh/dt, so that we can evaluate the Jacobian matrix analytically
rather than having to extrapolate the wall movement during each time step, which
would introduce additional errors.

Assuming that the wall points move in the normal direction, we have

∂η

∂t
= un = unx + vny (10)

in which un is the normal velocity of the membrane, u and v are the x- and y-
components of fluid velocity on the wall at the point in question, and nx and ny are
the components of the normal vector. Here the normal is a function of time and spine
height h, and the second derivative of the displacement becomes

∂2η

∂t2
=
∂u

∂t
nx +

∂v

∂t
ny +

∂nx

∂t
u+

∂ny

∂t
v. (11)

As the mesh is moving with time, the time derivatives of the velocity need to
be transformed further into the mixed Eulerian–Lagrangian reference frame (Luo &
Pedley 1996)

∂u

∂t
=
δu

δt
−
(
αkx
∂u

∂x
+ αky

∂u

∂y

)
dhk

dt
,

∂v

∂t
=
δv

δt
−
(
αkx
∂v

∂x
+ αky

∂v

∂y

)
dhk

dt
,

where δ/δt denotes a rate of change along the spines, while ∂/∂t is defined in the
Eulerian reference frame. Notice that the second part of these expressions represents
the movement of the nodes in the moving domain. The derivatives of the normal
vector are

∂nx

∂t
=

∂

(
∂y

∂L3

/
∂s

∂L3

)
∂t

=

∂

∂t

(
∂y

∂L3

)(
∂x

∂L3

)2

− ∂

∂t

(
∂x

∂L3

)
∂x

∂L3

∂y

∂L3(
∂s

∂L3

)3
, (12)
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∂ny

∂t
=

∂

(
− ∂x

∂L3

/
∂s

∂L3

)
∂t

=

∂

∂t

(
∂y

∂L3

)(
∂x

∂L3

)(
∂y

∂L3

)
− ∂

∂t

(
∂x

∂L3

)(
∂y

∂L3

)2

(
∂s

∂L3

)3
, (13)

where L3 is the shape function along the elastic boundary, (∂s/∂L3)
2 = (∂x/∂L3)

2 +
(∂y/∂L3)

2 and ∂/∂t(∂x/∂L3), ∂/∂t(∂y/∂L3) can be expressed in terms of dh/dt through
equations (7), (9) and (11):

∂

∂t

(
∂x

∂L3

)
=

6∑
i=1

3∑
k=1

αkx
∂Ni

∂L3

dhk

dt

∂

∂t

(
∂y

∂L3

)
=

6∑
i=1

3∑
k=1

αky
∂Ni

∂L3

dhk

dt
. (14)

Therefore in the formulation of the finite element matrix, the residual vector

R = (Rx, Ry, Rc, Re)
T ,

obtained using the Galerkin residual method, where the subscripts x, y, c, and e
indicate the corresponding residual of the x- and y-momentum, continuity, and
membrane equation, respectively, is the same as described by Luo & Pedley (1996)
except that the membrane residual term Re at the element level now becomes

Rle =

∫
mNl

(
∂u

∂t
nx +

∂v

∂t
ny +

∂nx

∂t
u+

∂ny

∂t
v

)
ds

+Pe

∫
Nlds−

3∑
j=2

σnj

∫
NlLjds− T

3∑
j=1

∫
NlLj

∂φ

∂s
ds

=

6∑
i=1

δui

δt
m

∫
NlNinxds−

6∑
i=1

3∑
k=1

ui
dhk
dt
m

∫
Nlnx

(
αx
∂Ni

∂x
+ αy

∂Ni

∂y

)
ds

+

6∑
i=1

δvi

δt
m

∫
NlNinyds−

6∑
i=1

3∑
k=1

vi
dhk
dt
m

∫
Nlny

(
αx
∂Ni

∂x
+ αy

∂Ni

∂y

)
ds

+

6∑
i=1

6∑
j=1

3∑
k=1

ui
dhk

dt
m

∫
NlNi(nxnyα

k
x + n2

yα
k
y)
∂Nj

∂L3

dL3

−
6∑
i=1

6∑
j=1

3∑
k=1

vi
dhk

dt
m

∫
NlNi

(
n2
xα

k
x + nxnyα

k
y

) ∂Nj

∂L3

dL3

+Pe

∫
Nlds−

3∑
j=2

σnj

∫
NlLjds− T

3∑
j=1

∫
NlLj

∂φ

∂s
ds,

where l denotes the nodal number of the 6-node triangle element used here.
The global finite element matrix equation

M
dU

dt
+ K(U )U − F = R, (15)

where U = {u, v, p, h}, assembled using the frontal technique, is solved with a second-
order predictor-corrector time integration scheme with variable time increment and
Newton–Raphson iteration. A small value of ε (6 10−5–10−7) is chosen as both the
convergence criterion for the Newton–Raphson iterations and the tolerance for the
time-truncation error (Luo & Pedley 1996).
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Figure 3. Wall position yw at xw = 8.5 is plotted as a function of time for the two different meshes
and for the parameters (a) β = 30, m = 0.1, and (b) β = 25, m = 1.0. Results from the two different
meshes are graphically almost indistinguishable.

3.1. Computational accuracy

The accuracy of the numerical code used here has been tested extensively over both
space and time for the time-dependent simulation with massless membrane (Luo &
Pedley 1996). Here however, we have re-tested the code to make sure that the grid size
and time increments are suitable for the coupled membrane–fluid motion when wall
inertia is included. This is because wall inertia is found to cause some small-amplitude,
high-frequency flutter, which may need higher resolution.

The typical grid used has 5060 six-node triangular elements and 10 603 nodes, with
2829 movable nodes (682 elements) located in section B, shown in figure 2. This
is the grid that was tested for many cases and was considered satisfactory for the
parameters of interest when wall inertia is absent. A quick way of checking whether
this grid is good enough when wall inertia is included is to use a different grid with
fewer elements and compare the results. The grid we used for comparison has 4576
elements and 9591 nodes, with 1909 movable nodes (462 elements) located in section
B. Note that the upstream section A and downstream section C remain unchanged in
the two grids, while in section B the number of nodes has been reduced to be about
67% in the grid for comparison. The results obtained from the two grids are plotted
in figure 3(a, b) for two different cases. It is clear that the results are independent of
grid size.

To check the temporal accuracy of the solution, we have checked for different
values of ε in the range of 10−5–10−8, for Re = 300, β = 25, and m = 0.1. This is
the case when high frequency flutter is induced, purely due to the introduction of
wall inertia (see below). The wall oscillations obtained for ε = 10−5, 10−6, 10−7 and
10−8 are shown in figure 4. Because the fluid motion downstream (vorticity waves)
is very sensitive to small numerical perturbations (Tutty & Pedley 1993), it is not
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Figure 4. Wall position yw at xw = 8.5 is plotted as a function of time with error tolerance ε = 10−5

(dotted), ε = 10−6(dashed) ε = 10−7 (dash-dotted) and ε = 10−8 (solid) for β = 25, and m = 0.1.
Results from ε = 10−7 and ε = 10−8 are graphically indistinguishable.

surprising here to observe the ε dependence. We found, as they did, that to obtain
a fully converged solution which does not depend on the value of ε, ε has to be set
extremely small. Figure 4 shows that for m = 0.1, only when ε < 10−7 do the results
start to look graphically indistinguishable for the period of time plotted. However, it
is noted that, between ε = 10−5 and ε = 10−7, there are only small phase differences
in the presented results, indicating that different levels of numerical error can trigger
the instabilities at different times, but without affecting the disturbance amplitude.
Keeping in mind that our main aim at this stage is still to try to understand the
qualitative behaviour, rather than to produce detailed results for the system, we have
minimized the computing cost in the following results by using ε = 10−7 only for
cases with m = 0.1; ε = 10−5 is used for all other cases, in which relatively gentle
oscillations are expected.

4. Results
4.1. m = 0.01

We look first at the case when m is small, say, m = 0.01. This may be relevant to
experiments conducted with water flowing through a rubber tube, because the volume
densities of water and rubber are of the same order and, if the ratio of membrane
thickness w to channel height D is taken to be 10−2, then m = ρww/ρD should be
10−2 also, though note the above proviso that quantitative agreement with tube flow
experiments is unlikely. The aim here is to see if including the wall inertia would
have any significant influence on the self-excited oscillations found previously (Luo
& Pedley 1996).

Figure 5 shows the wall position yw close to the site of maximum deformation,
xw = 8.5, as a function of time t, when β = 30. The solid curve gives the result with
m = 0.01, and the dashed curve is the one with m = 0, i.e. without wall inertia. It
is clear that there is no significant change for this value of m. A similar finding is
obtained for other values of β. In other words, it is probably reasonable to ignore
the wall inertia when modelling blood flow in collapsible vessels and the related
laboratory experiments.
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Figure 5. Wall position yw at xw = 8.5 is plotted as a function of time obtained for small density
ratio m = 0.01 at β = 30, compared with the same results with m = 0 (broken line).

4.2. m = 0.1

Cases I–III: Flutter at a lower tension β > βc

This case is more relevant to flow through a thin rubber tube of a less dense fluid,
though probably not when density is as low as that of air. In order to compare with
the three cases investigated earlier (Luo & Pedley 1996), here we present the typical
results for Case I: β = 30, Case II: β = 32.5, and Case III: β = 35, respectively.
All the solid lines in the figures represent the results obtained with m = 0.1, and the
dashed lines are those with zero m.

Figures 6 and 7 show the results obtained for Case I. The wall position yw at
xw = 8.5 is plotted as a function of time t in figure 6(a), and the evolution of the
whole elastic wall shape with time during one of the periods, marked as a darker line
from t1 to t2 in figure 6(a), is plotted in figure 6(b). The corresponding wall pressure
at xw = 8.5 is also plotted as a function of time in figure 7(a), and the evolution of
the pressure drop along the elastic wall is shown in figure 7(b). Figure 8 and figure 9
give the corresponding results for Cases II and III, respectively. However, in figures 8
and 9 only the point evolution of the wall motion and pressure (as in figures 6a and
7a) is presented.

From figures 6–9, we can see that there appears to be some higher-frequency and
smaller-amplitude oscillation, or flutter, which initially is superimposed on the original
large-amplitude slower mode, i.e. tension-induced oscillations, and then becomes
larger, eventually dominating the original mode. Most of these oscillations are not
periodic. However, by assuming periodicity of the wave from t1 to t2, see figures 6
and 7, we can perform a fast Fourier transform of the data and find the important
dimensionless frequencies present. The frequency of the flutter in Case I is about 0.55,
six times higher than the fundamental frequency of the slower oscillation, which is
about 0.084. There seem to be two higher frequencies for the flutter in Case II, namely
0.51 and 0.71, which are five and seven times the fundamental frequency of the slower
oscillation, respectively. The duration of the computation in Case III (figure 9) was
not long enough for a fast Fourier transform to be useful, though there is evidence
of some flutter.

The oscillations of the wall coordinate yw and wall pressure pw are slightly out of
phase in the flutter modes, but are roughly in phase in the slower modes. For the
slower modes, this has been explained earlier (Luo & Pedley 1996); for the flutter,
the phase difference implies that energy has been irreversibly transferred to the wall.
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Figure 6. Case I: (a) wall position at xw = 8.5 plotted as a function of time for m = 0.1,
β = 30 (solid), compared with the corresponding result for m = 0 (broken), and the steady solution
(horizontal line); (b) time evolution of the displacement distribution along the elastic wall, during
t = 4.80–27.34, marked as darker line from t1 to t2 in (a).

Such irreversible energy transfer occurs during the instability leading to travelling
wave flutter in long elastic channels and will be discussed further below.

Compared with the wall motion, the pressure wave seems to be more sensitive to
the effects of wall inertia. In all the three cases investigated, flutter appears first in
the pressure wave, and then after some time in the wall motion. For Case I, flutter is
seen in the pressure wave after t = 4.8, and in the wall motion after t = 7.5; a similar
sequence of events is observed for Case II. For Case III, flutter is only obvious in
the pressure wave, not in the wall motion. This is presumably because the computing
time was not long enough for flutter to develop in the wall motion. This is interesting,
as it suggests that flutter, unlike the oscillations seen in the previous paper (Luo &
Pedley 1996), is not a consequence of the generation of vorticity waves downstream
(see Pedley & Stephanoff 1985). Here, some waves appear downstream well before
flutter is clearly seen in the wall motion: see figures 10–12 for streamline contours in
all three cases. Presumably these waves are triggered by the pressure fluctuations at
the membrane.

Case IV: Flutter at a higher tension β < βc

The flutter-type oscillations are observed to be superimposed on the original
oscillations for the three cases presented above. In these cases the steady flow was
initially (i.e. without wall inertia) unstable at low enough tension. It is interesting also
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Figure 7. Case I: (a) wall pressure at xw = 8.5 plotted as a function of time for m = 0.1,
β = 30 (solid), compared with the corresponding result for m = 0 (broken), and the steady solution
(horizontal line); (b) time evolution of the pressure distribution along the elastic wall, during
t = 4.80–27.34, marked as darker line from t1 to t2 in (a).

to include wall inertia in a flow which was previously stable. We therefore calculated a
case, Case IV, with β = 25, and m = 0.1. The wall deformation is shown in figure 13(a),
and the pressure distribution is shown in figure 13(b). Obviously, this is a case when
the flow becomes unstable solely due to the presence of the wall inertia, because the
corresponding result for m = 0, shown as a dotted line in figure 13, is stable and
approaches the steady state. There are growing waves both in wall deformation and
in the pressure. The exponential growth rate for both is about the same: 0.005.

It is interesting to note that, although the wave in the wall appears to be regular
and sinusoidal, with fundamental frequency of about 0.6, it is not quite so regular
in the pressure oscillation: see figure 13(b). In fact, it looks as if the pressure wave
has experienced a kind of period-doubling bifurcation, with one regular wave of
frequency of about 0.61, which is slightly out of phase with the wave in the wall,
combined with an additional wave of about half the frequency. There are also times
when the wavenumbers of wall and wall pressure are different. Figure 14(a, b) shows
the membrane displacement perturbation relative to the initial steady case, yw − y0

w ,
and the pressure perturbation along the membrane, pw − p0

w , at four different times
during the flutter. The superscript 0 denotes the initial steady state. The wall wave
has a wavenumber k = 0.4π at the earlier stage, t 6 21.41, i.e. one whole wave for a
length of 5 units along the membrane. Then a higher-order wave with wavenumber
0.8π also sets in as the wave grows (after t = 23.70). However, in the pressure wave,
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the steady solution (horizontal line).

the wavenumber k is almost 0.8π at the beginning of the flutter, t = 21.41, and then
higher-order waves with wavenumbers up to 1.2π are also involved as the flutter
grows.

Apparently, the wall inertia at this density ratio, m = 0.1, has prominent effects
on the nature of the self-excited oscillations. It causes instabilities for significantly
higher values of tension. For Re = 300, we have ascertained that flutter can appear
for β as low as 10, to be compared with a value of 27.5 for a massless wall. Even for
much lower tension, where the slow mode oscillations are generated first, the original
slow mode soon appears to be dominated by the higher-frequency flutter, so it is
the latter that would presumably be observed in experiments. This is consistent with
observations on air flow in a rubber tube (Sakurai & Ohba 1986; Ohba et al. 1984),
though as explained above a direct comparison cannot be made.

4.3. m = 1

Case V: Flutter at m = 1 with β < βc

What happens at a larger value of m, say, m = 1? Such a value implies that the
membrane is thick or much denser than the fluid. Again, we look at the case β = 25,
Case V, which is a stable case for a massless membrane.

The wall displacement is shown in figure 15(a). It seems that for this case, the system
experiences a rather different and much slower oscillation compared with the cases
with m = 0.1. The fundamental frequency of the wall oscillation is found to be about
0.077, with a wavenumber about 0.6π during most of the time period in figure 15(a),
except for the last 10 units of time. The wave grows fast and nonlinearly, with an
exponential growth rate which varies between 0.016 and 0.042, and the amplitude
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time for m = 0.1, β = 35, (solid), compared with the corresponding result for m = 0 (broken), and
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of the oscillation soon becomes too large for the mesh generator to manage. Hence
the numerical scheme breaks down due to a rapid variation near the downstream
end of the membrane. The frequency of this oscillation is much smaller than for the
flutter found above, and is almost comparable to that of the slower modes that arise
without wall inertia, although it grows much faster. This implies that, as m increases,
the mechanisms of the oscillations may have changed. The fact that increasing the
mass ratio actually reduces the flutter frequency has also been observed by Grotberg
and co-workers, who applied a linear theory to flow in a two-dimensional flexible
channel, and found that a larger wall mass is destabilizing, but heavier walls tend to
diminish the flutter frequency towards zero (Grotberg & Reiss 1984).

It should be repeated that the present model is somewhat artificial, and has
only tenuous physiological application. In particular, as the wall thickness increases,
the membrane model itself becomes questionable, even in two dimensions, as the
bending stiffness and wall damping are no longer negligible. Nevertheless, it serves to
demonstrate some possible transitions of oscillation type as the density ratio increases.

5. Discussion
Comparison with linear theories.

It is reasonable to suppose that, if the wall mass parameter, m, were very large,
the membrane would oscillate like a stretched string, virtually unaffected by the
fluid loading. As m is reduced the fluid loading will become more significant, both
modifying the oscillations and generating new ones.

Instabilities of flow past compliant boundaries have been analysed by many authors
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Figure 10. Instantaneous streamlines (lighter lines) and energy dissipation contours (darker lines)
for Case I. Fifteen equally spaced streamlines are plotted between ψmax and ψmin, and fourteen
energy dissipation contours are plotted between 0 and Φmax, during the period t = 4.80–27.34:

(a) t = 4.80, ψmax = 1.12, ψmin = −0.022, Φmax = 16.65;
(b) t = 7.58, ψmax = 1.08, ψmin = −0.073, Φmax = 12.44;
(c) t = 11.32, ψmax = 1.05, ψmin = −0.03, Φmax = 4.40;
(d) t = 13.16, ψmax = 1.06, ψmin = −0.01, Φmax = 4.23;
(e) t = 16.32, ψmax = 1.09, ψmin = −0.07, Φmax = 14.36;
(f) t = 18.56, ψmax = 1.09, ψmin = −0.11, Φmax = 12.72;
(g) t = 20.70, ψmax = 1.08, ψmin = −0.09, Φmax = 4.83;
(h) t = 22.81, ψmax = 1.06, ψmin = −0.03, Φmax = 4.02;
(i) t = 25.19, ψmax = 1.08, ψmin = −0.04, Φmax = 9.04;
(j) t = 27.34, ψmax = 1.18, ψmin = −0.08, Φmax = 12.01.
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Figure 11. As figure 10 but Case II, during the period t = 10.81–30.8:

(a) t = 10.81, ψmax = 1.11, ψmin = −0.04, Φmax = 19.83;
(b) t = 13.00, ψmax = 1.13, ψmin = −0.10, Φmax = 20.18;
(c) t = 15.03, ψmax = 1.08, ψmin = −0.08, Φmax = 9.17;
(d) t = 17.19, ψmax = 1.05, ψmin = −0.04, Φmax = 2.48;
(e) t = 19.93, ψmax = 1.04, ψmin = −0.01, Φmax = 3.51;
(f) t = 22.93, ψmax = 1.03, ψmin = −0.07, Φmax = 15.77;
(g) t = 24.85, ψmax = 1.13, ψmin = −0.19, Φmax = 15.30;
(h) t = 26.65, ψmax = 1.15, ψmin = −0.06, Φmax = 11.70;
(i) t = 28.51, ψmax = 1.09, ψmin = −0.04, Φmax = 4.37;
(j) t = 30.80, ψmax = 1.02, ψmin = −0.01, Φmax = 3.90.
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Figure 12. As figure 10 but for Case III, during the period t = 10.41–18.60:

(a) t = 10.41, ψmax = 1.19, ψmin = −0.09, Φmax = 34.29;
(b) t = 11.14, ψmax = 1.20, ψmin = −0.15, Φmax = 49.81;
(c) t = 11.97, ψmax = 1.19, ψmin = −0.22, Φmax = 59.26;
(d) t = 12.70, ψmax = 1.20, ψmin = −0.21, Φmax = 65.55;
(e) t = 13.50, ψmax = 1.18, ψmin = −0.21, Φmax = 43.53;
(f) t = 14.31, ψmax = 1.13, ψmin = −0.17, Φmax = 26.78;
(g) t = 15.24, ψmax = 1.09, ψmin = −0.12, Φmax = 10.67;
(h) t = 16.15, ψmax = 1.05, ψmin = −0.09, Φmax = 4.90;
(i) t = 17.26, ψmax = 1.01, ψmin = −0.05, Φmax = 3.99;
(j) t = 18.60, ψmax = 1.01, ψmin = −0.01, Φmax = 1.68.
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Figure 13. Cast IV (a) wall position yw , and (b) wall pressure, at xw = 8.5, plotted as a function
of time for m = 0.1, β = 25, compared with the corresponding result for m = 0 (dotted), and the
steady solution (horizontal line).

(Carpenter & Garrad 1986; Carpenter & Morris 1990; Weaver & Paidoussis 1977;
Gavriely et al. 1989; Grotberg & Reiss 1984; Grotberg & Shee 1985; LaRose &
Grotberg 1997; Lucey & Carpenter 1992; Davies 1995; Davies & Carpenter 1997a, b),
though usually for infinitely long compliant boundaries, and invariably with a basic,
undisturbed state of parallel flow with a planar boundary, not steady separated
flow past a finite, indented membrane as here. Nevertheless, it will be instructive to
compare the frequencies of the modes found numerically with those predicted by
relevant linear theories.

The (radian) frequencies of a stretched membrane of length L, tension T and mass
m per unit length, in the absence of fluid loading, are given by

ω2
0 =

(nπ)2T

L2m
, (16)

where n is an integer (the mode number) and the parameters can be regarded as
either dimensional or dimensionless.

An approximate way of accounting for inviscid fluid loading, in the absence of a
mean flow, is to consider an infinite elastic channel, of width 1, along which linear
waves of wavenumber k can propagate in either direction with frequency ω, where
ω is determined by using a theory like that for waves on water of finite depth under
surface tension (Acheson 1990):

ω2 =
Tk2

(m+ 1/(k tanh k))
. (17)

A similar theory, but with additional wall properties and, notably, a ‘Darcy friction’
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four different times, curve 1: t = 21.41, 2: t = 24.93, 3: t = 31.15, 4: t = 34.23, (b) the spatial wave
of the pressure along the wall pw minus the corresponding steady state p0
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model for fluid viscosity, was derived by Grotberg & Reiss (1984). The case of a
finite membrane of length L can be modelled by superposing two waves, of equal
amplitudes but opposite propagation directions, in such a way that the membrane
displacement is zero at x = 0 and x = L (Davies & Carpenter 1997a). The frequencies
are then given by (17) with

k =
nπ

L
. (18)

Adding a mean flow with uniform speed U replaces ω in (17) by ω ± kU, so
that positive and negative travelling waves with the same frequency have different
wavenumbers, say k+(ω) and k−(ω). The requirement that the displacement is zero at
x = 0, L then gives

k+ + k− =
2nπ

L
, (19)

which constitutes an eigenvalue equation for ω, though it cannot be solved explicitly.
A more accurate model takes account of the parabolic velocity profile in the

oncoming flow, so that the dispersion relation for a propagating wave is not (17)
with ω replaced by ω ± kU but is obtained by solving the Rayleigh equation with
membrane boundary conditions. When viscosity is taken into account, moreover, so
that the governing equation becomes the Orr–Sommerfeld equation, additional modes
come into play (Tollmien–Schlichting waves, modified by the membrane).

In their approximate solution, Davies & Carpenter (1997b) (following Green &
Ellen 1972) used the first two terms of Heisenberg’s (1924) small-k expansion as the
solution to the Rayleigh equation, but with compliant wall boundary conditions. In
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Figure 15. Case V: (a) wall position yw , and (b) wall pressure, at xw = 8.5, for β = 25, m = 1 (solid),
compared with the corresponding result for m = 0 (dotted), and the steady solution (horizontal
line). The numerical scheme breaks down at t = 67.44.

terms of our variables, their result is that downstream and upstream propagating
waves of radian frequency ω have wavenumbers k+ and k− given by

k± =
ω(1 + 2m)

r ± 1
, (20)

where

r =

(
(1 + 2m)2T − 1 + 12m

5

)1/2

. (21)

For zero displacement at x = 0, L, k+ and k− must again satisfy (19), from which we
obtain the explicit formula

ω = 2πn
T − 3

5

Lr
. (22)

Table 1 lists the frequencies f (= ω/2π) obtained from each of equations (16),
(17), (19) and (22), for comparison with our computed frequencies (top row). It can
be seen that, for all four cases with m = 0.1 (Cases I–IV), the models which take
account of fluid loading all predict frequencies that, for n = 2, agree reasonably well
with the predictions of the full computations. Moreover the wavenumber k (= nπ/L)
is 0.4π for n = 2 and L = 5, which also agrees quite well with the numerical result
(see figure 14). The best agreement is achieved by the Davies & Carpenter (1997b)
result (22) (rather surprisingly, equation (17) does better than equation (19), although
the latter takes some account of fluid flow). None of the models does well for Case
V (m = 1.0), however. Presumably the slow, growing oscillations in that case are not
modified stretched-string vibrations, but represent a different mode altogether.
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Case I II III IV V

2D 0.554 0.506, 0.709 0.486 0.6012 0.0512
Equation (16) n = 1 0.772 0.742 0.715 0.846 0.267

n = 2 1.544 1.454 1.430 1.692 0.535
Equation (17) n = 1 0.141 0.135 0.131 0.155 0.136

n = 2 0.479 0.461 0.444 0.526 0.385
Equation (19) n = 1 0.118 0.113 0.105 0.134 0.100

n = 2 0.439 0.419 0.400 0.489 0.309
Equation (22) n = 1 0.288 0.274 0.262 0.321 0.206

n = 2 0.575 0.548 0.524 0.641 0.412

Table 1. Frequencies from the two-dimensional computation and the linear theories.

When it comes to predicting parameter values at which the instability sets in, the
theory of Davies & Carpenter (1997b) is not so successful. Critical conditions are
those for which r (equation (21)) is zero: i.e. instability is predicted for

T 6
1 + 12m

10(1 + 2m)
(23)

which increases from 0.1 to 0.6 as m ranges from zero to infinity. Thus the critical
value of T indeed increases as m increases, as found numerically, but the values given
by equation (23) are far lower than the critical values from the numerical solution.
This is also consistent with the numerical Orr–Sommerfield solutions of Davies &
Carpenter (1997b) and of Green & Ellen (1972), from which the critical Reynolds
number for either travelling-wave flutter or divergence is above 5000.

Another relevant theory is that of LaRose & Grotberg (1997), who also examined
instabilities of developing or fully developed flow in an infinite channel between
compliant walls. Their results are not quantitatively comparable with ours because
their fairly general model of wall elasticity does not include the case of pure membrane
tension. However, they did find (a) a long-wave instability involving wall elasticity
but independent of wall mass, and (b) a flutter instability that arises at a lower flow
speed than (a) when m is large enough. These results are qualitatively consistent with
both Davies & Carpenter (1997b) and our findings.

Too much weight should not be placed on the above comparisons because of the
approximate nature of the models: even the results of Davies & Carpenter (1997b) are
for long-wavelength disturbances, on infinite compliant boundaries, constrained to
have zero displacement at x = 0 and L, and planar when undisturbed. It would be bet-
ter to solve a finite-membrane model, as did Shayo & Ellen (1974) for a circular pipe.
Moreover the different apparent wavenumber for wall displacement and for pressure,
given by the full computations, emphasizes the nonlinear character of the real system.

Energy dissipation

As the rate of energy dissipation in the flow domain is believed to play an important
role in the mechanism of the oscillations for a massless membrane, it is of interest to
see how the energy dissipation is changed from that case. We investigate this at a time
when the flutter-type oscillations have just appeared but not yet become dominant,
since there is no doubt that as the wall motions change dramatically at a later stage,
the energy dissipation would change accordingly. Investigating the distribution of the
energy dissipation at an early stage may help us to see what is the driving force for
flutter to appear.
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The darker curves in figures 10–12 are the contours of the rate of viscous energy
dissipation per unit volume, Φ = (ui,j + uj,i)

2/2Re, calculated at each point in the flow
domain at a number of times throughout the computation for the Cases I, II and III.
The lighter contours underneath are the corresponding streamlines.

It is clear that as in the case without wall inertia (Luo & Pedley 1996) the principal
energy dissipation sites are located in the thin boundary layers on the two channel
walls in the neighbourhood of and upstream of the narrowest point, as well as in
various places downstream: in the shear layer at the edge of the primary separation
zone and on the channel walls near the crests and troughs of the vorticity wave. The
contributions from each part of the flow domain can be estimated by integrating Φ
over four different sections of the channel (with x in the ranges 5–9, 9–13, 13–17,
17–21) together with the total dissipation rate (5–21), as shown in figure 16(a, b, c)
for all the three cases. Again, the solid lines are for m = 0.1, and the dashed lines
are those with m = 0. The first section corresponds roughly to the zone upstream of
the narrowest point, the second to the shear layer bounding the primary separation
region, and the third and fourth to zones affected only by the vorticity waves.

It seems that, apart from some small phase changes, wall inertia does not change
the contribution of each section significantly. As before, for the gentle slow mode
oscillations, in Cases I and II, it is still the upstream section up to the narrowest point,
i.e. curve 1 in figure 16, which dissipates the largest proportion of the energy. The im-
mediate downstream section, including the primary flow separation zone, represented
by curve 2, comes second. Less energy is dissipated further downstream (curves 3
and 4). More precise interpretation is harder because of the (small) longitudinal mo-
tion of the constriction. Only when the oscillation becomes more violent and highly
nonlinear, as in Case III, does the the second section (curve 2), i.e. the primary flow
separation region, dissipate significantly more energy during part of the cycle (figure
16c). In general, the main features of the energy dissipation integrals remain the same
as in cases without wall inertia, at least before the flutter becomes very strong. This
implies that it is not a change in the energy dissipation in the different sections of the
flow field that enhances the growth of the flutter.

Energy transfer to the wall.

One common feature in the instabilities induced by wall inertia is that all the
oscillations are growing waves, and they grow more rapidly than the tension-induced
oscillations. This means that there must be a way for the system to transfer energy
continuously to the membrane, which in turn is converted into oscillation.

There is indeed a phase difference between the wall pressure and wall displacement
during the flutter, which enables the fluid to do work on the wall (Miles 1957;
Benjamin 1963; Carpenter & Garrad 1986; Carpenter & Morris 1990). Thus there is
the possibility of a destabilizing energy transfer to the wall. To see how much work is
done by the fluid on the wall, we calculated the term pwvw over some time period, say,
t = 21.38–34.23 for Case IV (figure 14), and it is plotted against xw along the elastic
section in figure 17. It seems that this work is positive for some parts of the membrane
and negative for other parts. However, the overall sum of the energy transfer remains
positive, being about 0.4722 for this case. In other words, during this time period
there has been a net transfer of 0.4772 units of energy into the wall, which is about
25% of the average total energy dissipation over the same time period in the whole
flow field. Obviously, it is this energy transfer that makes the flutter grow.
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Figure 16. Volume integrals of dissipation rate Φ over the whole channel and over four subsections∫ yw
0

∫ b
a
Φdxdy: curve 0: a = 5, b = 21 (whole channel); curve 1: a = 5 b = 9; curve 2: a = 9, b = 13,

curve 3: a = 13, b = 17, curve 4: a = 17, b = 21. (a) Case I, β = 30; (b) Case II, β = 32.5; (c)
Case III, β = 35. Solid lines represent the results for m = 0.1 and the dashed lines are the ones
with m = 0. The dissipation rates for steady flow at the same values of β and Re are shown at the
right-hand side.

Comparison with experiments

A direct quantitative comparison of the present model with experiment is not possible
because approximately two-dimensional channels do not occur naturally and have not
(yet) been constructed experimentally. There have, however, been many experiments
on collapsible tubes, and we have already confirmed that some features of the low-
frequency oscillations found numerically are qualitatively similar to those observed
experimentally (Luo & Pedley 1996). Experimental studies in which high-frequency
oscillations are observed, sometimes superimposed on lower-frequency oscillations,
include those of Weaver & Paidoussis (1977), Webster et al. (1985), Sakurai & Ohba
(1986), Bertram (1986), Gavriely et al. (1989) and Bertram et al. (1990, 1991). The
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Figure 17. The work done by the fluid on the elastic wall: average value of pwvw over the time
period t = 21.38–34.23 for Case IV, β = 25, and m = 0.1, plotted along the wall.

studies of Bertram and his colleagues involved water flow in thick-walled tubes, so
both the effective value of m would be relatively large and the elastic properties of
the tube would have been very different from those assumed in this paper. No doubt
some of Bertram’s high-frequency oscillations can be attributed to flutter, stemming
from wall mass, but comparison with the present model would be meaningless. Wall
mass would have been even more dominant in the experiments of Gavriely et al.
(1989) who studied airflow in a thick-walled tube; they found, nevertheless, that
there was reasonable agreement with a two-dimensional flutter model, in which the
bending stiffness of the wall was more important than longitudinal tension. Webster
et al. (1985) studied airflow in a ‘mechanical trachea’, consisting of a tube with
square cross-section (when undeformed), one side of which was replaced with a
membrane under biaxial tension; when deformed, this system is not approximately
two-dimensional nor tube-like. Weaver & Paidoussis (1977) studied the stability of
thin-walled tubes conveying water, and reported a flapping-mode flutter and classical
shell-mode flutter depending on the initial collapsed states of the tubes. They found
that the finite-length, standing wave model best described the flapping-mode flutter
which has relatively smaller amplitude and occurs mostly for initially collapsed tubes.
Perhaps the experiment most relevant to the present analysis was that of Sakurai
& Ohba (1986), who studied airflow through a very thin-walled Penrose tube. They
reported that self-excited oscillations took place, for a wide range of flow conditions,
and were similar to those observed with water flow. At certain flow conditions,
however, a strong ‘resonant oscillation’, accompanied by a sharp sound took place
and they observed that the frequency of the resonant oscillation was 4 or 5 times
higher than that of the ordinary oscillation (Sakurai & Ohba 1986). No such ‘resonant
oscillation’ has been reported from experiments with water flow, to the best of our
knowledge, implying that it was a caused by the higher wall mass ratio. The observed
frequency was also comparable with our prediction, for which flutter frequencies are
about 4–8 times the original mode frequencies (see Cases I–III).

Flow limitation

As mentioned in the introduction, it would be of interest to use the opportunity
provided by our complete numerical solution to investigate whether there is a causal
link between the onset of flutter or other oscillations and the occurrence of flow
limitation. In a finite-length collapsible tube, flow limitation is seen as the (steady)
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Figure 18. The flow-rate rate Q/Q0( where Q0 is the flow-rate corresponding to Re = 200) plotted
against the pressure drop p(0)− p(L).

driving pressure difference along the collapsible segment, p(0) − p(L), is increased
while the transmural pressure at the upstream end, p(0) − pe, is held constant. For
small driving pressures the flow rate Q increases, but once the downstream transmural
pressure, p(L) − pe, becomes negative, collapse begins at the downstream end and
the flow rate becomes constant (see Grotberg 1994). According to one-dimensional
models, flow limitation is associated with a ‘choking’ phenomenon, by which the fluid
velocity cannot exceed the local propagation speed of long, infinitesimal, area waves.

To investigate flow limitation in our two-dimensional model, it is necessary to
conduct steady flow computations with the pressure given at the upstream end of the
system as well as at the downstream end, and to regard the flow rate as unknown.
This leads to a set of new boundary conditions upstream and downstream. The
computation is also complicated by the fact that our non-dimensionalization (5)
involves the upstream average velocity U0 in the scales for pressure and tension.
However, starting from one of the steady flows already computed, and whose stability
has been examined by the methods of this and the preceding paper (Luo & Pedley
1996), we can fix the velocity scale U0 for that case, thereby fixing Re, T and p(0)−pe,
and then compute the actual flow for various neighbouring values of the upstream
pressure p(0).

Unfortunately, this system appears to be numerically highly unstable compared
with the previous one where flow rate is prescribed upstream. Computing flows for
the same conditions, i.e. Re = 300, proved impossible even with carefully chosen
initial conditions and a relaxation factor as small as 0.1. It is worth pointing out
that this may not be a purely numerical difficulty, but that the system with fixed
upstream pressure may be intrinsically more complex and unstable than that with
fixed upstream flow rate. Such increased complexity was found even in a grossly
oversimplified lumped parameter model, because the governing ordinary differential
equation was third order rather than second order (Bertram & Pedley 1982).

A complete survey of instabilities and their relation to flow limitation will require
a new numerical approach. However, we have studied one case which starts with a
lower Reynolds number for which we could achieve convergence using the current
code. The case chosen has Re = 200, T = 178.916/β, β = 30, pe − pd = 3.73, for
which p(0) − pe = 0.714. The results, in the form of a graph of ratio of steady flow
rate Q to the initial flow rate Q0 (corresponding to Re = 200) versus p(0) − p(L)
is shown in figure 18; flow limitation is indeed observed in that Q decreases as the
pressure drop increases. In addition to computing the steady flow, we have also used
the unsteady code of the present paper (with Q fixed = Q0) to investigate the stability
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of the steady state for different values of m. The steady flow was found to be stable
for the massless membrane (Luo & Pedley 1996). The new computations show that
the system is stable when m 6 0.2, whereas self-excited oscillations set in for m > 0.3.
The results for smaller m show that the occurrence of flow limitation is not a sufficient
condition for self-excited oscillations when the inflow rate is fixed, but further study
is clearly required.

6. Conclusion
Effects of different values of mass ratio m on the flow in a two-dimensional

collapsible channel have been studied. It was found that for m = 0.01, a value
relevant to blood flow in arteries and veins, or experiments with water as the fluid,
wall inertia has a negligible effect on the self-excited oscillations. This implies that for
this type of system, tension-induced instabilities are the main cause of the self-excited
oscillations. For m = 0.1, a value more relevant to air flow in the lung, or experiments
with air as fluid, flutter-type oscillations are found to develop and play an important
role in destabilizing the system. The common feature of the flutter that is different
from the original oscillations is that they are all growing waves, transferring energy
from the fluid to the wall. The presence of wall inertia (with m = 0.1) also increases
the critical value of the tension below which the system becomes unstable. Energy
dissipation integrals from different parts of the flow domain are found not to change
prior to the flutter, implying that this is not the main driving mechanism. As the mass
ratio is further increased, the flutter frequency is found to fall, but a large exponential
growth in the amplitude of the wall wave soon makes the numerical scheme break
down. Neither flutter nor the oscillations previously found are well-correlated with
the occurrence of flow limitation.

Much of this work was performed when both authors were in the Department of
Applied Mathematical Studies, University of Leeds. We are grateful to the University
of Leeds Academic Development Fund and to the SERC (now EPSRC), grant No.
GR/G39174, for financial support of this work. Special thanks are due to Dr C. Davies
and Dr C. Morfey for helpful discussions.
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